

ICOHAR International Conference on One Health Antimicrobial Resistance

ICOHAR 2019 16-18 April 2019, Utrecht, Netherlands

FINAL PROGRAM

Day 1 - Tuesday, 16 April 2019 Venue: Utrecht University Hall, Academic Building, Dom Square, Utrecht

15.00-19.00	Registration
18.30-18.40	Welcome speech by Luca Guardabassi (DK/UK)
18.40-19.05	Opening keynote lecture by Marc Sprenger (World Health Organization): One Health and AMR: taking stock 4 years after approval WHO Global Action Plan in AMR
19.05-19.30	Jorge Pinto Ferreira (F): The OIE strategy on antimicrobial resistance
19.30-20.30	Welcome reception

Day 2 - Wednesday, 17 April 2019 Venue: Jaarbeurs MeetUp, Jaarbeursplein, Utrecht

8.30-9.00	Keynote lecture by Jaap Wagenaar (NL): One Health in antimicrobial resistance: who should care?					
	Room: Johan Friso Foyer	Room 117				
9.00-9.45	One health integrated surveillance (organized by ESGARS) Chair: Arjana Tambic (CR) Luis Martinez- Martinez (ES): Supranational Networks for surveillance of human multiresistant pathogens Frank Møller Aarestrup (DK): The relative contribution by livestock to resistance problems in human medicine	New approaches for precision antimicrobial therapy (organized by EPASG) Chair: P.L. Toutain (F) f Leonardo Pagani (I): PK/PD-driven antimicrobial therapy in ICU Alain Bousquet-Mélou (F): New approaches for precision antimicrobial therapy				
9.45-10.30	MDR in Mycobacteria and Mycoplasma of human and animal origin (organized by ESGMYC and ESGMI). <i>Chair: Nir-Oaz Ran (IL)</i> Miguel Viveiros (P): AMR in Tuberculosis and Non-Tuberculosis Mycobacteria: a slow selective process in progress in One-Health, One-World Sabine Pereyre (F): Resistance and multi-drug resistance in mycoplasmas of human and animal origin	The use of animal models for assessing antimicrobial impact on the gut microbiome (organized by ESGVM and ESGHAMI). <i>Chair Ed J. Kuijper (NL)</i> Hauke Smidt (NL): In vitro and animal models of the gut microbiome Luis Pedro Coelho (ROC): The gut microbiome of dogs and cats shares genes and spe- cies with the human gut microbiome.				
10.30-10.45	Co	offee break				
11.00-11.30		vited lecture taking stock 4 years after approval WHO Global Action Plan in AMR				
11.30-12.15	AMR in Clostridium difficile lineages shared by humans and animals (organized by ESGCD). Chair: John Coia (DK) Maja Rupnik (SL): AMR and C. difficile from different reservoirs Kate Dingle (UK): A role for tetracycline selection in recent evolution of the agriculture-associated C. difficile PCR-ribotype 078	Education on responsible antibiotic use in European medical and veterinary universities (organized by ESGAP). <i>Chair: Jeroen Schouten (NL)</i> Carmen Espinosa Gongora (DK): Training the next generation of veterinary prescribers Oliver Dyar (S): Are we preparing medical students to prescribe antibiotics responsibly?				
12.15-13.00	Zoonotic transfer of AMR: the case of E. coli (organized by ESGMD). Chair: John W.A. Rossen (NL) John WA Rossen (NL): Next generation sequencing: first diagnostic one-stop shop in one-health microbiology Adrian Tett (IT): Cultivation-free detection and characterisation of pathogens by metagenomics	The impact of vaccination programmes on reduction of antimicrobial use (organized by EVASG). Chair: Johanna Fink-Gremmels (NL) Susanna Esposito (I): Impact of influenza and pneumococcal vaccines on antimicrobial resistance Anders Fabio Antenucci (DK): How vaccination prevented an emerging E. coli epidemic and antimicrobial overuse in the Scandinavian broiler production				
13.00-14.00	Lunch break & Poster viewing					
14.00-14.30		vited lecture lynamics of antimicrobial resistance and microbiomes				
	Room: Johan Friso Foyer	Room 117				
14.30-15.15	The role of the environment in the spread of AMR (organized by EFWISG). Chair: Teresa Coque (SP) Luísa Vieira Peixe (P): Key players driving environmental emergence and spread of AMR Johan Bengtsson-Palme (S): The environment and the antibiotic resistance development – now and in the future	Nosocomial infections: a One Health perspective (Organized by ESGNI). Chair: Margreet C. Vos (NL) Laurent Poirel (CH): Emergence of acquired polymyxin resistance in Gram negatives; perfect example of a One-Health issue Dorina Timofte (UK): Infection control in veterinary hospitals: why it matters				
15.15-16.00	One Health issues related to AMR in staphylococci (organized by ESGS). Chair: Jodi Lindsay (UK) Francois Vandenesch (F): Antibiotic pollution as potential driving force of CA-MRSA expansion Anette Loeffler (UK): MRSP carriage in dogs: A risk to people?	Management of critically ill patients (organized by ESGCIP). Chair: David Dockrell (UK) Jeroen Schouten (NL): The role of Antimicrobial stewardship programs in intensive care units Joris Robben (NL): The challenge of infection control in a small animal intensive care unit				
16.00-16.30	Co	offee break				
16.45-17.15	Chair: Pa	tances in the past (e.g. VRE, ESBL, MRSA, carbapenem and colistin resistance). <i>trick Butaye (B/SKN)</i> illem van Schaik (UK), Patricia Poeta (PT) and Youjun Feng (CN)				
17.15-18.00	• • • • •	infections in human and veterinary medicine: a One Health perspective londeau (CA) and Michael Lappin (USA)				
18.00-18.30		note lecture problem requiring innovative interdisciplinary and imaginative interventions				
18.30-20.00	Prog	ramme break				
20.00-22.15		ocial Dinner Jaen, Oudegracht 99, Utrecht				

Day 3 - Thursday, 18 April 2019

Venue: Jaarbeurs MeetUp, Jaarbeursplein, Utrecht

8.30-9.00	Keynote lecture: Sensitive pathogen detection and rapid AST in the One Health future by Alex Van Belkum (F)
9.00-9.30	Invited lecture: Antifungal use in veterinary practice and emergence of resistance. by Amir Seyedmousavi (International Society for Human and Animal Mycology)
9.30-10.00	Invited lecture: CBPs, ECOFFs, Intermediate, and all that jazz by John Turnidge (European Committee on Antimicrobial SusceptibilityTesting)
10.00-10.30	Roundtable discussion on the future of antimicrobial susceptibility testing Chair: Luca Guardabassi (DK/UK); participants: John Turnidge (EUCAST secretary), Peter Damborg (VetCAST chair), Hilde Moyaert (Animal Health Europe/Zoetis), Jordi Torren (European Medicines Agency) and Sakurako Marchand (bioMerieux)

Coffee break

11.00-11.30	Invited lecture: What can we learn from One Health evaluation of interdisciplinary AMR research projects? by Liza Rosenbaum Nielsen (DK)
11.30-12.15	Presentations from selected abstracts
12.15-12.45	Closing keynote lecture: Alternatives to conventional antimicrobial agents: present and future by David Gally (UK)
12.45-13.00	Closing remarks by Johanna Fink-Gremmels (NL) and Ed J. Kuijper (NL)
13.00-13.30	Lunch package & refreshments

The ICOHAR Organizing Committee:

Prof. Luca GUARDABASSI (ESGVM) University of Copenhagen (DK) and Royal Veterinary College (UK)

Prof. Johanna FINK-GREMMELS (NCOH and EAVPT) Utrecht University (NL)

Prof. Patrick BUTAYE (ESGVM) Ross University School of Veterinary Medicine (SKN) & Ghent University (B)

Prof. Ed J. KUIJPER (ESGHAMI and NCOH) Leiden University Medical Center (NL)

Important Information

Opening Hours Registration:

Tuesday 16 April: Wednesday, 17 April: 15.00 – 19.00 in the Utrecht University Hall, Academic Building, Dom Square 8.00 – 12.00 in the Jaarbeurs MeetUp, Jaarbeursplein

It will be possible to register onsite: €250 for one day and €500 for the entire conference

Currency

All official prices are indicated in Euro (€). The official currency in The Netherlands is EURO (€). All major credit cards are accepted in most hotels, restaurants and shops.

Insurance

The congress organisers cannot accept liability for personal injuries sustained, or for loss or damage of property belonging to conference participants, either during, or as a result of the meeting. Please check the validity of your own insurance.

Language

The congress language is English. Simultaneous translation will not be provided.

bioMérieux (platinum sponsor)

Organization:

ICOHAR 2019 is supported by the European Society for Clinical Microbiology and Infectious diseases (ESCMID) and organized by the ESCMID Study Group for Veterinary Microbiology (ESGVM). As part of its mission, ESGVM promotes One Health by facilitating joint research and training collaborations between medical and veterinary microbiologists within areas of common interests, namely zoonoses and antimicrobial resistance. The event is organized in collaboration with other organizations:

The central theme of ESCMID Study Group for Host and Microbiota Interactions (ESGHAMI) focuses on clinical significance of and therapeutic interventions on host-microbiota associated diseases and health in both humans and animals.

AMR and One Health are priority topics for research and education at the Department of Veterinary and Animal Sciences of the University of Copenhagen. Among the various One Health activities, the Department coordinates a large multidisciplinary research center on control of AMR in people and animals (www. uc-care.ku.dk) and is involved in the organization of MSc course on AMR shared by veterinary and medical students.

The European Association of Veterinary Pharmacology and Toxicology (EAVPT) is the leading organisation of veterinarians active in the field of pharmacology and pharmacotherapuetics in Europe. The Association is strongly committed to the development of safe and effective therapeutics in the context of One health initiatives cognisant of the impact on animal, human and environmental health.

Edinburgh Infectious Diseases (EID) is the network of infectious disease researchers and clinicians in Edinburgh. AMR is a priority research topic for this network, which fosters infectious disease teaching and training at all levels within the University, including the development of a new MSc in One Health.

Netherlands Center for One Health aims for an integrated One Health approach to tackle the global risk of infectious diseases, and commits to create durable solutions for this major challenge by bundling world-leading academic top research in the Netherlands in the area of One Health.

The World Small Animal Veterinary Association (WSAVA)

Leading infectious disease research and training

netherlands centre for one health

Conference Venue

The Welcome reception on April 16th will be held at the **Utrecht University Hall, Dom Square,** in the historic city centre of Utrecht. The Academic Building is located directly next to the main Cathedral (The Dom).

The rest of the conference will be held at Jaarbeurs MeetUp, Jaarbeursplein, Utrecht (see map below)

Navigation address: Graadt van Roggenweg 400 | 3531 AH Utrecht

ICOHAR International Conference on One Health Antimicrobial Resistance Dear conference participant, dear reader,

It is generally recognized that control and prevention of antimicrobial resistance (AMR) requires a holistic One Health approach involving specialists from different sectors. In line with this concept, the 2nd International Conference on One Health Antimicrobial Resistane (ICOHAR) aims at bringing together representatives from all relevant sectors (e.g. public health, human and veterinary medicine, livestock production, food safety and environmental sciences) to share research and education strategies for understanding and reducing the risks of AMR at the interphase between humans, animals and the environment. The programme does not only focus on zoonotic transfer of AMR but also on the numerous AMR-related challenges shared by clinicians, clinical microbiologists, infectious disease specialists and researchers working in these sectors.

In this conference, the second "International Conference on One Health and Antimicrobial resistance" ICOHAR, we have included as much as possible diverse ecosystems, and updated the audience on contemporary perspectives. It was also an ideal forum to present new data, foster new collaborations and challenge existing.

This online abstract book is a compilation of most of the talks and all poster abstracts presented at the conference. We thank all presenters who have duly contributed their presentations and helped to shape a better collective understanding on the One Health implications of antimicrobial resistance.

We are also very thankful to our sponsors, ESCMID, Biomerieux and Zoetis. This conference would not have been possible without their contributions.

We hope to see you all at the next ICOHAR! Information will follow in due time.

Best regards,

The organizing and scientific committee.

ICOHAR One Health and AMR: Taking stock 4 years after approval of WHO Global Action Plan on AMR

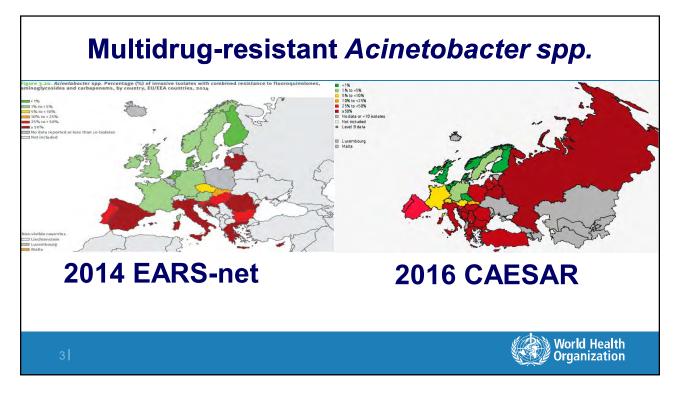
Marc Sprenger, MD PhD, Director AMR 16 April 2019

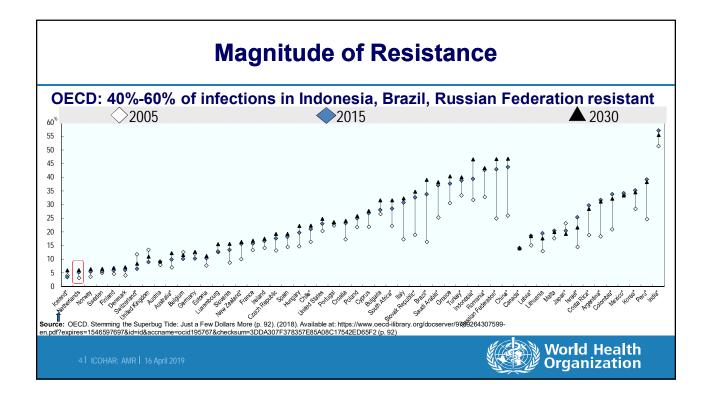
AMR is the Greatest Threat to Modern Medicine

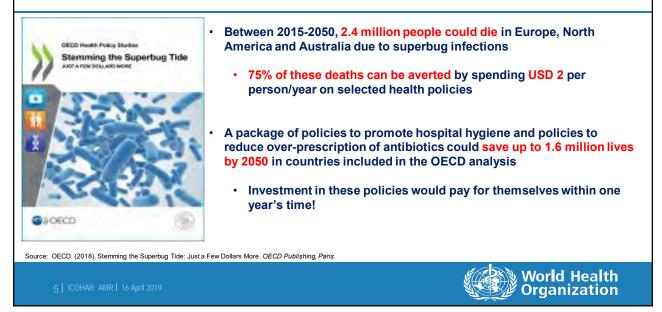
Profound health consequences

- Individuals, health systems, food systems, and practice of medicine

Economic and other intersectoral implications


- Development, agriculture, food, business, etc.


Long-term threat with no end in sight unless fundamental changes are made



OECD Analysis: Key Findings

OECD Modelling: Cost Effectiveness of Antimicrobial Resistance Control Policies

Healthcare-based interventions					
Improved hand hygiene Stewardship programmes Hygiene					
Reducti	on in mortality du	e to AMR			
58%	54%	53%			

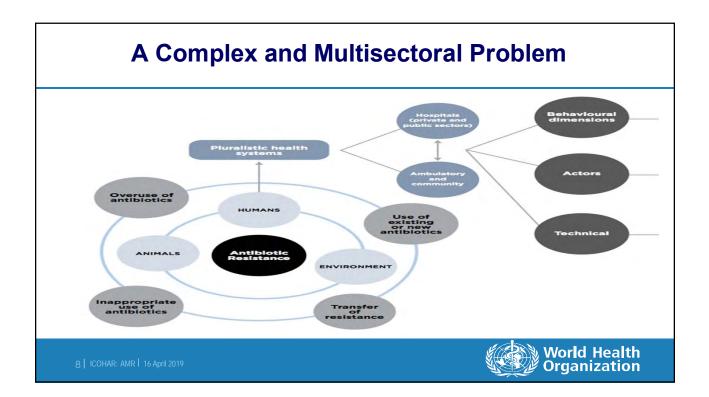
 A policy package including all 3 hospital-based policies would save on average USD PPP 1.2 million per 100,000 persons per year

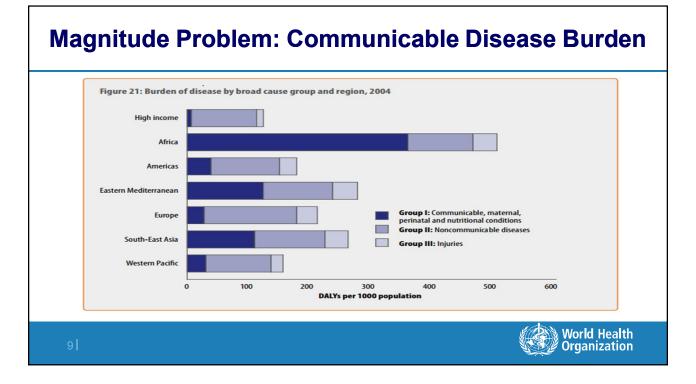
Commu	Community-based interventions					
Mass media	Delayed prescribing	RDTS				
Reducti	Reduction in mortality due to AMR					
9%	16%	25%				

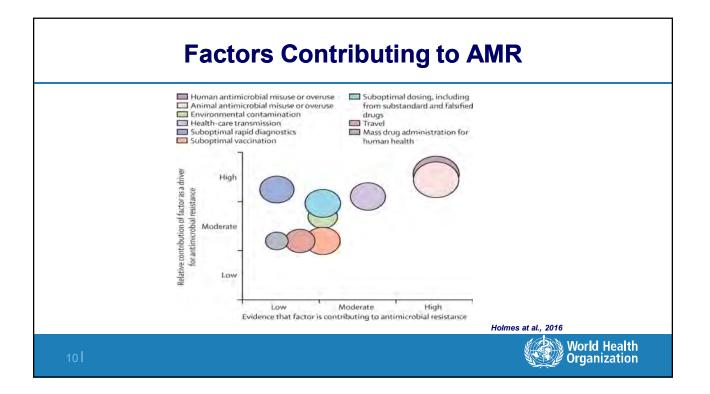
- A community-based policy package would result in in average reductions in health care expenditure of approximately USD PPP 275,000
- Hand hygiene policy has an implementation cost that is on average 10 times lower than enhanced environmental hygiene policy, and generates savings that are, on average 15 times higher than the implementation cost! (implementation cost of USD PPP 8,500 per 100,000 persons for a net return of around USD PPP 140,000)

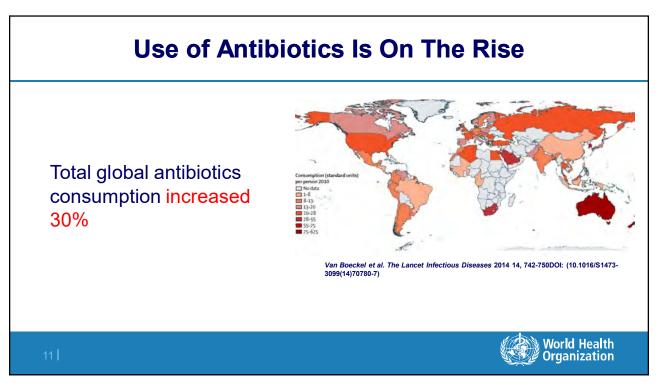
Source: OECD. (2018). Stemming the Superbug Tide: Just a Few Dollars More. OECD Publishing, Paris.

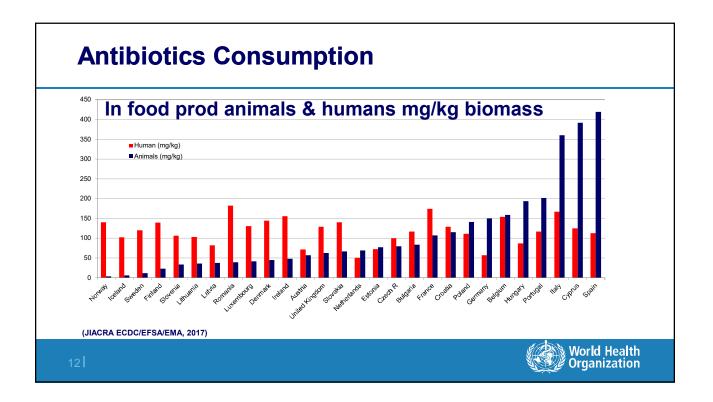
6 | ICOHAR: AMR | 16 April 2019

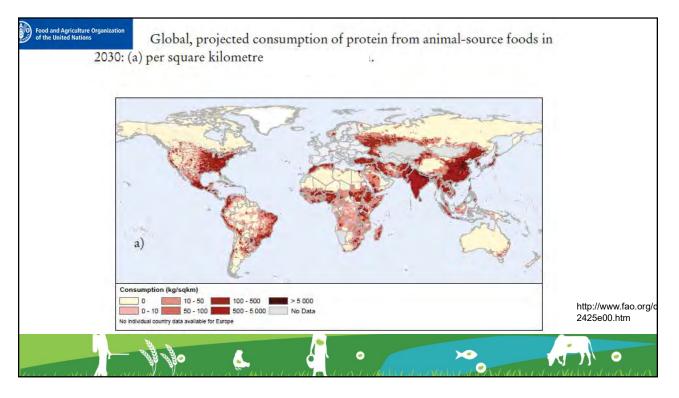


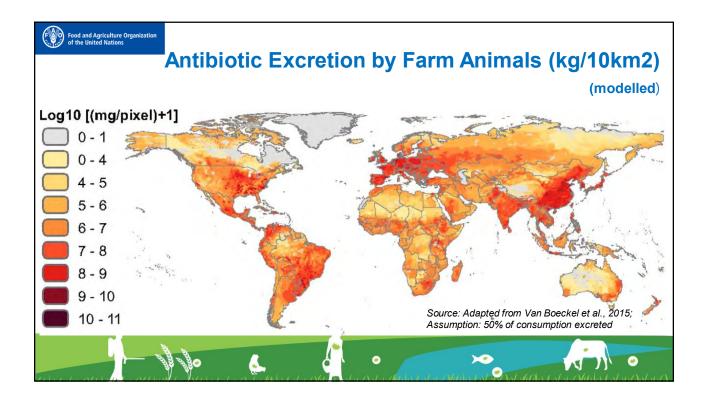

Modelling Analysis: Attributable Deaths and DALYs by Antibiotic-Resistant Bacteria in EU and EEA in 2015

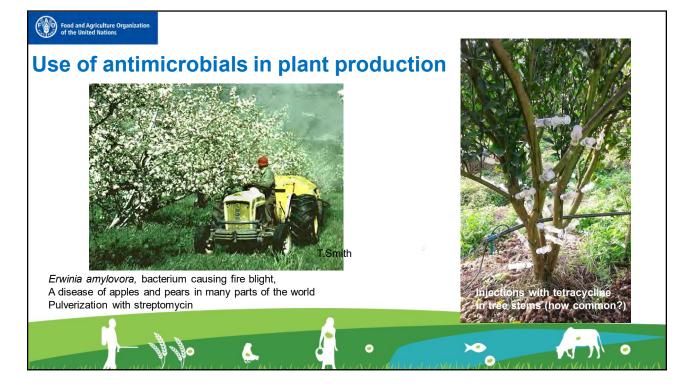

	Formats: Antion BubRader efs./.total PDE./.t.5M Citation Share Ef Parabola: C Turlia: Chapter	 671 689 infections with antibiotic-resistant bacteria 33 110 attributable deaths
Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic	Save Items	• 874 541 DALYs
Wini anabolotic-resistanti bacteria in the EU and the European Economic Area in 2015: a population-tevel modelling analysis fermander Cantel No ¹⁻²⁴ Latent Star Uppers No ¹ Standard Natheran No ¹ Anala Contract No ¹ Analas No ¹ No ¹ Analas No ¹ Mahata Castan No ¹ Minister Distances No ¹ Man El Sustance No ¹ March Chemistrikanas No ¹ Mahata Castan No ¹ Standard Star No ¹ Star March Start Chemistrikanas No ¹ Additiona No ¹ Distance The No ¹ March Starter Chemistrikanas No ¹ Castantian No ¹ Castantian No ¹ Starter Chemistrikanas No ¹ Castantian No ¹ Castantian No ¹ Starter Chemistrikanas No ¹ Castantian No ¹ Starter Chemistrikanas No ¹ Castantian No ¹ No ¹ Starter Chemistrikanas No ¹ Castantian No ¹	Sensitive ancies in Publice Defend to Vietnem-Associated Infections on Durpson Puparticine Haats Transmittania (incidence allessed (Puus) Med 2017) Control of heaptile acquired Infections and enforcedule enables Durpson the respect of the sensitive of public infections and anti- public of the sensitive of public infections (Public allessed (Public allessed)) respect of heaptile acquired Infections (Public allessed) Public of the sensitive of public infections (Public allessed) Public of the sensitive of public infections (Public allessed) Public of the sensitive of the	 An estimated 63.5% of antibiotic-resistant infection cases are associated with health care, leading to 72.4% attributable deaths
See " <u>Static handle to de or de ministrated reactions in Custor</u> ," in Canver Inford Dar, dar 18 1516/53173- 2005/10/0648-4 This and/or has been <u>clasticy</u> other addes in PMC.	World Health Organization Estimates of the Ophal and Regional Disease Burber of 11 Poolshome Paraelist Dise (PLAS) Muci 2015 Dee invesses. Dee al.	 74.9% of DALYs per 100,000 population Infection prevention and control in health care
Associated Data ' Souphementery Manishin Souphementery Manishin mm.L. add (MA)	Cited by other articles in PMC Links	facilities is KEY!
BILL DR CHART OF A STAR OF	Recent Activity Int. St Class Michael Control Class Michael Control Contro	
Background	Attributable deaths and disability-adjusted We years caused by infections with.	
ource: Cassini, A., Hogberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simo nd the European Economic Area in 2015: A population-level modelling analysis. The		Group. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU
7 ICOHAR: AMR 16 April 2019		World Health Organization

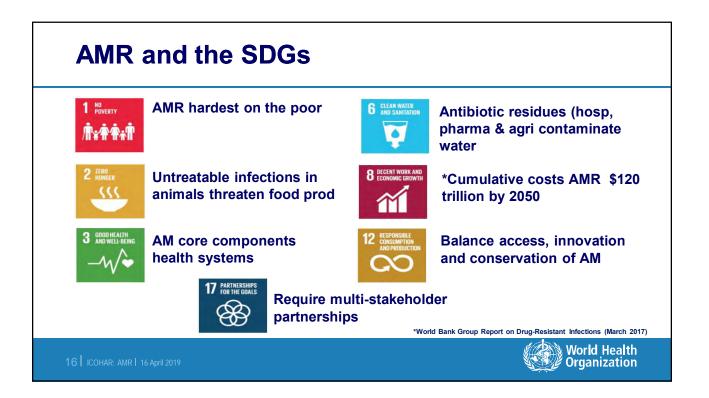


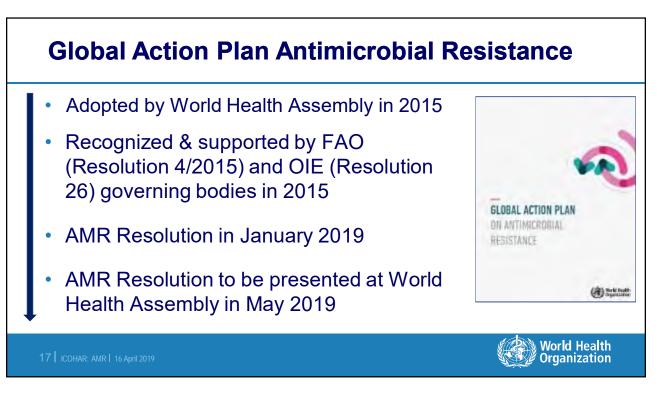






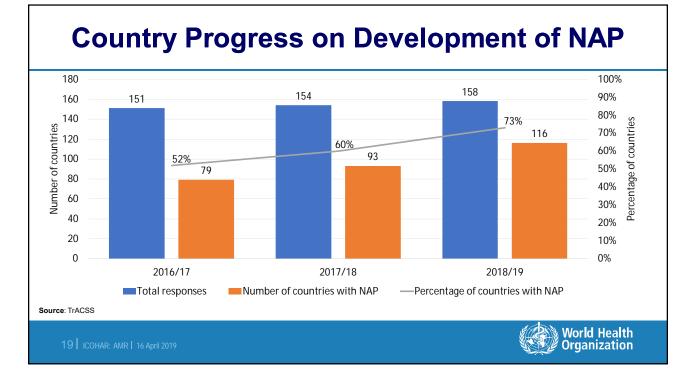


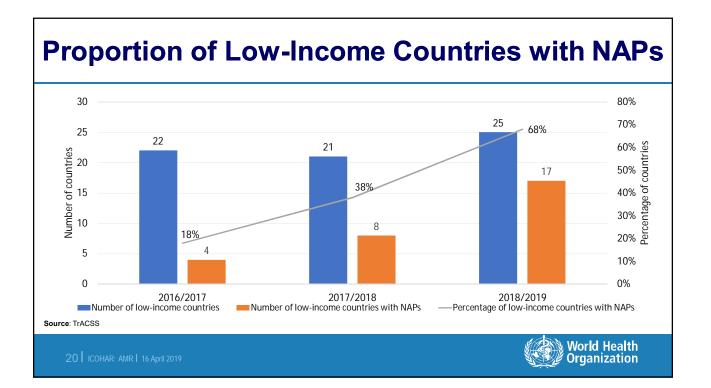




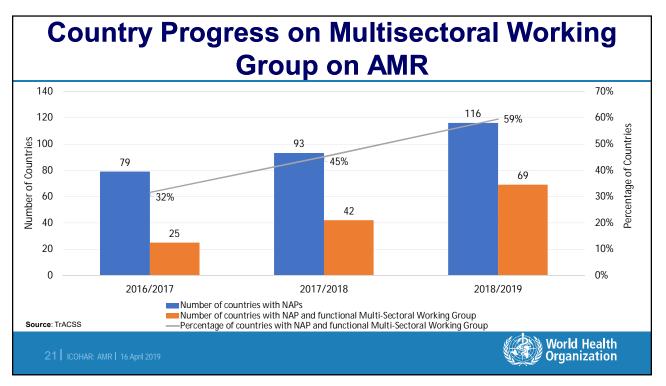
Global Action Plan's 5 Strategic Objectives

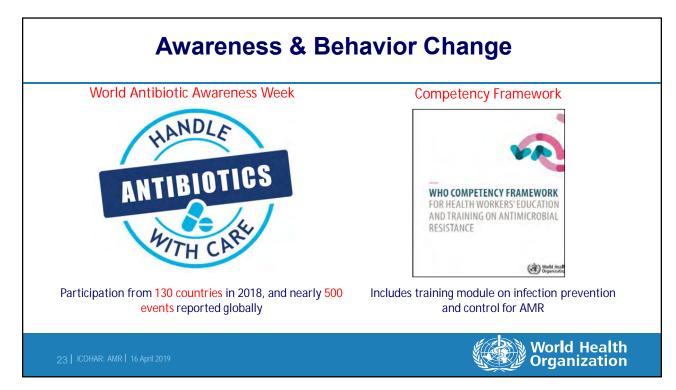
- 1. Improve awareness and understanding
- 2. Strengthen knowledge through surveillance & research
- 3. Reduce the incidence of infection
- 4. Optimize the use of antimicrobial medicines
- 5. Ensure sustainable investment


Develop National Action Plans

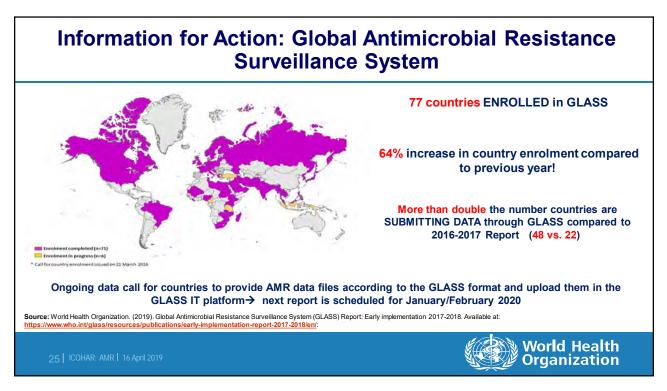


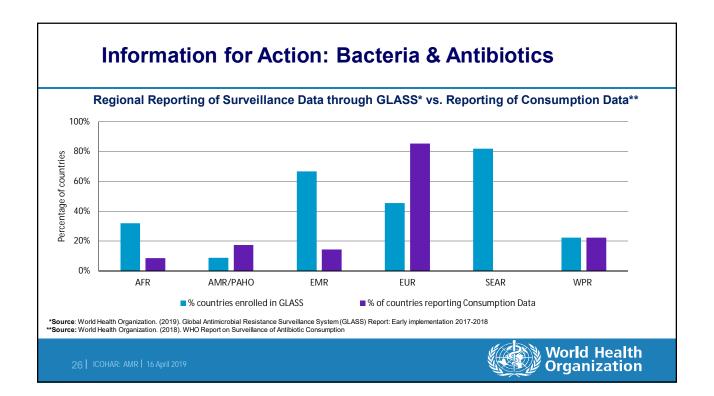
18 | ICOHAR: AMR | 16 April 2019



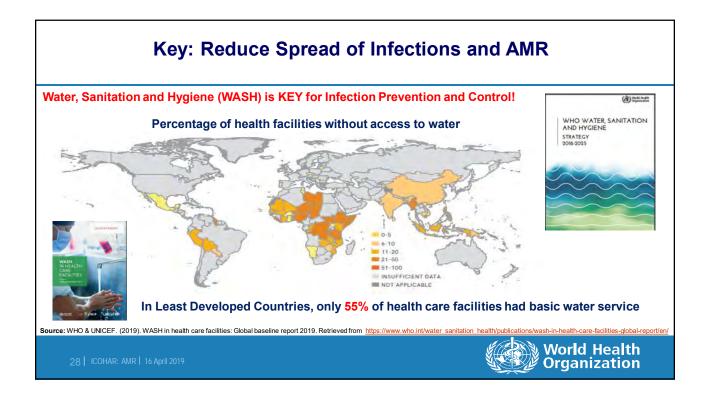

Global Action Plan's 5 Strategic Objectives

- 1. Improve awareness and understanding
- 2. Strengthen knowledge through surveillance & research
- 3. Reduce the incidence of infection
- 4. Optimize the use of antimicrobial medicines
- 5. Ensure sustainable investment



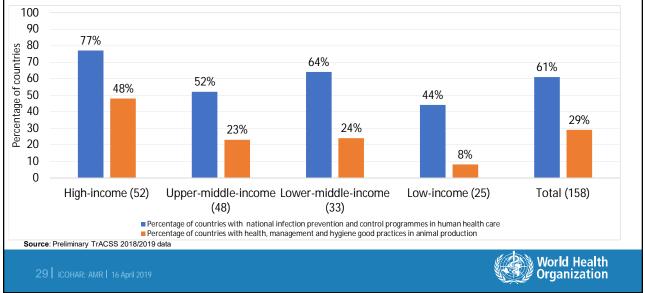


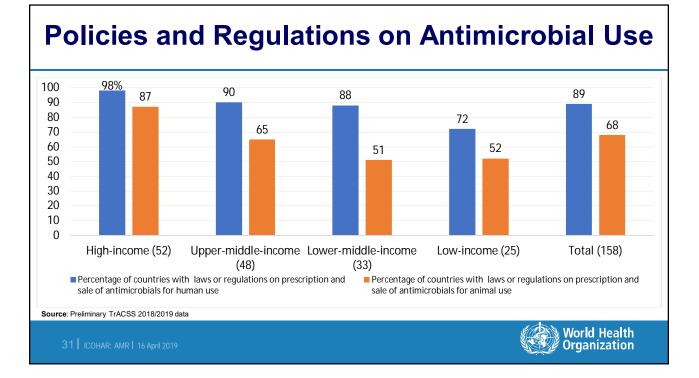
<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

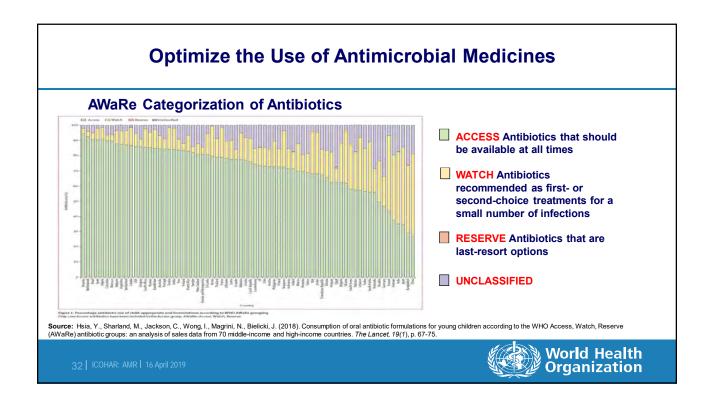


Global Action Plan's 5 Strategic Objectives

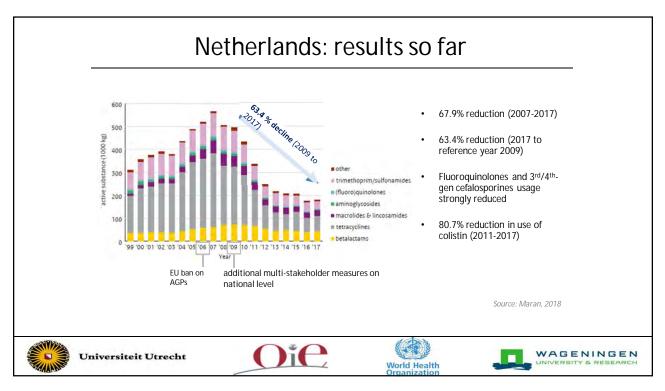
- 1. Improve awareness and understanding
- 2. Strengthen knowledge through surveillance & research
- 3. Reduce the incidence of infection
- 4. Optimize the use of antimicrobial medicines
- 5. Ensure sustainable investment

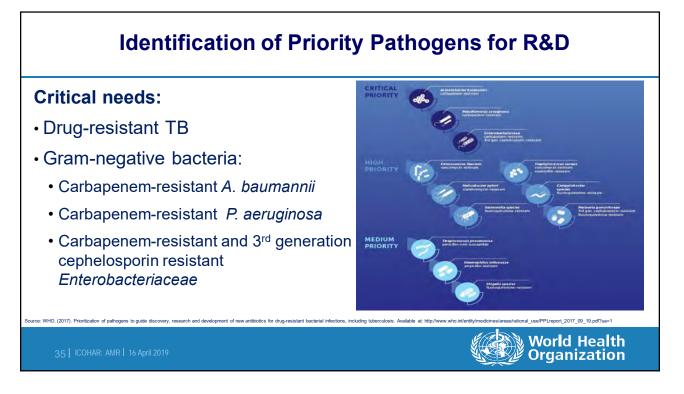

27 | ICOHAR: AMR | 16 April 2019


Infection Prevention and Control Programmes in Human Healthcare and Animal Production



Global Action Plan's 5 Strategic Objectives Improve awareness and understanding 1. Strengthen knowledge through surveillance & research 2. Reduce the incidence of infection 3. Optimize the use of antimicrobial medicines 4. Ensure sustainable investment 5. GLOBAL ACTION PLAN ON ANTIN RESISTANCE (A) Tatk Ind World Health Organization





		Tripartite Monitor	ing Framework	
inputs	activities	outputs	outcomes	impact goals
Stakeholdar ongagement		Tratning & professional education	Improved awareness of AMR and behaviour change among policy-makers, farmers, veterinary & health workers, food industry, general public	Reduced levels and slower devel opment of resis- tance
Funding	develop & implement	Munitoring an Emissionability uses Burvetellencer for AMP Preseptor) on AMP anti antioprocedulat use	Strengthened knowledge & avidence base used for policy and practice decisions	
Technical Incontine & support	limplement planes global setions	IPC in liuman baalfh care Dood antriaf footble & minagement practices WASH & immonitation	Reduced incidence of infection in health facilities, farms & communities as well as reduced environmental contamination, due to effective prevention	Continued ability to treat infectious disbases with effective and safe medicines
Guidance & etenderds	isetinik on H&D and seconomic gradyses	Opilessoet antimiciobian use and regulation Logislation & inguietions to prevent environmental continentiation	Optimized use of antimicrobials in human and animal health, with growth promotion phased out	Reduced impact of
airtuation & contest analysis		Estimated resource merchs & commite case Decelorated affortis priorities & internivees More reventment in mission 1800	Increased R&D on new medicines, diagnostics, vaccines & other interventions. Sostainable investments	Infecticus diseases on human and animal health & economic development

Antimicrobial resistance and One Health: who cares?

Bridging the gap between policy and practice

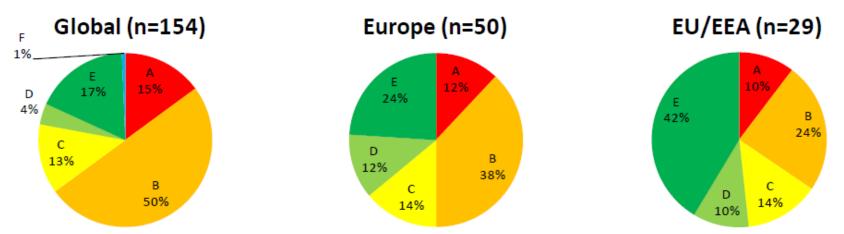
Prof. Jaap Wagenaar DVM, PhD David Speksnijder DVM, PhD

Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht - NL

Wageningen Bioveterinary Research, Lelystad - NL j.wagenaar@uu.nl

Outline

- One Health Action Plans
- Attribution: transmission of resistance between animals and humans
- Geographical differences
- Challenges to bridge the gap between policy and practice
- Take home messages



One Health collaboration / coordination

A - No formal multi-sectoral governance or coordination mechanism exists.

B - Multi-sectoral working group(s) or coordination committee on AMR established with Government leadership

C - Multi-sectoral working group(s) is (are) functional, with clear terms of reference; regular meetings, and funding for working group(s). Activities and reporting/accountability

D - Joint working on issues including agreement on common objectives, including restriction of use of critically important antimicrobials.

E - Integrated approaches used to implement the national AMR action plan.

From the 2nd global Tripartite self-assessment Respons: 154/194 (79%)

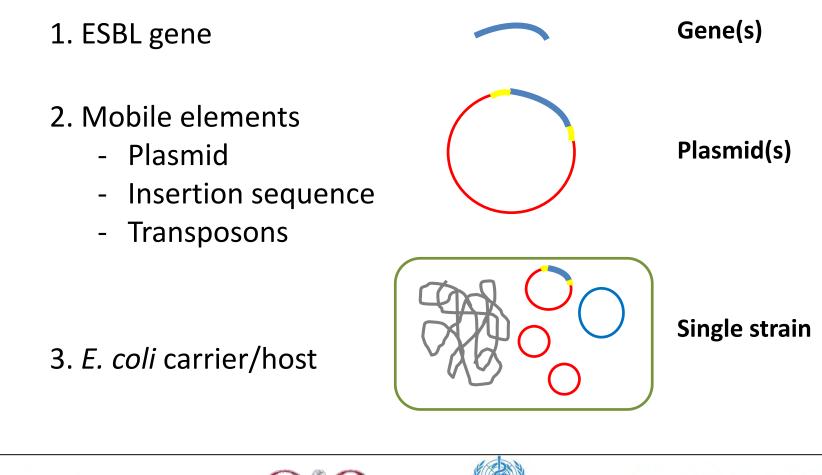
Quantification of AMR-attribution in humans from animals

Human illness source attribution methods

Approaches	Methods
/licrobiological approaches	Microbial subtyping
Epidemiological approaches	Comparative exposure assessment Analysis of sporadic cases Analysis of data from outbreak investigations
Intervention studies	

Challenges for AMR attribution

- <u>Epidemiological</u> approach: exposure does not lead to immediate respons/symptoms
- Effect in humans of AMU <u>intervention</u> in animals under-explored and difficult because of parallel interventions
- <u>Microbiological approach</u>: typing is complex



Extended Spectrum Beta-Lactamase (ESBL)

J Antimicrob Chemother doi:10.1093/jac/dkx397 Journal of Antimicrobial Chemotherapy

Molecular relatedness of ESBL/AmpC-producing *Escherichia coli* from humans, animals, food and the environment: a pooled analysis

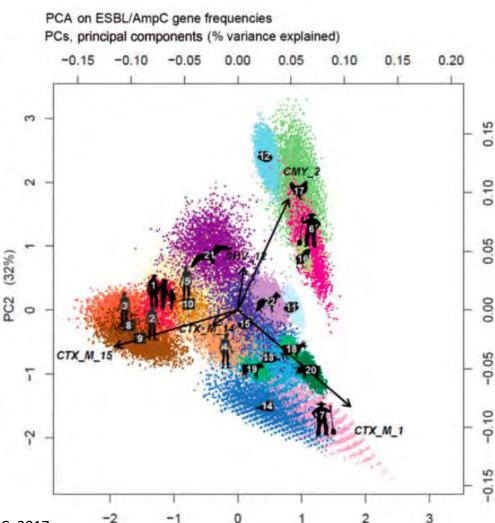
Alejandro Dorado-García^{1,2}*†, Joost H. Smid¹†, Wilfrid van Pelt³, Marc J. M. Bonten^{3,4}, Ad C. Fluit⁴, Gerrita van den Bunt^{3,5}, Jaap A. Wagenaar², Joost Hordijk², Cindy M. Dierikx³, Kees T. Veldman⁶, Aline de Koeijer^{3,6}, Wietske Dohmen¹, Heike Schmitt¹, Apostolos Liakopoulos⁶, Ewa Pacholewicz¹, Theo J. G. M. Lam⁷, Annet G. Velthuis⁶, Annet Heuvelink⁷, Maaike A. Gonggrijp⁷, Engeline van Duijkeren³, Angela H. A. M. van Hoek³, Ana Maria de Roda Husman^{1,3}, Hetty Blaak³, Arie H. Havelaar^{1,8}, Dik J. Mevius^{2,6} and Dick J. J. Heederik¹

¹Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80175, 3508 TD Utrecht, The Netherlands; ²Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80165, 3508 TD Utrecht, The Netherlands; ³Centre for Infectious Disease Control, National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands; ⁴Department of Medical Microbiology, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; ⁵Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; ⁶Wageningen Bioveterinary Research, PO Box 65, 8200 AB Lelystad, The Netherlands; ⁷GD Animal Health, PO Box 9, 7400 AA Deventer, The Netherlands; ⁸Institute for Sustainable Food Systems, Emerging Pathogens Institute and Animal Sciences Department, University of Florida, PO Box 100009, Gainesville, FL 32610, USA

> *Corresponding author. Tel: +31-30-2539499; E-mail: A.DoradoGarcia@uu.nl †Both authors have contributed equally to this work.

Received 27 July 2017; returned 29 August 2017; revised 25 September 2017; accepted 27 September 2017

Background: In recent years, ESBL/AmpC-producing *Escherichia coli* (ESBL/AmpC-EC) have been isolated with increasing frequency from animals, food, environmental sources and humans. With incomplete and scattered evidence, the contribution to the human carriage burden from these reservoirs remains unclear.



Colour legend for PCA, reservoir numbers in panels, type of reservoir (human [H], environmental [E], food [F] and animal [A])

- I H-general population
- 2 H-clinical UTIs
- 3 H-clinical blood
- 4 H-clinical faecal
- 5 H-clinical respiratory, wounds, other
- 6 H-broiler farming community
- 7 H-pig farming community
- 8 E-wastewater
- 9 E-surface water non-recreational
- 10 E-surface water recreational
- 11 F-chicken meat at retail
- 12 F-chicken meat at slaughterhouse
- 13 F-beef at retail
- 14 F-veal calf meat at slaughterhouse
- 15 F-turkey meat at retail
- 16 A-broilers
- 17 A-laying hens
- 18 A-dairy cattle
- 19 A-veal calves
- 20 A-pigs
- 21 A-wild birds
- = 22 A-dogs

Taken from: Dorado-Garcia et al, JAC, 2017

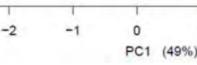
Universiteit Utrecht

PC1 (49%)

PCA on ESBL/AmpC gene frequencies PCs, principal components (% variance explained)

-0.15	-0.10	-0.05	0.00	0.05	0.10	0.15	0.20

Colour legend for PCA panels, type of reservc environmental [E], food


- 1 H-general populat
- 2 H-clinical UTIs
- 3 H-clinical blood
- 4 H-clinical faecal
- 5 H-clinical respirato
 6 H-broiler farming of
- 7 H-pig farming com
- 8 E-wastewater
- 9 E-surface water no
- 10 E-surface water i
- 11 F-chicken meat a
- 12 F-chicken meat a
- 13 F-beef at retail
- 14 F-veal calf meat
- 15 F-turkey meat at
- 16 A-broilers
- 17 A-laying hens
 18 A-dairy cattle
- 18 A-dairy cattle
 19 A-veal calves
- 19 A-veal t
 20 A-pigs
- 21 A-wild birds
- = 22 A-dogs

	enneur settings of general population
•	Farmers/family members very similar to animal reservoirs (occupational ESBL transmission)
•	Human to human attribution overall highly relevant
•	Animal to human attribution in the 1-10% range for some specific livestock associated genes and animal species

Limited similarity between farm animals and humans in

clinical settings or general nonulation

Taken from: Dorado-Garcia et al, JAC, 2017

Universiteit Utrecht

3

2

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

PCA on ESBL/AmpC gene frequencies PCs, principal components (% variance explained)

-0.15	-0.10	-0.05	0.00	0.05	0.10	0.15	0.20

Colour legend for PCA panels, type of reserve environmental [E], food

- I H-general populat
- 2 H-clinical UTIs
- 3 H-clinical blood
- 4 H-clinical faecal
- 5 H-clinical respirato
- 6 H-broiler farming c
- 7 H-pig farming com
- 8 E-wastewater
- 9 E-surface water no
- 10 E-surface water i 11 F-chicken meat a
- 12 F-chicken meat a
- 13 F-beef at retail
- 14 F-veal calf meat
- 15 F-turkey meat at
- 16 A-broilers
- 17 A-laying hens
- 18 A-dairy cattle
- 19 A-veal calves
 20 A pige
- 20 A-pigs
 21 A wild b
- 21 A-wild birds
 22 A-dogs

- Limited similarity between farm animals and humans in clinical settings or general population
 - Farmers/family members very similar to animal reservoirs (occupational ESBL transmission)
 - Human to human attribution overall highly relevant
- Animal to human attribution in the 1-10% range for some specific livestock associated genes and animal species

For ESBL-producing *E. coli* in the Netherlands

Taken from: Dorado-Garcia et al, JAC, 2017

-1 0 PC1 (49%)

Universiteit Utrecht

•

2

0.15

0.10

05

o

0.00

-0.05

-0.10

0.15

Effect in

in animals

Interpretation Interventi the presence of antibiotic in the studied human po for the general human p

WHO GUIDELINES ON USE OF MEDICALLY IMPORTANT ANTIMICROBIALS IN FOOD-PRODUCING ANIMALS ted with a reduction in its a similar association mals. The implications

Madicine

Effect in humans of reduced AMU in animals

Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis

Karen L. Tang, Niamh P. Caffrey, Diego B. Nóbrega, Susan C. Cork, Paul E. Ronksley, Herman W. Barkema, Alicia J. Polachek, Heather Ganshorn, Nishan Sharma, James D. Kellner, William A. Ghali

Summary

Background Antibiotic use in human medicine, veterinary medicine, and agriculture has been linked to the rise of antibiotic resistance globally. We did a systematic review and meta-analysis to summarise the effect that interventions to reduce antibiotic use in food-producing animals have on the presence of antibiotic-resistant bacteria in animals and in humans.

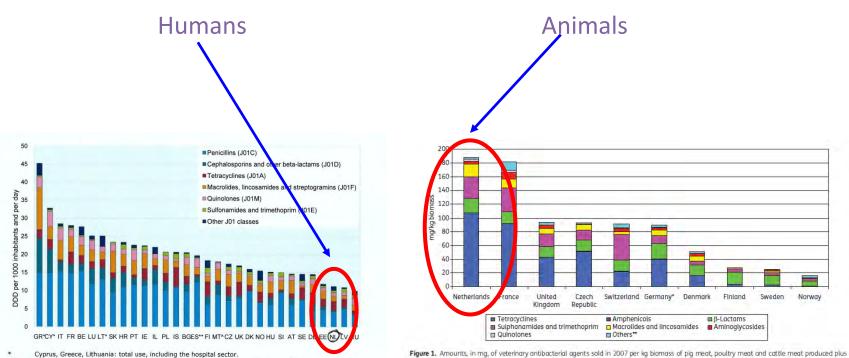
Methods On July 14, 2016, we searched electronic databases (Agricola, AGRIS, BIOSIS Previews, CAB Abstracts, MEDLINE, Embase, Global Index Medicus, ProQuest Dissertations, Science Citation Index) and the grey literature. The search was updated on Jan 27, 2017. Inclusion criteria were original studies that reported on interventions to reduce antibiotic use in food-producing animals and compared presence of antibiotic-resistant bacteria between intervention and comparator groups in animals or in human beings. We extracted data from included studies and did meta-analyses using random effects models. The main outcome assessed was the risk difference in the proportion of antibiotic-resistant bacteria.

Findings A total of 181 studies met inclusion criteria. Of these, 179 (99%) described antibiotic resistance outcomes in animals, and 81 (45%) of these studies were included in the meta-analysis. 21 studies described antibiotic resistance outcomes in humans, and 13 (62%) of these studies were included in the meta-analysis. The pooled absolute risk reduction of the prevalence of antibiotic resistance in animals with interventions that restricted antibiotic use commonly ranged between 10 and 15% (total range 0–39), depending on the antibiotic class, sample type, and bacteria

Lancet Planet Health 2017; 1: e316-27

Published Online November 6, 2017 http://dc.doi.org/10.1016/ 52542-5196(17)30141-9 This online publication has been corrected. The corrected version first appeared at thelancet. com/planetary-health on November 15, 2017 See Comment page e307 Department of Medicine, **Cumming School of Medicine** (KI. Tang MD. ProfW A Ghali MD), Department of Ecosystem and Public Health, Faculty of Veterinary Medicine (N P Callrey PhD. Prof S C Cork PhD), Department of Production Animal Health,

Interpretation Interventions that restrict antibiotic use in food-producing animals are associated with a reduction in the presence of antibiotic-resistant bacteria in these animals. A smaller body of evidence suggests a similar association in the studied human populations, particularly those with direct exposure to food-producing animals. The implications for the general human population are less clear, given the low number of studies.

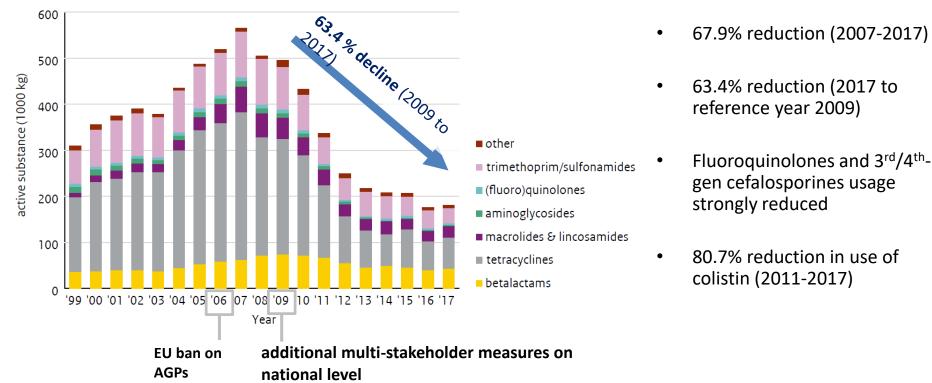


Triggers for reduction policy

** Spain: reimbursement data, does not include over-the-counter sales without prescription.

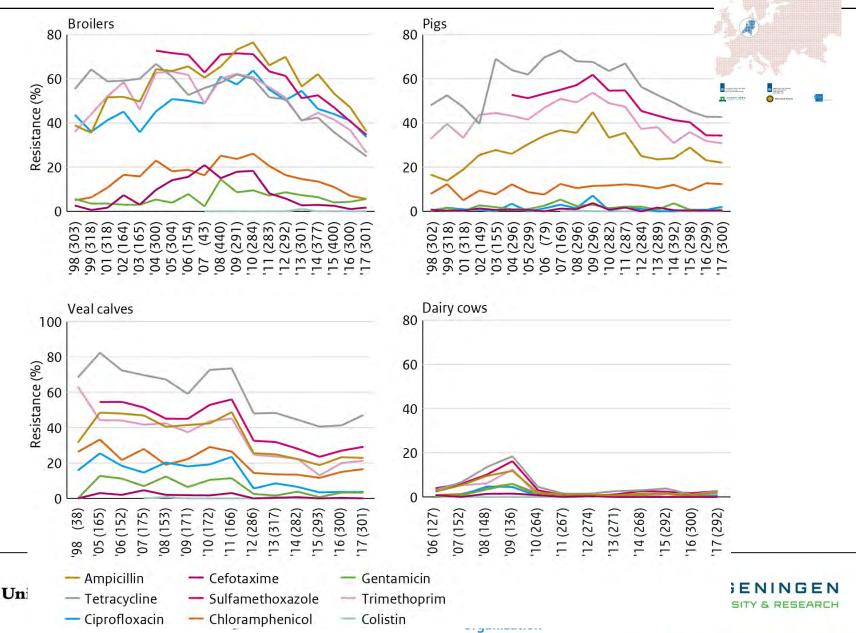
Malta: 2007 displayed.

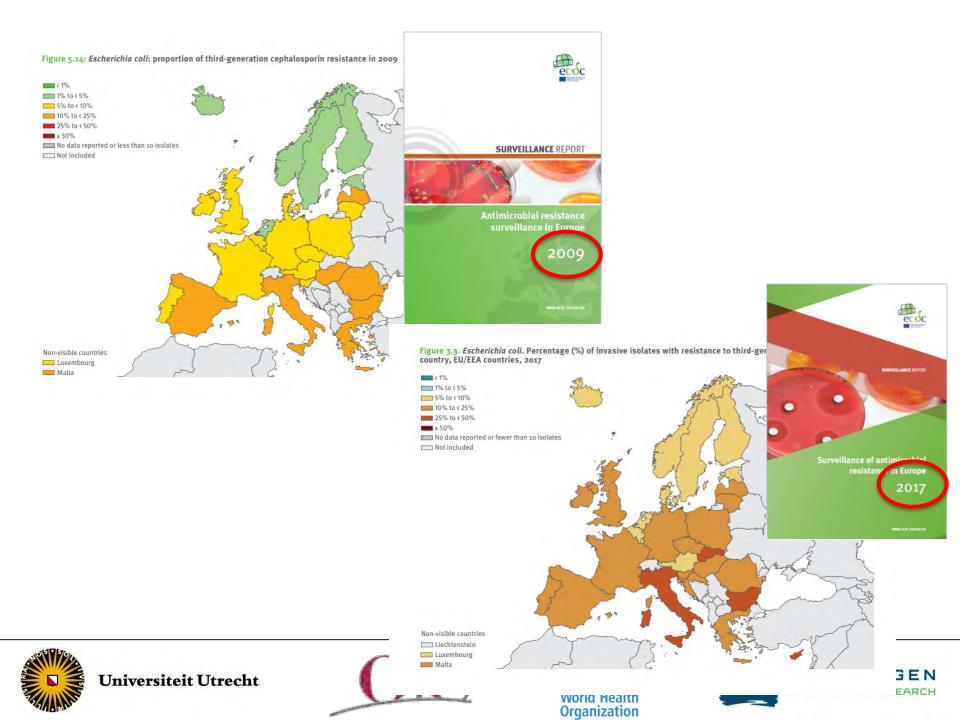
Figure 1. Amounts, in mg, of veterinary antibacterial agents sold in 2007 per kg biomass of pig meat, poultry meat and cattle meat produced plus estimated live weight of dairy cattle, "2005 data. "The substances included vary from country to country.

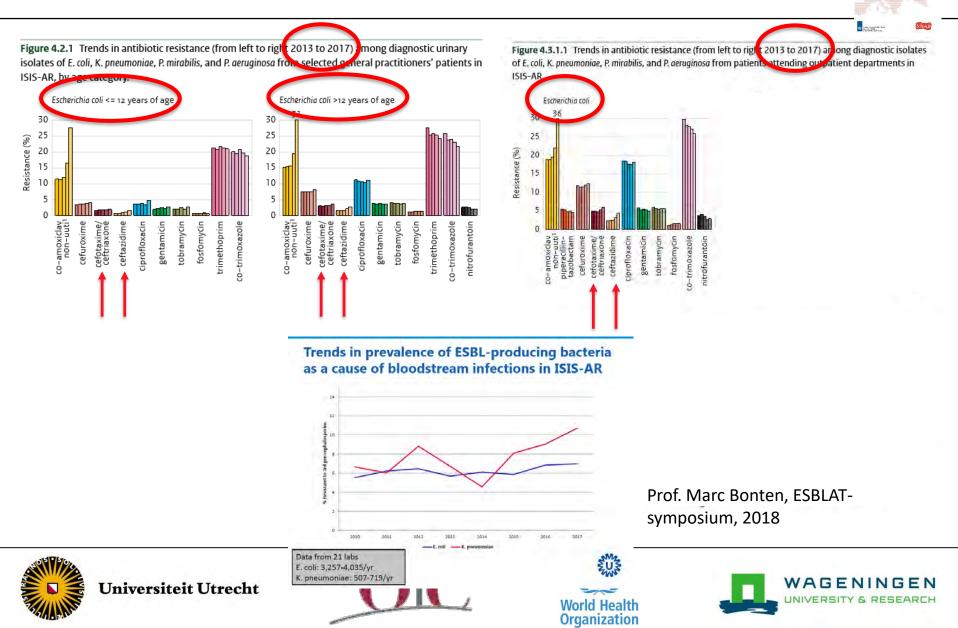


The Netherlands

Source: Maran, 2018






Effect on antimicrobial resistance

MARAN 2018 Monitering of Antimicrobial Resista and Antibiatic Usage in Animals in the Netherlands in 2017

Nethmap 2018 (human surveillance)

Pillars of containment of resistance

Prevent selection => reduce use

Prevent spread => infection control

Pillars of containment of resistance

Prevent selection => reduce use

Reduce use in humans and animals

- Prevent spread => infection control
 - humans: quarantine in hospitals, hand washing, disinfection etc
 - Animals: biosecurity (on-farm, within production chain);
 companion animal clinics (management of multiresistant micro-organisms)

ARTICLE

Imps://doi.org/10.1108/s404674074086651-5 0P

Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage

Rene S. Hendriksen¹, Patrick Munk¹, Patrick Njage¹, Bram van Bunnik², Luke McNally³, Oksana Lukjancenko¹, Timo Röder¹, David Nieuwenhuijse⁴, Susanne Karlsmose Pedersen¹, Jette Kjeldgaard¹, Rolf S. Kaas¹, Philip Thomas Lanken Conradsen Clausen¹, Josef Korbinian Vogt¹, Pimlapas Leekitcharoenphon¹, Milou G.M. van de Schans⁵, Tina Zuidema⁵, Ana Maria de Roda Husman⁶, Simon Rasmussen⁷, Bent Petersen⁷, The Global Sewage Surveillance project consortium⁴, Clara Amid⁸, Guy Cochrane⁸, Thomas Sicheritz-Ponten⁹, Heike Schmitt⁶, Jorge Raul Matheu Alvarez¹⁰, Awa Aidara-Kane¹⁰, Sünje J. Pamp¹, Ole Lund⁷, Tine Hald¹, Mark Woolhouse², Marion P. Koopmans⁴, Håkan Vigre¹, Thomas Nordahl Petersen¹ & Frank M. Aarestrup⁶¹

Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socioeconomic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by regim, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prodiction of AMR.

GENINGEN RSITY & RESEARCH

Organization

We what we should do....

main aim: reduction of antimicrobial use

with special attention for Highest Prioritized Critically Important Antimicrobials for human medicine (CIA-list)

3rd/4th gen cephalosporines – fluoroquinolones – colistin - glycopeptides - macrolides

Critically Important Antimicrobials for Human Medicine

5th Revision 2016 Ranking of medically important antimicrobials for risk management of antimicrobial resistance due to non-human use

CDC

Natio

ARMS

About N/

CDC's Ro

ARMS

2

NARMS

SCIENTIFIC REPORT

APPROVED: 31 January 2019 doi: 10.2903/j.efsa.2019.5598

The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017

European Food Safety Authority and European Centre for Disease Prevention and Control

Abstract

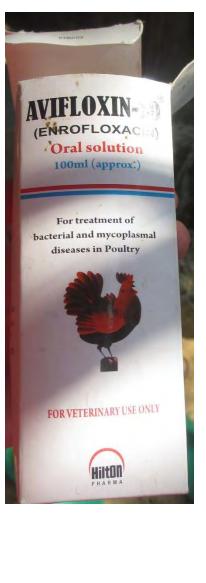
The data on antimicrobial resistance in zoonotic and indicator bacteria in 2017, submitted by 28 EU Member States (MSs), were jointly analysed by EFSA and ECDC. Resistance in zoonotic Salmonella and Campylobacter from humans, animals and food, and resistance in indicator Escherichia coli as well as meticillin-resistant Staphylococcus aureus in animals and food were addressed, and temporal trends assessed. 'Microbiological' resistance was assessed using epidemiological cut-off (ECOFF) values; for some countries, qualitative data on human isolates were interpreted in a way which corresponds closely to the ECOFF-defined 'microbiological' resistance. In Salmonella from humans, as well as in Salmonella and E. coll isolates from fattening pigs and calves of less than 1 year of age, high proportions of isolates were resistant to ampicillin, sulfonamides and tetracyclines, whereas resistance to third-generation cephalosporins was uncommon. Varying occurrence/prevalence rates of presumptive extended-spectrum beta-lactamase (ESBL)/AmpC producers in Salmonella and E. coli monitored in meat (pork and beef), fattening pigs and calves, and Salmonella monitored in humans, were observed between countries. Carbapenemase-producing E. coli were detected in one single sample from fattening pigs in one MS. Resistance to colistin was observed at low levels in Salmonella and E. coli from fattening pigs and calves and meat thereof and in Salmonella from humans. In Campylobacter from humans, high to extremely high proportions of isolates were resistant to ciprofloxacin and tetracyclines, particularly in Campylobacter coli. In five countries, high to very high proportions of C. coli from humans were resistant also to erythromycin, leaving few options for treatment of severe Campylobacter infections. High resistance to ciprofloxacin and tetracyclines was observed in C. coli isolates from fattening pigs, whereas much lower levels were recorded for erythromycin. Combined resistance to critically important antimicrobials in both human and animal isolates was generally uncommon but very high to extremely high multidrug resistance levels were observed in S. Typhimurium and its monophasic variant in both humans and animals. S. Kentucky from humans exhibited high-level resistance to ciprofloxacin, in addition to a high prevalence of ESBL.

© 2019 European Food Safety Authority and European Centre for Disease Prevention and Control. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

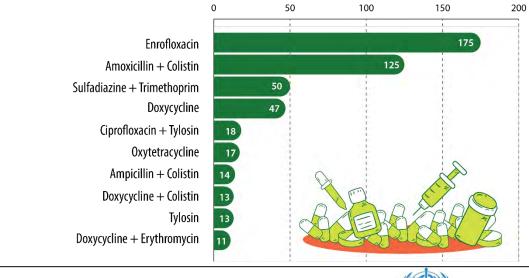
Keywords: antimicrobial resistance, zoonotic bacteria, indicator bacteria, ESBL

Centers for Disea CDC 24/7: Saving Lives, P	se Control and Prevention stepting People ³⁵⁸	SEARCH
		CDCA-ZINDEX 🛩
al Antimicrobi	al Resistance Monitoring System for Enteric Bacteria (NAR	(MS)
	CDC > NARMS	
ms –	About NARMS	
in NARMS Antibiotic	E 🔽 🛨	
ested by NARMS	Tracking Trends in Resistance The National Antimicrobial Resistance Monitoring System - Enteric Bacteria (NARMS) is a US	NARMS
sistance	public health surveillance system that tracks antimicrobial resistance in foodborne and other enteric bacteria.	National Antimicrobial Resistance Monitoring System
nteractive Data 🔸	NARMS is an interagency partnership among the US Centers for Disease Control and Prevention (CDC), the US Food and Drug Administration (FDA of), the US Department of	2071 AVIIIIVE25APY
+	Agriculture (USDA c ²), and state and local health departments. Human surveillance began in fourteen sites in 1996 and became nationwide in 2003.	NARMS
7 Outbreak Notices	NARMS monitors antimicrobial resistance among enteric bacteria from three sources. • humans (CDC)	
ate Submission Login	 retail meats (EDA ct) food animals (USDA ct) 	Download NARMS 20th Anniversary Timeline
ks	Learn more about the roles of federal and state agencies who track antibacterial resistance in support of food safety.	IPDF - 1 pagel

LMIC



150 Vaccines and Vitamins 29/09/17 Amoxi (1009) 2 chicktonic (soomi) 1 Enrocare (500 mi) Ultroxide (Soomi) Com.B (1009) 2 E.M (TSOMI) 2 Zagrosoles (100mi) 8 Gilmoochicks (HODg) 04/10/17 GILOCO Shicks Aquo-Net-E 30 HIO117 Ominicide Ultroxide pliplin Stress Forte 2 Amoxi

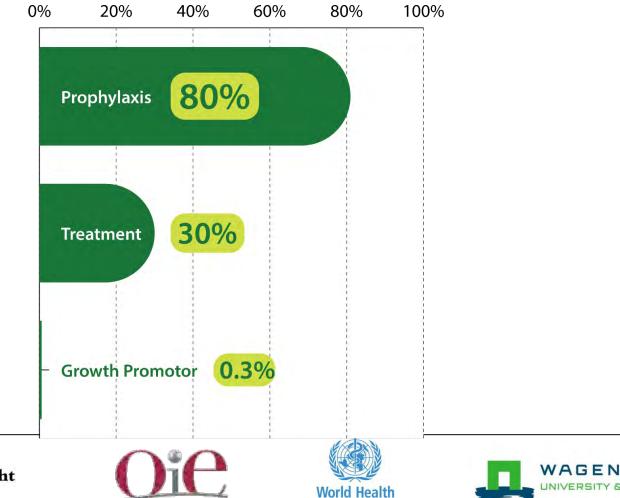

ANTIBIOTICS USE ON SMALL AND MEDIUM SCALE BROILER FARMS IN WEST JAVA, EAST JAVA AND SOUTH SULAWESI PROVINCES, INDONESIA

N.M.R. Isriyanthi¹, E. Setyawan², D.M. Pangaribuan¹, R. Telussa², E.R. Fitriastuti¹, G.B. Utomo², A. Kompudu², A. Harja², I. N. Agustina¹, J. Wagenaar^{3, 4}, D.C. Speksnijder³, L. Schoonman², J. McGrane².

Further Information Ni Made Ria Isriyanthi Directorate General of Livestock and Animal Health Services

Top Ten Antibiotics (and combinations) used on 360 Surveyed Farms

Number of Respondents



Purpose of Antibiotic Usage on Surveyed Farms

Organization

Respondent Percentage

Why are antimicrobials used on poultry farms?

How much can we reduce and what is the effect of reduced use?

Poultry

- Mycoplasmata
- E. coli
- Salmonella
- Avibacterium paragallinarum (Coryza)
- Clostridium

- Vaccination
- Biosecurity

• Primarily: improvement of animal health

• Secundary: reduction of AMU

Challenges in LMIC

- Knowledge and awareness
- Surveillance of AMR, AMU and residues in animals
- Over the counter availability
- Systematic use of antimicrobials
- Biosecurity, housing conditions, feed quality
- Enforcement of the regulations?
- Good governance
- The need for veterinarians as professional advisors

- Over the counter sales
- No professional advice
- To treat animals with suboptimal management
- Drugs that are reserved for humans

- Where to start the intervention?

What can motivate a farmer to change?

What's in for me?

Antimicrobials....

One of the few drugs that have a positive effect for you (or your animals) and a negative effect for the society

Decision to use should not be at the individual level but by prescription only and according to guidelines developed by professionals

What's in for me?

- No reduction of costs expected
- Are there alternatives?
- Meeting requirements set by law?
- Corporate responsibility (e.g. McDonalds banned specific antimicrobials from production)
- Branding (consumer requests)
- Export/trade: levels of resistance, levels of residues
- Reduction of resistance in poultry pathogens

How can we come to a reduction in AMU in the field?

"20 years ago we did not reach the political level"

Marc Sprenger, 16 April 2019

Take home messages

- Quantification of AMR transfer from animals to humans remains weak.
- Any attribution should be addressed! (food borne pathogens, LA-MRSA)
- A clear and honest story is needed towards farmers
- Implementation of the NAPs: fiction and reality
- How can we implement policy into practice: the steps to achieve reduction are urgently needed in particular in LMIC
- Investment in animal health is required to pave the road for AMU reduction

Acknowledgements Els Broens Birgitta Duim David Speksnijder Joost Hordijk Aldert Zomer Haitske Graveland Linda van der Graaf Lapo Mughini-Gras Marloes van Dijk Marleen Kannekens Arjen Timmerman Dik Mevius (UU & WBVR) Kees Veldman (WBVR) Mike Brouwer (WBVR)

PhD students - AMR Alice Wegener Heleen Prinsen Ricardo Castellanos Nonke Hopman Isaura Wayop Marta Rozwandowicz Mathijs Theelen Ana Rubio García Abel Vlasblom Natcha Dankittipong Liese van Gompel Panos Mallioris Imron Suandy Pim Sanders

ICOHAR International Conference on One Health Antimicrobial Resistance

One health integrated surveillance

Supranational Networks for surveillance of human multiresistant pathogens

> Luis Martínez Martínez Dept. Microbiology, University of Cordoba Unit of Microbiology, Univ. Hosp. Reina Sofía IMIBC Cordoba, Spain

Utrecht, April 17 2018

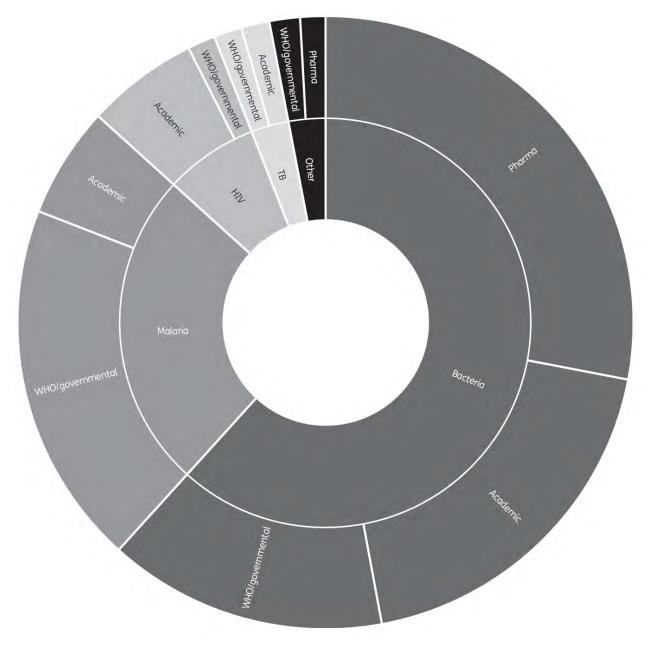
SURVEILLANCE (...of Resistance)

Ongoing generation, capture, assembly, analysis and interpretation of all information on the evolving nature, spread, and distribution of [infecting microbes and their] resistance to antimicrobial agents, the results of which are disseminated for public-health actions and to assess the effects of any intervention program

NEEDS FOR SURVEILLANCE AMR

- Identifying, understanding and predicting trends in and spread of resistant microorganisms (impact in guidelines)
- Detecting new resistance mechanisms
- Identifying the need for new diagnostic tests
- Identifying outbreaks of resistant organisms and infection control
- Identifying the need for new antibiotics
- Monitoring the impact of new empirical antibiotic prescribing
- Monitoring the impact of interventions to improve antimicrobial use and control the spread of infectious agents
- Identifying needs for sentinel laboratories in low-resources areas
- Public health and clinical guidelines
- Educating health care providers, patients and the general public

AMR SURVEILLANCE LEVELS


- Local
- Regional
- National
- SUPRANATIONAL

ONGOING AMR SURVEILLANCE NETWORKS Public funding

NETWORK	PATHOGENS or AGENT	FUNDING	NUMBER COUNTRIES	STARTING YEAR
ANSORP	Bacteria	Academic T/F	14	1996
BIRDY	Bacteria	Academic T/F	3	2012
CAESAR	Bacteria	WHO/ESCMID/Gov.	20	2013
CARPHA	Bacteria	WHO/Gov.	25	2013
CDDEP	Bacteria	Academic T/F	N.A.	1999
INICC	Bacteria	Academic T/F	43	2002
ERAS-Net	Bacteria	WHO/ESCMID/Gov	29	1999
FWD-Net	Bacteria	WHO/Gov.	29	2007
GASP	N. gonorrhoeae	WHO/Gov.	70	1992
SIREVA (+ SIREVA II)	Bacteria (Pneum onia-Meningitis	WHO/Gov	19	1993
[Global-PSP]	Bacteria	Academic T/F	63	2015
ReLAVRA	Bacteria	WHO/Gov.	19	1996

Adapted from Ashley EA et al. JAC 2018:1737

Supranational AMR surveillance networks involving LMICs (2000-2017)

Ashley EA et al. JAC 2018:1737

ONGOING AMR SURVEILLANCE NETWORKS Pharma Programs

NETWORK	PATHOGENS or AGENT	FUNDING	NUMBER COUNTRIES	STARTING YEAR
AWARE	Ceftaroline	Pharma/CRO	7	2012
Int. Daptomycin S.P.	Daptomycin	Pharma/CRO	33	2011
PACTS	Ceftolozane- tazobactam	Pharma/CRO	16	2012
SARISA	S. aureus	Pharma	18	1996
SENTRY	Bacteria-fungi	Pharma/CRO	40	1997
SOAR	Bacteria	Pharma	48	2002
Int. Solythro- mycin Prog.	Solythromycin	Pharma	27	2011
TARGETed	Bacteria	Pharma/CRO	7	2003
TEST	Tygecycline	Pharma/CRO	65	2004
ZAAPS	Zyvos®	Pharma/CRO	42	2004

Adapted from Ashley EA et al. JAC 2018:1737

European Food- and Waterborne Diseases and Zoonoses Network (FWD-Net)

corporate information in networks and partnerships

In 2007, the EU-funded dedicated surveillance network for enteric pathogens – *Salmonella, E. coli* and *Campylobacter* (Enter-net) was transferred to ECDC from the Health Protection Agency in the United Kingdom. Subsequently, the scope of the disease network was broadened to cover 21 food- and waterborne diseases and zoonoses, and nomination of disease experts followed the ECDC policy on Coordinating Competent Body (CCB).

FWD-Net is coordinated by ECDC with the support of a coordination committee (CC) consisting of representatives from the EU Member States. The committee advises ECDC on ways to strengthen and improve FWD surveillance and prevention in Europe and reviews technical documents relevant to the network.

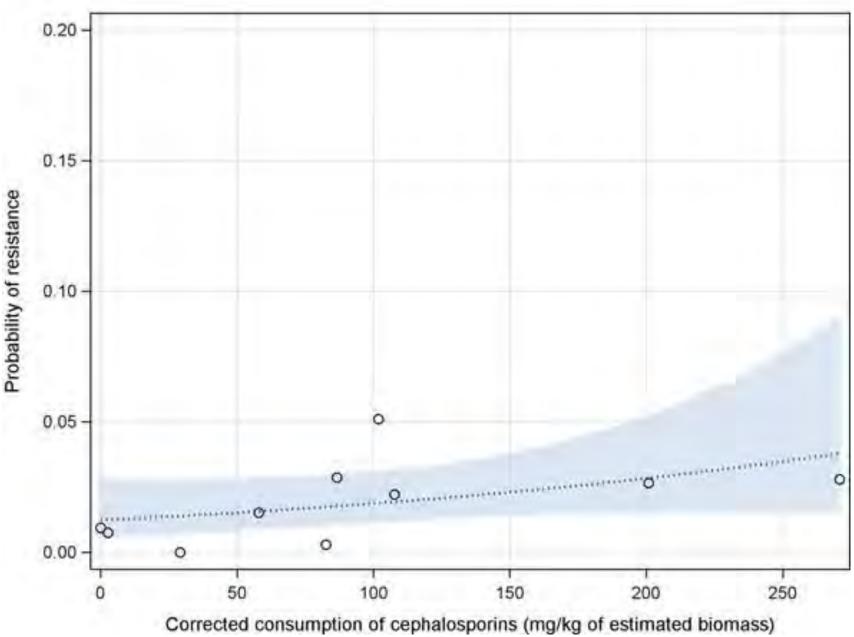
FWD-Net also collaborates with partners, such as European Food Safety Authority (EFSA), World Health Organisation, relevant European Union Reference Laboratories and public health authorities of non-EU countries, e.g. US CDC. Furthermore, ECDC is actively collaborating with PulseNet International, the global network of public health laboratory networks, to ensure comparability of data and linkage to the global public health community.

The ECDC network co-ordinators can be contacted at fwd@ecdc.europa.eu.

SURVEILLANCE REPORT

Campylobacteriosis

Annual Epidemiological Report for 2017


APPROVED: 28 June 2017

doi: 10.2903/j.efsa.2017.4872

ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals

Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report

European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA) and European Medicines Agency (EMA)

EARS-Net

European Antimicrobial Resistance Surveillance Network (2010...) It continues the European Antimicrobial Resistance Surveillance System (EARSS) established in 1998.

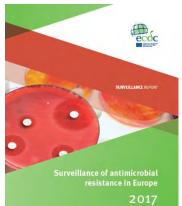
30 countries (most in EU) 900 microbiological laboratories, 1500 hospitals

Managed and coordinated by the European Centre for Disease Prevention and Control (ECDC)

Objectives :

- Collect comparable, representative and accurate AMR data
- Analyse temporal and spatial trends of AMR in Europe
- Provide timely AMR data for policy decisions
- Encourage the implementation, maintenance and improvement of national AMR surveillance programs
- Support national systems in their efforts to improve diagnostic accuracy by offering annual external quality assessments (EQA)

EARS-Net


Surveillance of indicator pathogens:

Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, Pseudomonas aeruginosa, Acinetobacter spp., Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium

Bloodstream infections and meningitis

Variations in AMR over time and place

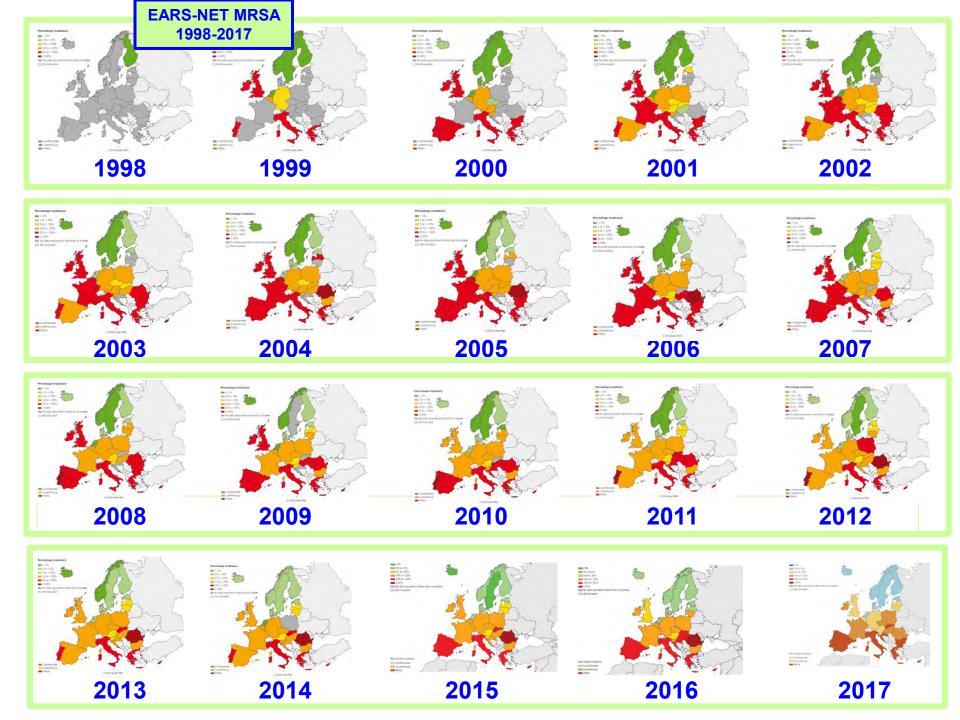
Web-accessible database (maps, graphs,...) https://atlas.ecdc.europa.eu/public/index.aspx

Last report available in 2018 for data referring to 2017 https://ecdc.europa.eu/sites/portal/files/documents/EARS-Net-report-2017-update-jan-2019.pdf

Netherlands

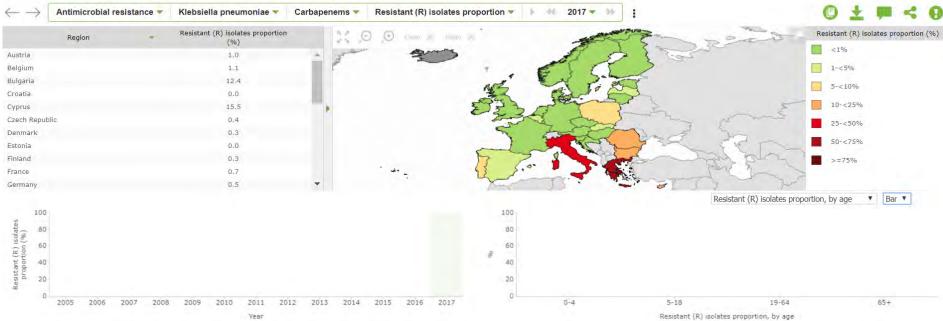
Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Netherlands, 2014–2017

	2014	2015	2016	2017
Estimated national population coverage (%)	65	65	65	65
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/1000 patient-days	Unknown	Unknown	Unknown	Unknown
Isolate sample representativeness	High	High	High	High


Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Netherlands, 2014–2017

	2014	2015	2016	2017
Percentage laboratories participating in EARS-Net EQA	82	73	85	85
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	96	93	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICU), Netherlands 2014–2017


	2014		2015		2016			2017				
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	35	6514	10	27	5380	10	32	6398	9	33	6687	7
K. pneumoniae	35	926	14	27	908	13	32	1135	11	33	1190	11
P. aeruginosa	35	555	24	27	502	22	31	543	14	33	657	17
Acinetobacter spp.	26	75	22	21	74	19	31	108	13	30	122	21
S. pneumoniae	35	1406	16	27	1301	15	32	1517	12	33	1511	10
S. aureus	35	2580	15	27	2107	15	32	2702	11	33	2695	11
E. faecalis	35	721	23	27	648	22	32	783	21	33	895	19
E. faecium	34	535	50	27	572	53	32	686	50	33	808	47

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

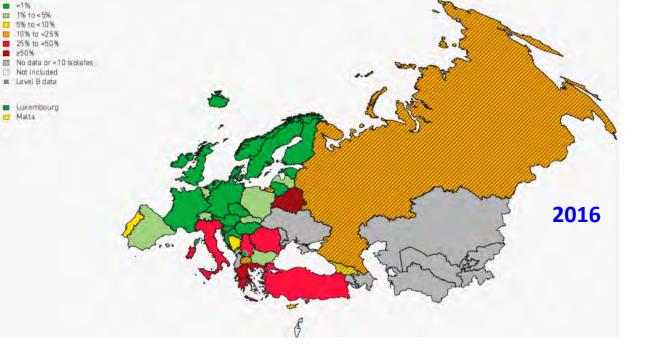
Surveillance Atlas of Infectious Diseases

CAESAR

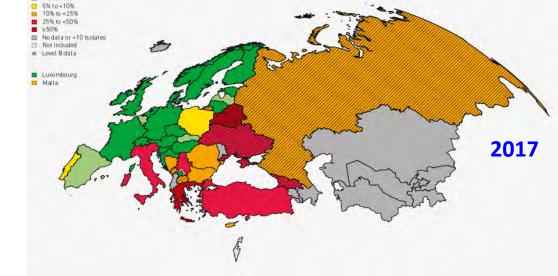
Central Asian and Eastern European Surveillance of Antimicrobial Resistance

Network of national surveillance systems for AMR

Joint initiative:


WHO

European Society of Clinical Microbiology and Infectious Diseases (ESCMID-ESGARS) Dutch National Institute for Public Health and the Environment (RIVM).


Countries of the region not integrated into EARS-Net

EARS-Net methodology

<1%
1% to <5%</pre>

K. pneumoniae Carbapenem-R

Level B data: the data provide an indication of the resistance patterns present in clinical settings in the country or area, but the proportion of resistance should be interpreted with care, improvements are needed to attain a more valid assessment of the magnitude and trends of AMR in the country or area. See section 4.2 for more information about levels of evidence, which are only provided for CAESAR countries and areas.

EARS-Net countries: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Fintand, France, Germany, Greece, Hungary, Iceland, Ireland, Itay, Latvia, Lithuania, Luxembourg, Maita, the Netherlands, Norway, Poland, Portugal, Romania, Slovenia, Spain, Sweden and the United Kingdom.

CAESAR countries and areas: Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Georgia, Kazakhstan, Kyrgyzstan, Montenegro, the Republic of Moldova, the Russian Federation, Serbia, Switzerland, Tajikistan, the former Yugostav Republic of Macedonia, Turkey, Turkmenistan, Ukraine, Uzbekistan and Kosovo lin accordance with United Nations Security Council resolution 1244 (1999)).

Data sources: 2017 data from the Contral Asian and Eastern European Surveilance of Antimicrobial Resistance (CAESAR, GWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data from the European Antimicrobial Resistance Surveilance Neuronce (EASAR, SWHO 2016) and 2017 data

ReLAVRA

Latin American Antimicrobial Resistance Surveillance Network

Created in 1996

Led by WHO Regional Office for the Americas/ Pan American Health Organization (AMRO/PAHO)

1996-2000: Community-acquired pathogens **2000-...:** Both community and nosocomial pathogens

Aggregated data provided by national reference laboratories (NRLs)

NRLs from 25 countries in Latin America plus Canada and the USA 720 Sentinel laboratories (2015) Quality external control: Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), "Dr. C. G. Malbrán", Buenos Aires, Argentina

2000: 72 000 isolates 2010: >150 000 isolates

Last available Report on AMR: 2014

ReLAVRA. Considered Microorganisms

Noscomial Pathogens

- Enterococcus spp.
- Klebsiella pneumoniae
- Acinetobacter spp.
- Pseudomonas aeruginosa
- Staphylococcus aureus
- Escherichia coli
- Enterobacter spp.

Community Pathogens

- Salmonella spp.
- Shigella spp.
- Vibrio cholerae
- Escherichia coli
- Neisseria meningitidis
- Neisseria gonorrhoeae
- Streptococcus pneumoniae
- H. influenzae
- Campylobacter
- S. B hemolítico
- S. aureus

SUPRANATIONAL INITIATIVES RELATED TO AMR SURVEILLANCE IN ASIA

1980s. WHO-Western Pacific Region.

Agreement of 14 Member States to share AMR data 20 pathogens (hospital --- community) Annual reports for network participants Interrupted in the early 2000s due to other emergencies)

2011, Jaipur Declaration on Antimicrobial resistance Commitment to combat AMR (health ministers, 11 Member States) 6 Member States already have national surveillance systems Regional database and consultative process <u>http://www.searo.who.int/entity/antimicrobial_resistance/sea_cd_273.pdf</u>

Asian Network for Surveillance of Resistant Pathogens (ANSORP) Independent, non-profit nongovernmental international collaborative research group on AMR and infectious diseases in the Asian-Pacific region. Based in the Republic of Korea, which is a member of the Asia Pacific Foundation for Infectious Diseases (APFID) Collaborators from 123 hospitals in 14 countries, territories and areas

ANSORP

RESISTANCE TO ANTIMICROBIAL AGENTS (ANSORP) *Highest reported prevalence of resistance*

Pathogen	Disease	Antibiotic	Resistance ¹ %	Focus area
Community				
Streptococcus pneumoniae	CAP ²	Macrolide	73%	Asia
Escherichia coli	UTI ³	3rd cephalosporins	95%	Asia
Salmonella Typhi	Enteric infection	Ciprofloxacin	84%	Asia
Hospital				
Staphylococcus aureus	HAP ⁴ , bacteremia	Methicillin	82%	Asia
E. coli	HAP, bacteremia	Ciprofloxacin	96%	Asia
Klebsiella pneumoniae	HAP, bacteremia	3rd cephalosporins	81%	Asia
Pseudomonas aeruginosa	HAP	Carbapenem	30%	Asia
Acinetobacter baumanii	HAP	Carbapenem	68%	Asia

INITIATIVES RELATED TO AMR SURVEILLANCE AFRICA

Limited Information

Surveillance only in a few countries.

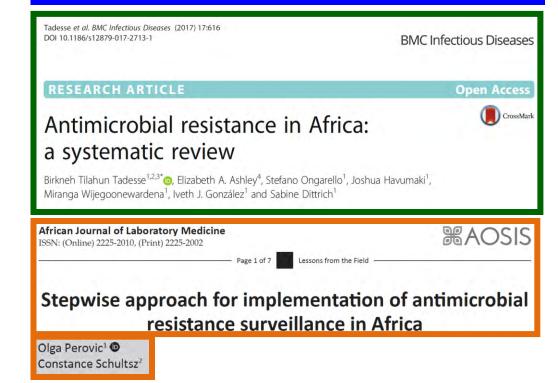
No formal framework for collaboration among surveillance programs

No common strategy for tracking and containing the emergence of resistant organisms, and to systematically evaluate trends and resistance-containment activities

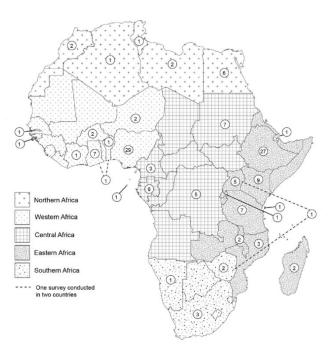
[WHO guide to facilitate the establishment of laboratory-based surveillance for priority bacterial diseases in the region]

Journal of Antimicrobial Chemotherapy

Antimicrobial drug resistance among clinically relevant bacterial isolates in sub-Saharan Africa: a systematic review


Stije J. Leopold¹, Frank van Leth¹, Hayalnesh Tarekegn¹ and Constance Schultsz^{1,2*}

Journal of Public Health | Vol. 39, No. 1, pp. 8–13 | doi:10.1093/pubmed/fdw015 | Advance Access Publication March 3 2016


Perspectives

Antimicrobial resistance in the WHO African region: current status and roadmap for action

S.Y. Essack¹, A.T. Desta², R.E. Abotsi¹, E.E. Agoba¹

Number of studies in African countries on AMR [Surveillance]

GLOBAL ANTIMICROBIAL RESISTANCE SURVEILLANCE SYSTEM (GLASS)

World Health

Health Topics 🗸	Countrie	5 ¥	News 🗸	Emergencies 🗸	Ab	oout Us 🗸
		Global Anti	microbial Resista	ince Surveillance Syste	em (GLASS)	
	GLASS		microbial Resista	ince Surveillance		
	Country participation	System (GL		- December 1	16	
- 1	IT Platform	 Road map Scope 	e Collaboration Call for cou	intry participation	1	
	Data collection		per 2015, the Global Antimicr is being developed to support	robial Resistance Surveillance t the global action plan on	GLASS	: 1
	Data visualization	antimicrobial resist in order to streng	tance. The aim is to support othen the evidence base on	t global surveillance and research antimicrobial resistance (AMR)	Global AMR Surveillance System	2,
	GLASS reports	and help informing actions.	decision-making and drive h	tational, regional, and global		
- q	Resource centre	- Global action pl	an on antimicrobial resistanc	æ	and the second s	A
	GLASS-EAR			d approach to the collection,	Key publicatio	ons
1	Laboratory	facilitating the esta	ring of AMR data at a globa ablishment of national AMR s	surveillance systems that are	Lowing tools, Human 2010	Available now Global antimicrobi
	WHO Collaborating Centres Network			ng reliable and comparable data.		resistance surveillance system (GLASS) report Early implementation
	Partnerships	GLASS object		harmonized global standards;	-	2017-2018
_1	Events	 estimate the 	A REAL PROPERTY OF A REA	lobally by selected indicators;	+==	
i	Antimicrobial resistance	 detect emerged 	ging resistance and its interna	ational spread;		Global AMR Surveillance Syst
		and	mentation of targeted preven mpact of interventions.	ntion and control programmes:	12	(GLASS): Manual for early implementation

-

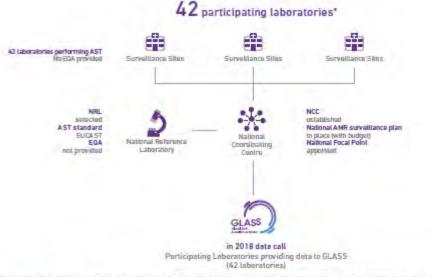
GLASS OBJECTIVES

- Foster national surveillance systems and harmonized global standards
- Estimate the extent and burden of AMR globally by selected indicators
- Analyse and report global data on AMR on a regular basis, and detect emerging resistance and its international spread
- Inform implementation of targeted prevention and control programmes; and
- Assess the impact of interventions

Global Antimicrobial Resistance Surveillance System

Manual for Early Implementation

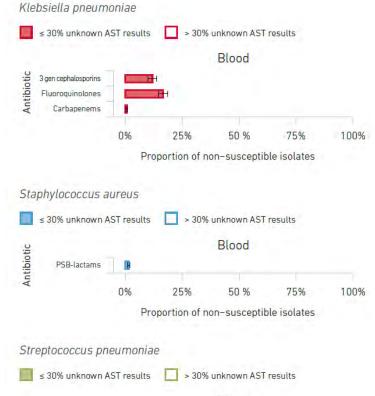
Global Antimicrobial Resistance Surveillance System (GLASS) Report Early implementation

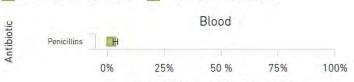

2017-2018

Netherlands

Population 17.04 million

The country is enrolled in GLASS since 2017.


Current status of the national AMR surveillance system



The identification of the total number of surveillance sites submitting specimens to participating laboratories was not possible due to the set up of the national surveillance system

Data submission

Specimen type	Data on number of tested patient	Pathogen	AST results	Age	Gender	origin
		Acients bactur spp.				
		'E col				
Blood		K provensmine				
Biod		Salmo collo spp.				
		S aurous 2				
		ad meaning 2				
Urine	•	End				
		K pri autoniza				
Stool	•	Salmo nulla spp.			•	
		Stight spy.			•	
Genital	0	N. go north onda				


Proportion of non-susceptible isolates

Population 2.1 million

The country is enrolled in GLASS since 2018.

Current status of the national AMR surveillance system

in 2018 data call No AMR data reported to GLASS by the end of the data call

CENTER FOR DISEASE DYNAMICS, ECONOMICS & POLICY

CDDEP

OFFICES IN Washington D.C. & New Delhi

The Center For Disease Dynamics, Economics & Policy

PUBLICATIONS V

GRAPHICS ∨ NEWS & BLOG ∨

RESEARCH AREAS V

PARTNERS V

WHO WE ARE V CONTACT

DONATE

0

in

Q

Advancing Health and Wellbeing through Independent Research

+ Learn More About CDDEP

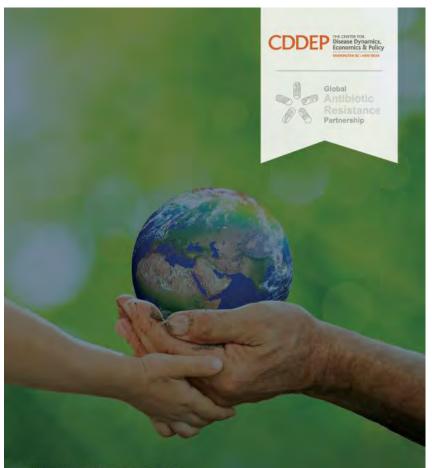
Access Barriers to Antibiotics April 11, 2019

BOTTO

Weekly Digest

Weekly Digest: Mistrust and misinformation... April 08, 2019

Resistance Map ResistanceMap is a collection of tools summarizing national and subnational data on antimicrobial use and.


in

O.

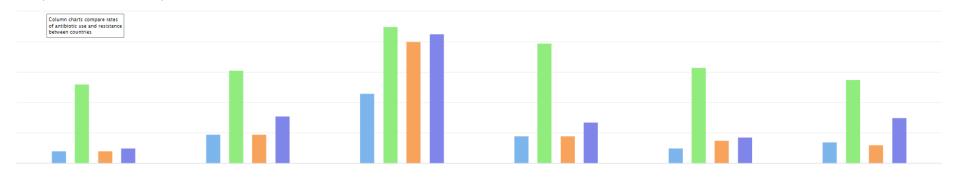
Stay up to date with all our latest news and policy informing research

Subscribe

THE STATE OF THE WORLD'S ANTIBIOTICS 2015

The State of the World's Antibiotics in 2018

Ella Pringle Lecture Royal College of Physicians of Edinburgh


> Ramanan Laxminarayan Twitter @CDDEP

ResistanceMap

ResistanceMap is an interactive collection of charts and maps that summarize national and subnational data on antimicrobial use and resistance worldwide.

Start exploring the data by selecting a category below.

Antibiotic Resistance

Choose a pathogen and compare resistance to different antibiotics across countries. World map, in-country trends over time, and charts to compare between countries.

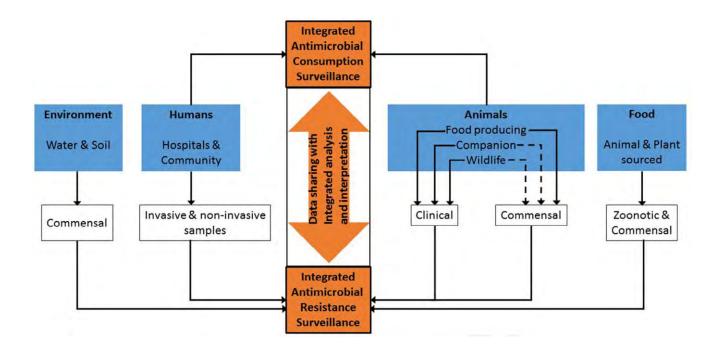
Antibiotic Use

Compare use rates between countries and over time. World map, charts, and breakdowns by antibiotic class.

Explore by Country

Focus on a single country and explore maps and charts on either antibiotic use or antibiotic resistance. Subnational data is available for the United States.

About Resmap


ResistanceMap is a collection of tools summarizing national and subnational data on antimicrobial use and resistance around the world. Since its launch in 2010, ResistanceMap has helped inform researchers, policy makers and the public of important trends in drug resistance and antibiotic use. In 2015, ResistanceMap relaunched with a new design interface, expanded tools and the addition of antibiotic use and resistance data from several low- and middle-income countries in Africa, Asia and South America. Learn more here.

About CDDEP

The Center for Disease Dynamics, Economics & Policy (CDDEP) produces independent, multidisciplinary research to advance the health and wellbeing of human populations in the United States and around the world. For more information, visit CDDEP's main website.

'ONE HEALTH' SURVEILLANCE

- Antibiotic usage/consumption PLUS Antibiotic Resistance data
- Humans, animals and the environment
- International collaboration and capacity

GLOBAL SHARING AND COMPARISON OF DATA

GENOMETRAKR

2012. US Food and DrugAdministration PLUS NCBI

www.fda.gov/Food/FoodScienceResearch/WholeGenomeSequencingProg ramWGS

Freely available. >61,000 isolates sequenced, >100 genomes closed

Data can be uploaded into NCBI

A phylogenetic tree can be generated by NCBI with all uploaded data

Additional analysis can be performed locally

COMPARE

2014. European Commission-funded

www.compare-europe.eu

"Integrate state-of-the-art strategies, tools, technologies and methods for collecting, processing and analysing sequence-based pathogen data in combination with associated (clinical, epidemiological and other) data" Bacteria, parasites, and viruses, single genomes and metagenomes Support release into the public domain (temporary 'quarantine' allowed)

CONCLUSIONS: FUTURE NEEDS FOR AMR SURVEILLANCE

- To organize an integrated surveillance of AMR system considering humans, [food-producing] animals and the food chain
- To ensure collaboration between existing surveillance networks and surveillance centers towards coordinated regional and global surveillance
- To elaborate strategies for population-based surveillance of AMR
- To report data on resistance together with data on antimicrobial use in humans and animals
- To develop tools and standards for harmonized global surveillance of AMR
- To periodically evaluate both methods used and data collected to ensure their usefulness for public health purposes
- To increase the timeliness of data collection and reporting
- To collect and report subtyping data (e.g. genomic sequence) for important resistant pathogens
- To provide more extensive information on emerging and ongoing public health issues related to resistant pathogens and their health and economic impact
- To improve and continue economical-political-social support to AMR surveillance

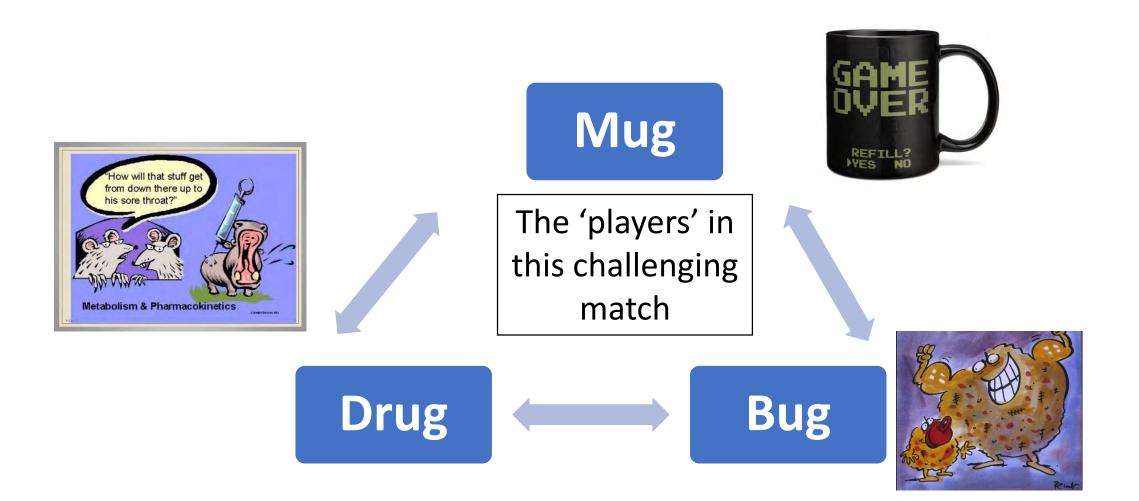
THANK YOU!!

PK/PD-driven antimicrobial therapy in ICU

Leonardo Pagani, MD Antimicrobial Stewardship Program Infectious Diseases Unit Bolzano Central Hospital, Bolzano (Italy) WHO Expert Advisor on AMR and AS programs

Utrecht, 17.04.2019

Effective antibacterial dosing


- Early and effective appropriate antibacterial therapy is a significant determinant of clinical outcome
- Once correct antibacterial has been selected, dose selection occurs
- The aims of antibiotic dosing are to:
 - Maximise rate and extent of bacterial kill
 - Minimise the development of antibacterial resistance
 - Minimise possibility of drug toxicity

\rightarrow Enhances likelihood of positive clinical outcomes

"One size fits all" policy is inappropriate for patients in ICU

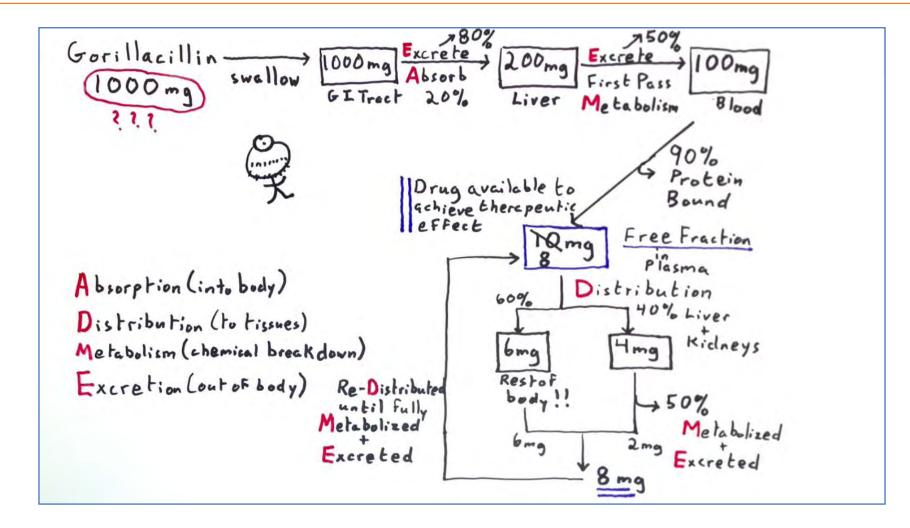
How to maximise positive outcomes?

Dosing complexities

- High level of sickness severity increases importance of achieving optimal therapy and exposure BUT also decreases the likelihood
- The pathophysiological status in ICU affecting antimicrobial disposition

Healthy volunteer

Patient in ICU


ESBL vs. AmpC β -lactamases vs. M β L

	AmpC	ESBL	MBL
Penicillins	Resistant	Resistant	Resistant
Cephalosporins	Resistant (except cefepime)	Resistant	Resistant
Aztreonam	Resistant	Resistant	Sensitive
β-lactamase inhibitors (tazobactam, clavulanic, etc)	Resistant	Sensitive	Resistant

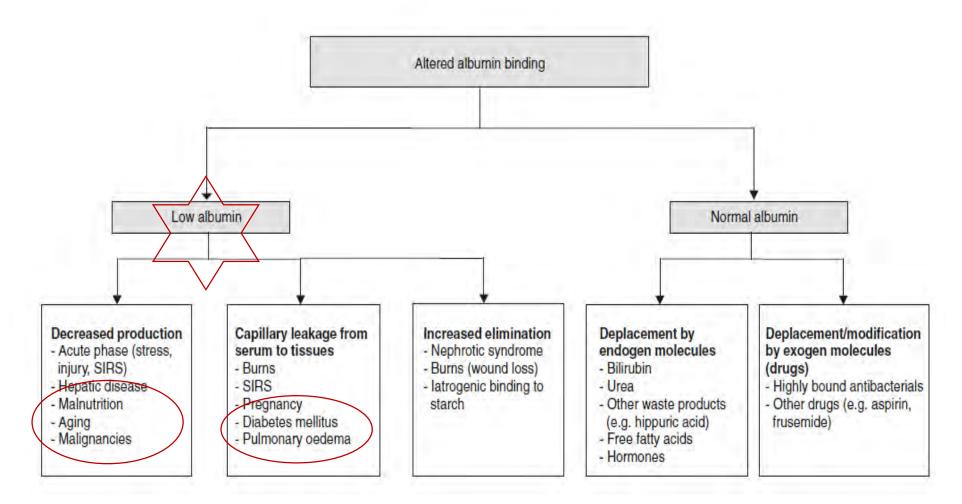
Pharmacokinetic parameters

- Absorption and Bioavailability: how much drug will be available (when given orally)
- Volume of distribution (Vd): where the drug distributes
- Protein binding: the unavailable fraction of a drug
- Half-life $(t_{1/2})$: how long the drug circulates
- Clearance: how the body clears the drug

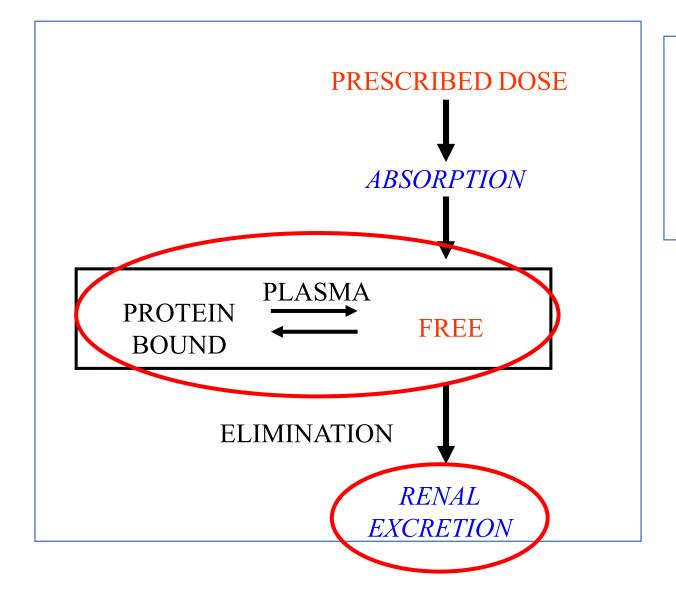
Not so easy to get there....

Pharmacokinetics of antimicrobials

- HYDROPHILIC
- β -lactams
- Glycopeptides
- Carbapenems
- Aminoglycosides
- Unable to cross cell membranes
- Limited Vd
- Inactive against intracellular pathogens
- Usually renal clearance

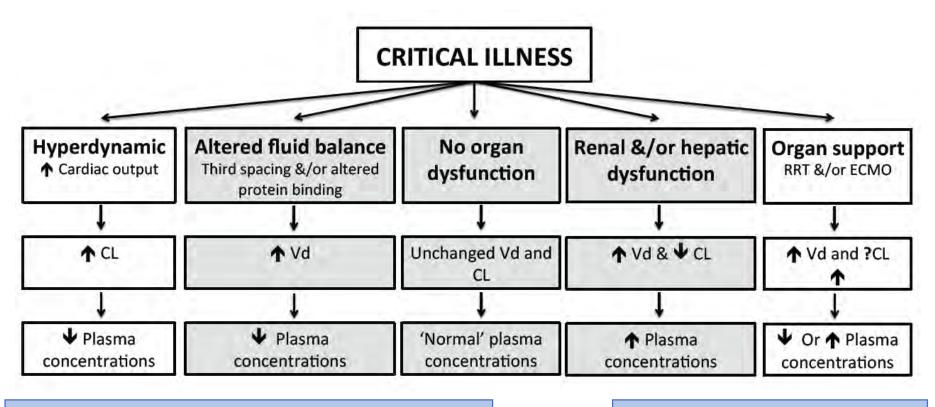

• LIPOPHILIC

- Oxazolidinones
- Rifampin
- Quinolones
- Azalides & Tetracyclins
- Free diffusion across cell membranes
- Wide Vd
- Active against intracellular pathogens
- Usually liver metabolism


The relevant role of apparent V_d in drug disposition

Drug	Vd (L/kg)	Vd for 70 kgs	Vd for 70 kgs + 5 l	% of loss or dilution		
Flucloxacillin	0.1	7	12	> 70		
Gentamicin	0.25	17.5	22.5	~ 30		
Ciprofloxacin	1.8	126	131	< 1		
Azithromycin	32	2240	2245	< 0.001		
Linezolid	30-50	2100-3500	NR	NR		

Main factors potentially responsible for alterations in drug-albumin binding


Roberts JA et al. Clin Pharmacokinet 2013; 52: 1-8

Hypoalbuminemia may greatly affect drug disposition and active concentration for highly bound anti-microbials (drug loss)

> Ertapenem Ceftriaxone Teicoplanin

Sources of PK variability

If dosing does not account for these changes – sub-optimal therapy!

Sub-optimal patient outcomes

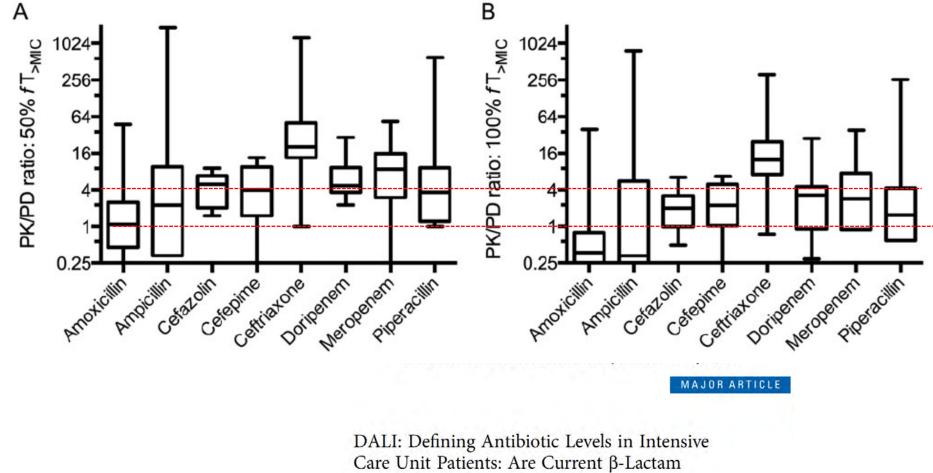
RESISTANCE !!!

International Journal of Antimicrobial Agents 45 (2015) 385-392

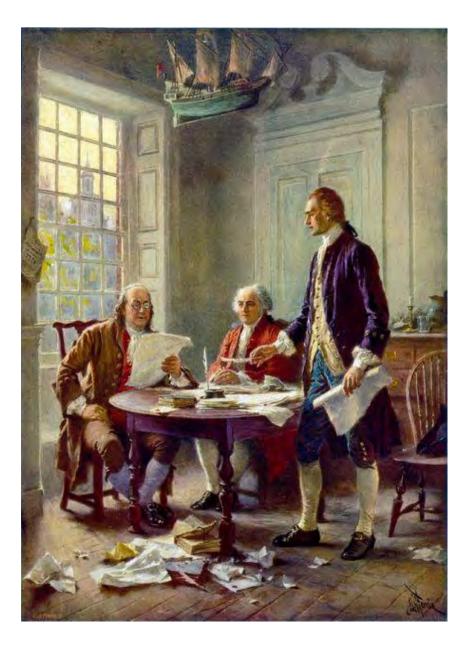
Augmented renal clearance, low β -lactam concentrations and clinical outcomes in the critically ill: An observational prospective cohort study

Angela Huttner^{a,*}, Elodie Von Dach^a, Adriana Renzoni^a, Benedikt D. Huttner^a, Mathieu Affaticati^b, Leonardo Pagani^a, Yousef Daali^c, Jerôme Pugin^d, Abderrahim Karmime^e, Marc Fathi^e, Daniel Lew^f, Stephan Harbarth^a

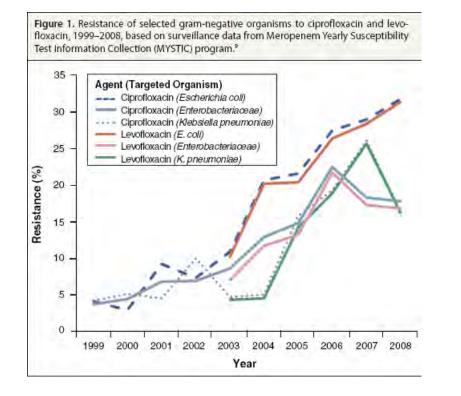
^a Infection Control Programme, Geneva University Hospitals and Faculty of Medicine, Rue Gabrielle Perret-Gentil 4, 1211 Geneva 4, Switzerland ^b University Hospitals and Faculty of Medicine, Rue Gabrielle Perret-Gentil 4, 1211 Geneva 4, Switzerland


^c Division of Pharmacology, Geneva University Hospitals and Faculty of Medicine, Rue Gabrielle Perret-Gentil 4, 1211 Geneva 4, Switzerland

^d Division of Critical Care Medicine, Geneva University Hospitals and Faculty of Medicine, Rue Gabrielle Perret-Gentil 4, 1211 Geneva 4, Switzerland


^e Department of Laboratory Medicine, Geneva University Hospitals and Faculty of Medicine, Rue Gabrielle Perret-Gentil 4, 1211 Geneva 4, Switzerland ^f Division of Infectious Diseases, Geneva University Hospitals and Medical School, Rue Gabrielle Perret-Gentil 4, 1211 Geneva 4, Switzerland

ARC is common in the critically ill and strongly predicts diminished β -lactam plasma concentrations.


Beta-lactam PK/PD variability in ICU

Antibiotic Doses Sufficient for Critically Ill Patients?

Thomas Jefferson drafting an audit on ceftriaxone use

Fluoroquinolones

Resistance, dosing and target attainment

Table 1.

Cumulative Fraction of Response (%) and Minimum Inhibitory Concentration (MIC) for Standard Dosing Regimens Against Three Gram-Negative Bacteria^{19,a}

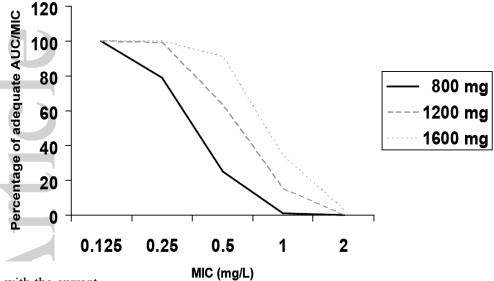
Antimicrobial,	Escherichia coli		Klebsiella species			Pseudomonas aeruginosa			
Dosing Regimen, and MIC	2002	2004	2006	2002	2004	2006	2002	2004	2006
Ciprofloxacin									
400 mg i.v. every 12 hr	91.6	78.3	71.3	93.6	91.3	79.8	62.1	61.1	63.5
400 mg i.v. every 8 hr	92.1	78.6	71.8	95.6	92.8	80.9	65.6	65.5	67.0
MIC _∞ (μg/mL)	0.125	4	4	0.125	0.125	4	4	4	4
Levofloxacin									
750 mg i.v. every 24 hr	^b	78.6	72.1		91.8	80.4		52.9	55.8
MIC ₉₀ (µg/mL)		16	8		0.5	0.25		16	8

*MIC so = minimum inhibitory concentration required to inhibit the growth of 90% of organisms. *Not reported.

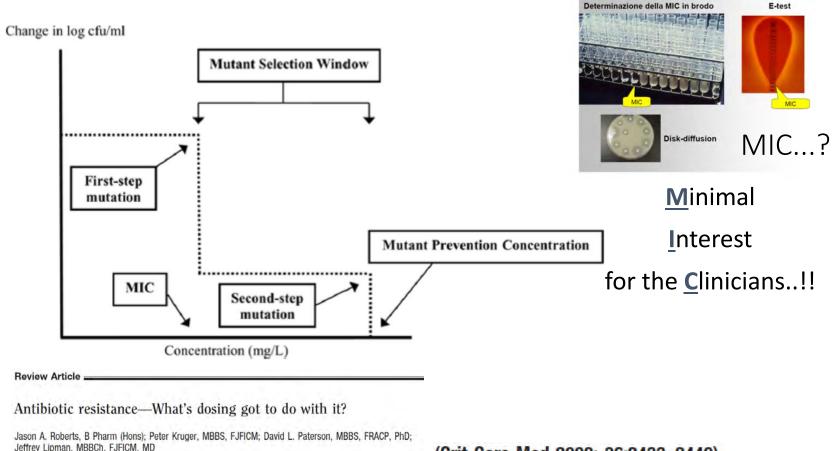
Labreche MJ, Frei CH. *Am J Health-Syst Pharm* 2012; 69:1863-1870

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

- The efficacy target of AUC/MIC>125 is based on the study of Forrest in 1993.
- Recent studies have shown that in ICU patients the ciprofloxacin efficacy target of AUC/MIC>125 is often not reached.


WHAT THIS STUDY ADDS

- The efficacy targets of ciprofloxacin in patients in general wards are often not reached. Most patients have low AUC with current iv dosing regimens. We suggest increasing the standard dose of ciprofloxacin to 1200 mg intravenously per 24 hours.
- Patients in general wards have high interindividual variability of pharmacokinetic parameters and therapeutic drug monitoring could be useful to support dosing.


The majority of hospitalized patients did not reach the target AUC/MIC ratio with the current iv doses. Taken into account the increasing resistance for ciprofloxacin worldwide, TDM and subsequent dose adjustment may decrease development of ciprofloxacin resistance. A large randomized clinical trial of ciprofloxacin treatment is needed to confirm the AUC/MIC>125 or higher AUC/MIC ratios (>250) are needed for good clinical and microbiological outcome.

The Ciprofloxacin Target AUC/MIC Ratio Is Not Reached in Hospitalized Patients with the Recommended Dosing Regimens

Haeseker M et al. Br J Clin Pharmacol 2013; 75: 180-185

Low antibiotic exposures can lead to emergence of resistance

(Crit Care Med 2008; 36:2433-2440)

Shape does matter: short high-concentration exposure minimizes resistance emergence for fluoroquinolones in *P. aeruginosa*

- High CIP concentrations over 1–10 h yielded more rapid and extensive initial killing compared with 16 and 24 h exposures at the same *f*AUC/MIC. No resistance emerged for 1–10 h exposures, although regrowth of susceptible bacteria was extensive.
- CIP exposure over 24 h yielded less regrowth, but CIP-resistant bacteria at 5× MIC amplified by over 5 log₁₀ and almost completely replaced the susceptible bacteria by 24 h
- Pre-existing resistant subpopulations amplified extensively with 24 and 16 h exposures, but not with shorter durations.
- The shape of the CIP concentration profile was critical to minimize resistance emergence.

Rees VE et al, J Antimicrob Chemother 2015; 70: 816-826

Antimicrobial pharmacodynamics: Interaction between antibiotics and their effects on pathogens

- The study of antimicrobial pharmacodynamics has proved useful for
 - establishing newer optimal dosing regimens for currently available drugs
 - developing new antimicrobials and new formulations
 - establishing susceptibility breakpoints
 - formulating guidelines for empirical therapy of infections

2016-03-30

Submission of comments on Guideline on the use of pharmacokinetics and pharmacodynamics in the development of antibacterial medicinal products (EMA/CHMP/594085/2015)

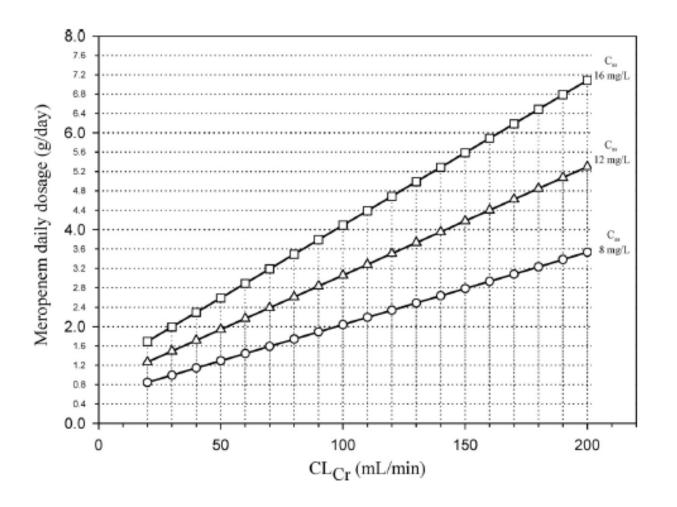
Comments from:

Name of organisation or individual

EPASG - ESCMID PK/PD of Anti-Infectives Study Group

Please note that these comments and the identity of the sender will be published unless a specific justified objection is received.

Approaching the end...


- Clear concentration-effect relationships exist for antibiotics
- We are commonly underdosing our patients because we don't understand the PK in individual patients
- Underdosing leads to resistance...and we are here just for that..
- One solution may be TDM
- Clinical utility of antibacterial TDM still being quantified

And if you don't have TDM?

Do your best! Better outcome, less resistance...

- TZP 12-16 g/24h
- Ciprofloxacin 750 mg/d PO; 2 x 600 mg/d IV
- Gentamicin 5-7 mg/kg OD
- Amikacin 20-25 mg/kg OD
- Meropenem 3-4 g/24h
- Vancomycin 30 mg/kg/24h
- ...and so on..

Dosing Nomograms for Attaining Optimum Concentrations of Meropenem by Continuous Infusion in Critically III Patients with Severe Gram-Negative Infections: a Pharmacokinetics/Pharmacodynamics-Bas ed Approach

Federico Pea, Pierluigi Viale, Piergiorgio Cojutti and Mario Furlanut Antimicrob. Agents Chemother. 2012, 56(12):6343. DOI: 10.1128/AAC.01291-12. Published Ahead of Print 8 October 2012.

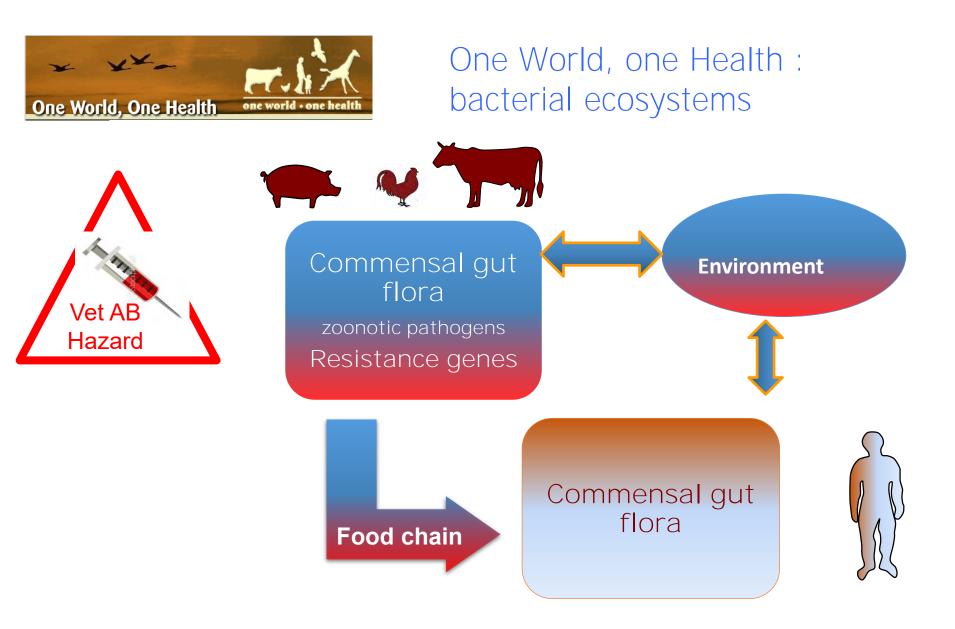
A mind is like a parachute: It does not work if it is not open

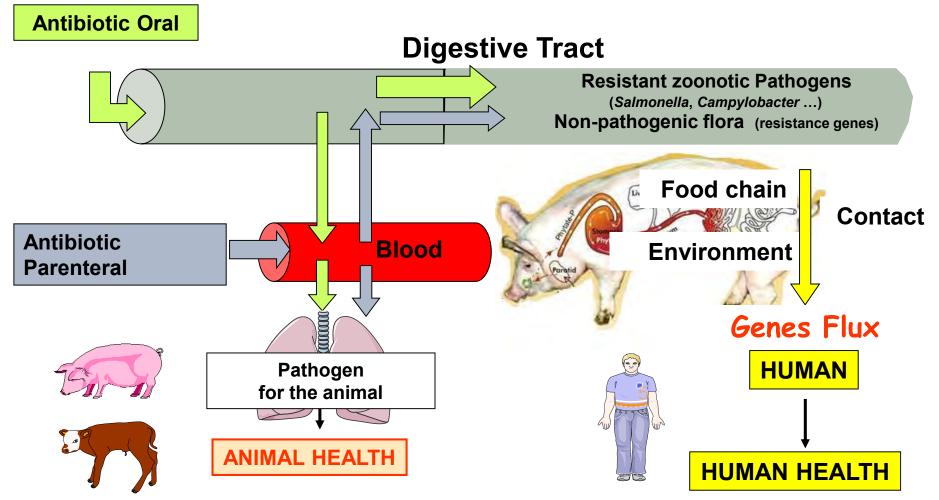
(Franck Zappa)

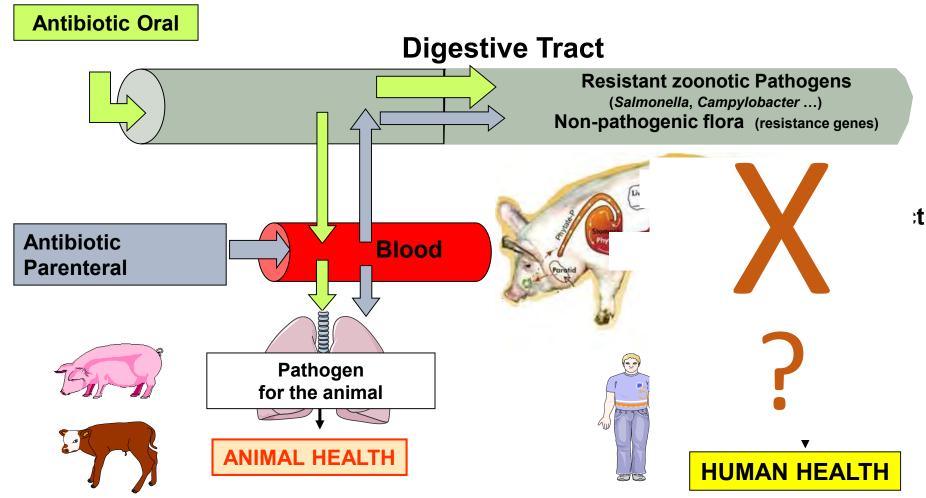
thanks for your attention

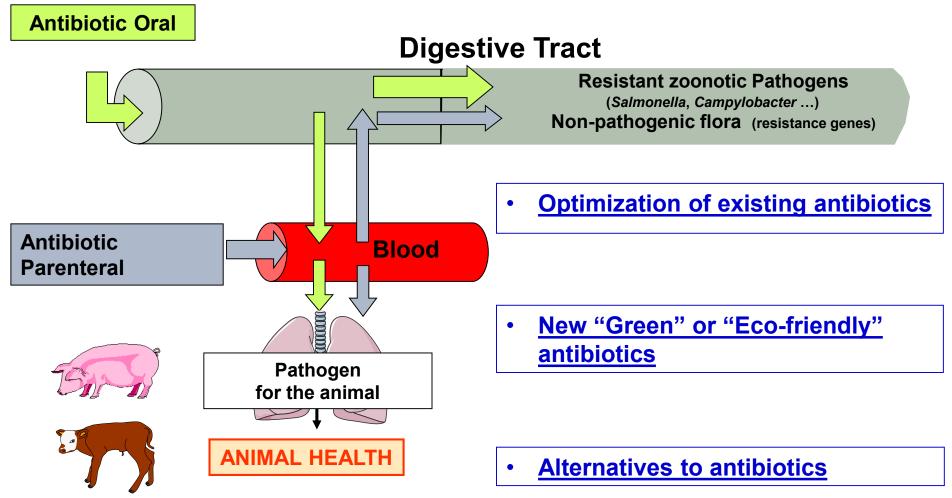
ICOHAR

International Conference on One Health Antimicrobial Resistance 16-18 April 2019, Utrecht, Netherlands


Precision Antimicrobial Therapy in foodproducing animal


Alain Bousquet-Mélou


UMR 1436 INTHERES


Innovations Thérapeutiques et Résistances

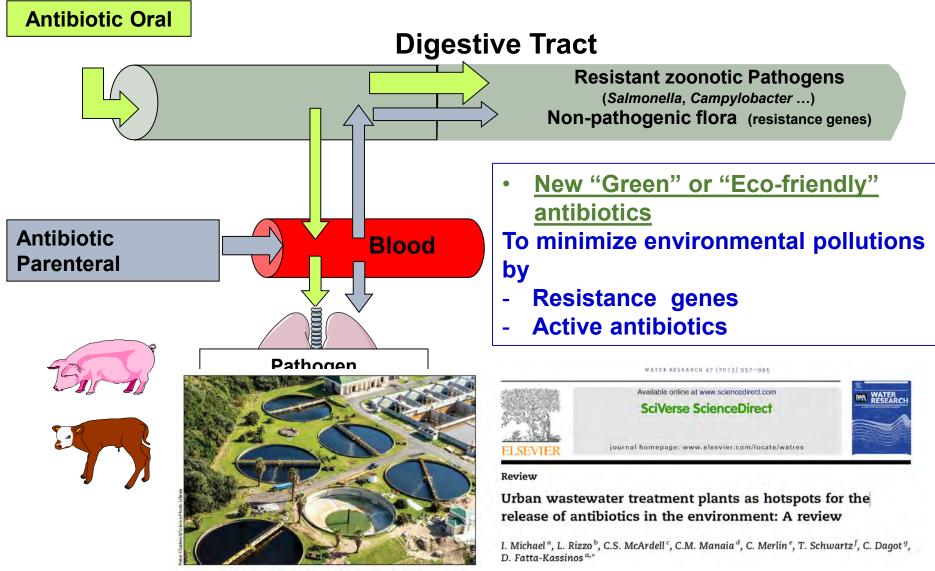
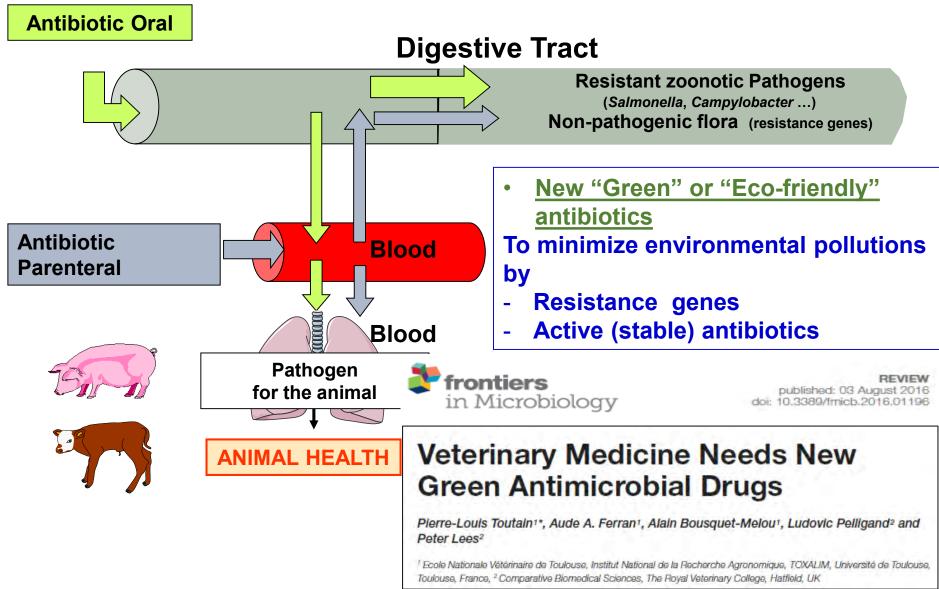
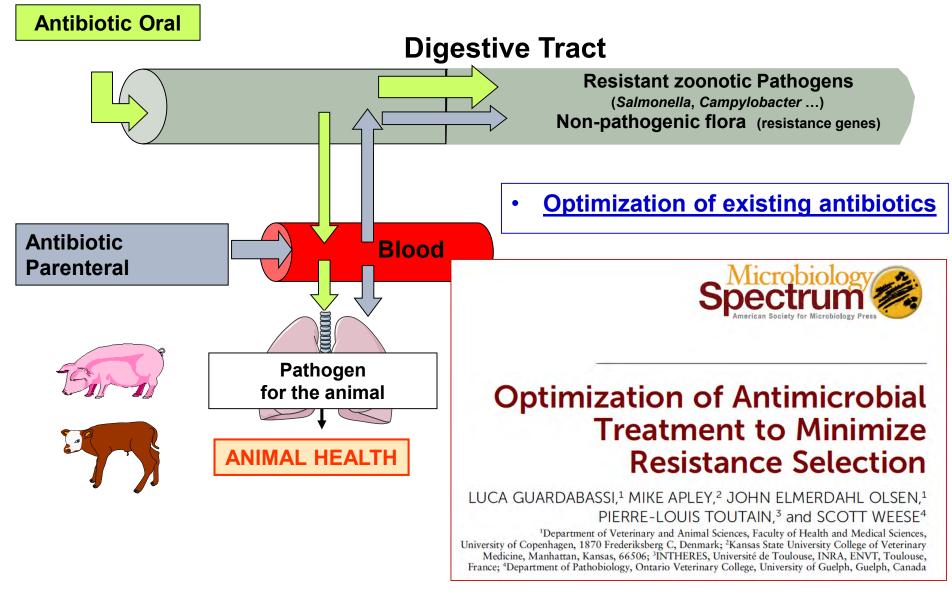




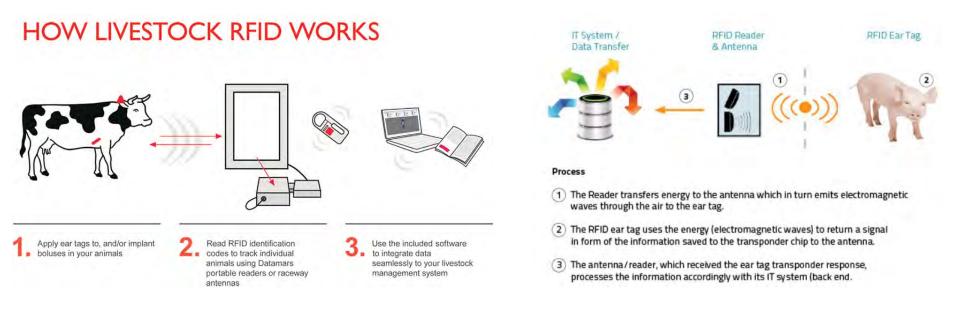
Figure 3: Waste-water treatment facilities can be hotspots for horizontal transfer of resistance

PRECISION LIVESTOCK FARMING

Precision Livestock Farming (PLF)

Monitoring and Regulation of breeding systems /productivity

- Climate, housing conditions
- Feeding
- Animal behaviour : welfare and production process

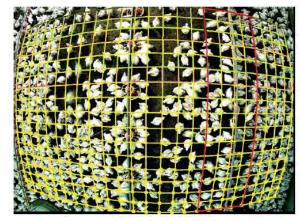

Real-time monitoring of physiological, behavioural, environmental data

Actimetry data Drinking, feeding behaviors Acoustic / video signals Swine and Poultry productions Bovine production /Dairy cattle Aquaculture

Precision Livestock Farming (PLF)

Actimetry data, drinking /feeding behaviors

Precision Livestock Farming (PLF)



Acoustic / video signals

K.U.Leuven University of Milan

Analysis of poultry eating and drinking behavior by software eYeNamic

A. De Montis,¹ A. Pinna,¹ M. Barra,¹ E. Vranken^{2,3}

¹University of Sassari, Dipartimento di Agraria, Sassari, Italy; ²Fancom B.V., Panningen, The Netherlands; ³KULeuven, Division M3-BIORES, Heverlee, Belgium

PRECISION LIVESTOCK FARMING EARLY DETECTION OF DISEASE PRECISION ANTIMICROBIAL THERAPY

Metaphylaxis

A strategy of antimicrobial therapy tailored to food-producing animals ?

EN

Official Journal of the European Union

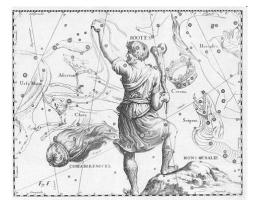
REGULATION (EU) 2019/6 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 11 December 2018

on veterinary medicinal products and repealing Directive 2001/82/EC

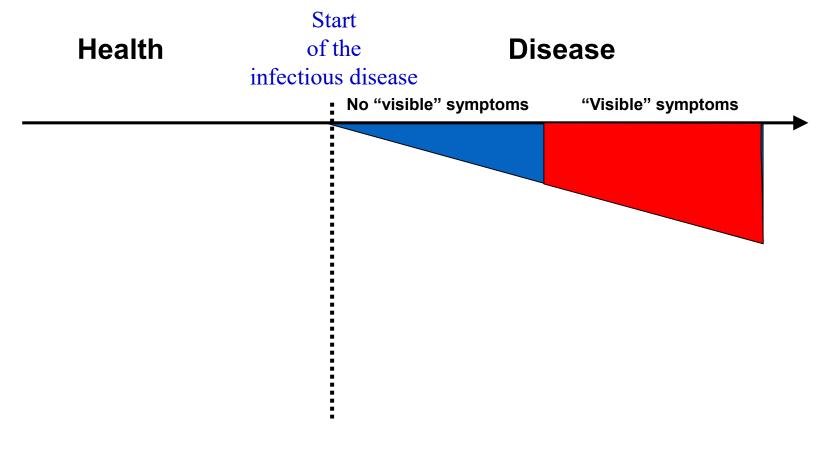
(Text with EEA relevance)

Metaphylaxis

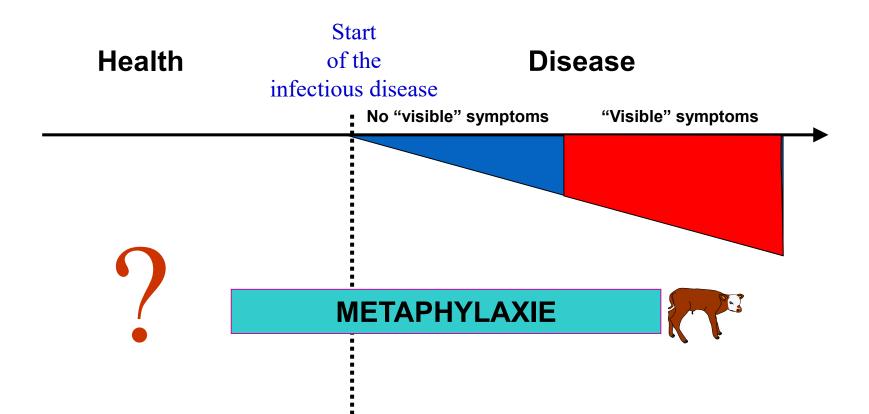

 means the administration of a medicinal product to a group of animals after a diagnosis of clinical disease in part of the group has been established, with the aim of treating the clinically sick animals and controlling the spread of the disease to animals in close contact and at risk and which may already be subclinically infected.

Prophylaxis

 means the administration of a medicinal product to an animal or group of animals before clinical signs of a disease, in order to prevent the occurrence of disease or infection;

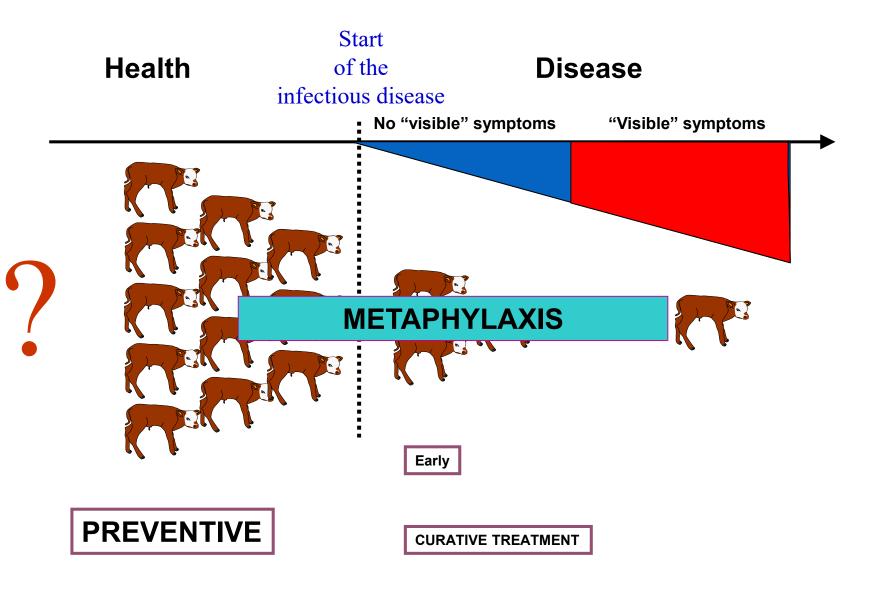

Metaphylaxis in the time course of a disease

- *Phylaxis* = **PROTECTION**
 - From *phylax* = guard, watchman

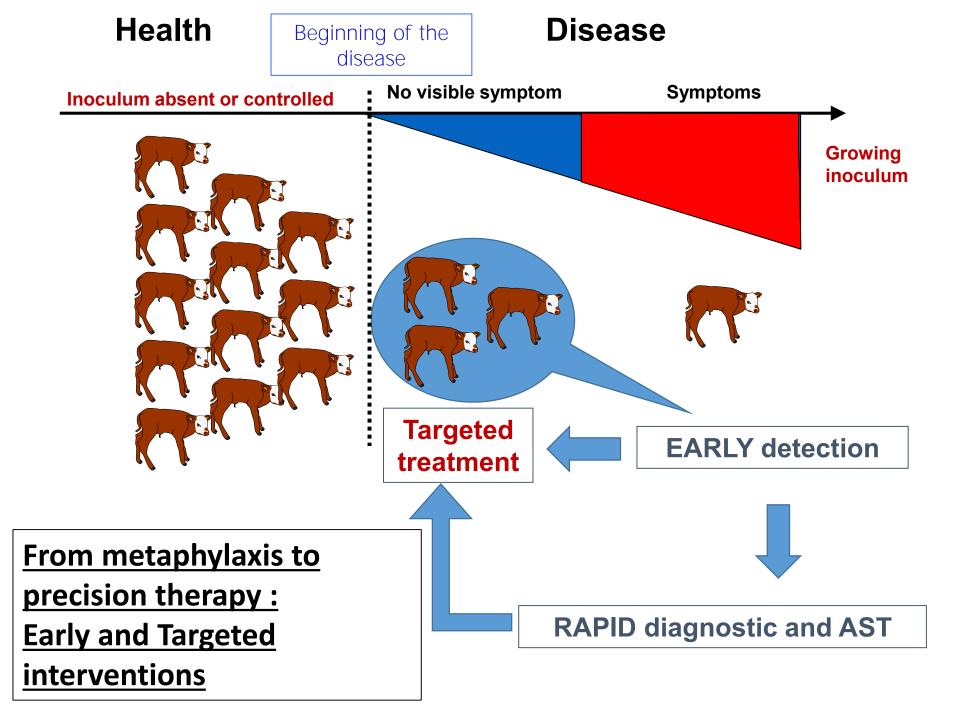


Arctophylaxis (Boote) the « bear-driver » (Ursus Minor, Ursus Major)

- In relation with the start of the aggression
 - *Pro* : before the aggression begins
 - Meta : after the aggression begins



Bacterial contamination / Host defenses Growth of the initial inoculum



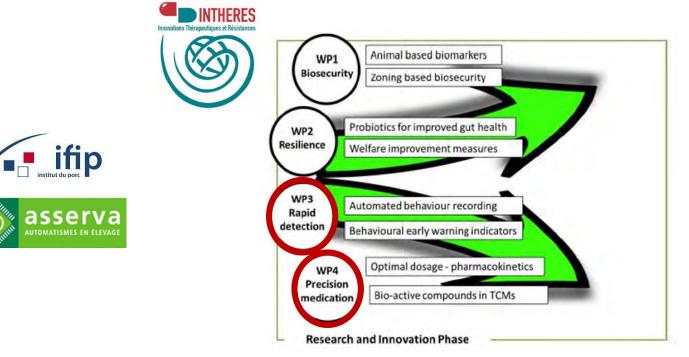
Antibiotics are more active against lower bacterial load

PLF Tools Early / Individual Detection

HORIZON

2020

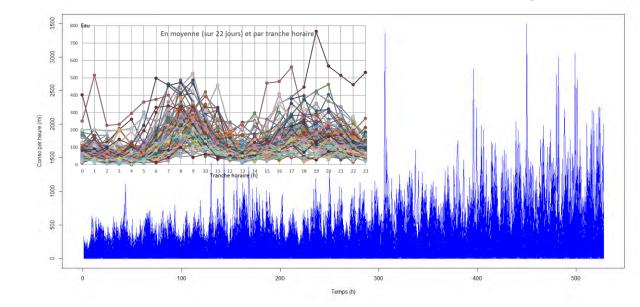
Precision Medication



PigletDetect

Food and water real-time monitoring of pigs to perform early disease detection

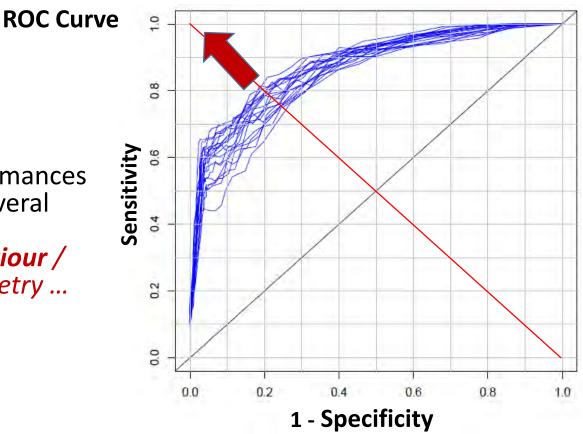
HealthyLivestock

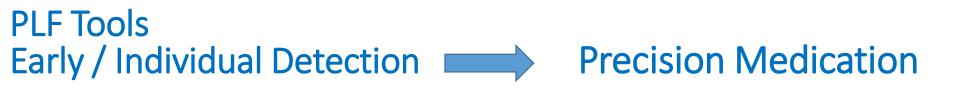

Tackling Antimicrobial Resistance through improved livestock Health and Welfare

PLF Tools Early / Individual Detection Precision Medication

- 1. Early detection (ED)
 - 1. PLF use continuous recording of biological data
 - 2. Mathematical modelling of healthy and diseased situations
 - 3. Algorithm for **automatic and early** detection of diseased status

Individual water consumption monitoring



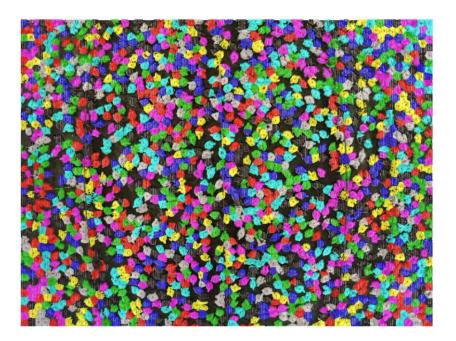

PLF Tools
Early / Individual Detection Precision Medication

- 1. Early detection (ED)
 - 1. PLF use continuous recording of biological data
 - 2. Mathematical modelling of healthy and diseased situations
 - 3. Algorithm for **automatic and early** detection of diseased status

Machine learning Supervised learning

 Increased ED performances when combining several variables :
 individual drinking behaviour / feeding behaviour / actimetry ...

1. Early detection (ED)


Machine learning Supervised learning

1. Early detection (ED)

Algorithm that computes activity/movement (distance, velocity) at the individual level

PLF Tools Early / Individual Detection Precision Medication

1. Early detection (ED)

Detection of a problem is not Diagnostic of a specific disease

- Absence of pathology : Breeding system dysfunction / Welfare indicator
- Presence of pathology : EARLY detection allows saving time for TARGETED intervention : Diagnostic / Treatment

PLF Tools Early / Individual Detection Precision Medication

- 1. Early detection (ED)
- 2. Precision medication
 - 1. Selecting animals to treat : moving from "mass medication" to "pen medication" or "individual medication" (when possible)
 - 2. Treating smaller groups (pen) permitted by **drugs delivery in water** using dosing pumps
 - 3. Optimizing therapy in the case of collective distribution of drugs in water : by taking into account *individual drinking behaviour*

Collective distribution / Oral route / Inter-individual variability of plasma concentrations

Doxycycline in medicated food

Exposure variability of fosfomycin administered to pigs in food or water:

Alejandro L. Soraci^{a,*}, Fabián Amanto^b, María O. Tapia^a, Eulalia de la Torre^a, Pierre-Louis Toutain^c

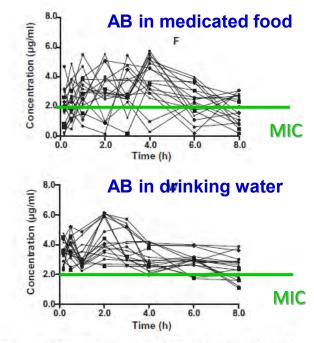
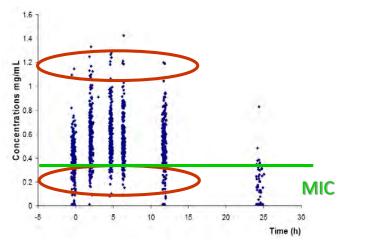
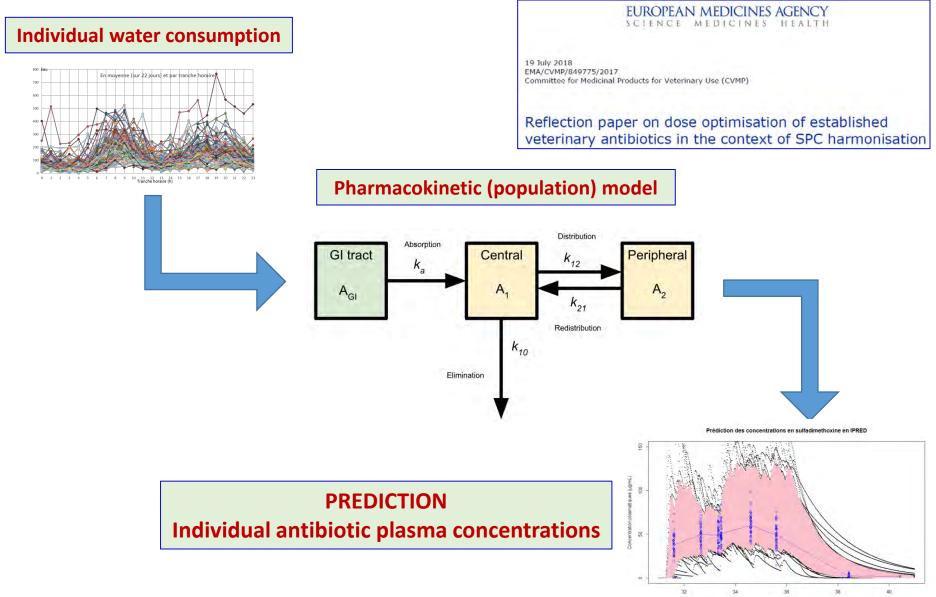




Fig. 4. Plasma concentrations of fosfomycin obtained after fosfomycin administration at a dose of 20 mg/kg in the food (F) or water (W) (groups F & W) for 36 pigs under farm conditions (*n* = 18 per group).

n = 215

Modelling for prediction of individual concentration profiles after collective delivery in water

Temps en jours

Conclusion

- Precision antimicrobial therapy in food-producing animals should take advantage of using tools of PLF and Smart Farming
- Moving Metaphylaxis to "As early / More targeted" treatments
 - Should benefit from development of rapid and in-field diagnostic

Thank you for your attention

Anti-Microbial Resistance (AMR) in Tuberculosis and Non-Tuberculosis Mycobacteria: a slow selective process in progress in One-Health, One-World

Miguel Viveiros

Wednesday, 17 April 2019 09:45 - 10:30

Instituto de Higiene e Medicina Tropical da Universidade Nova de Lisboa. Lisbon, Portugal

On behalf of

ESCMID STUDY GROUP FOR MYCOBACTERIAL INFECTIONS

European Society of Clinical Microbiology and Infectious Diseases

Source: WHO Global TB Program – 2013 and 2015, http://www.who.int/tb/publications/global_report/en/

Source: WHO Global TB Program – 2013 and 2015, http://www.who.int/tb/publications/global_report/en/

Source: WHO Global TB Program – 2013, 2015 and 2018, http://www.who.int/tb/publications/global_report/en/

INSTITUTO DE HIGIENE E MEDICINA TROPICAL UNIVERSIDADE NOVA DE LISBOA

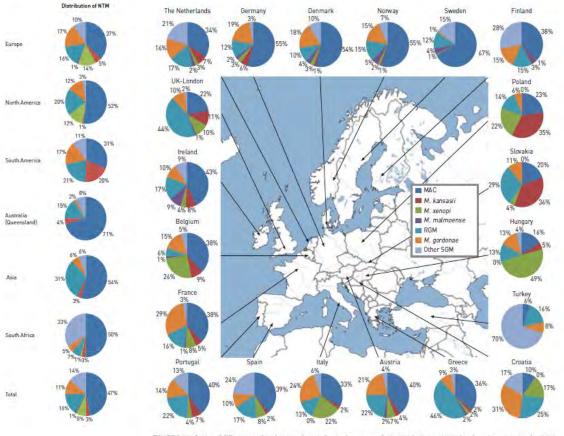
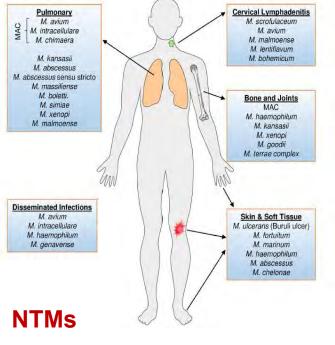


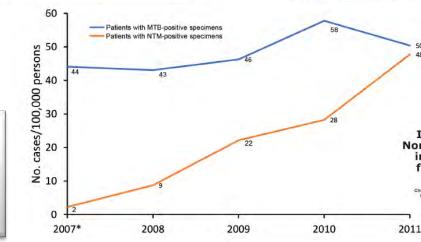
FIGURE 3 Distribution of different nontuberculous mycobacteria from pulmonary samples in 2008 in Europe. MAC: Mycobacteriam aviam complex; RGM: rapid-growing mycobacteria; SGM: slow-growing mycobacteria.

DRIGINAL ARTICLE RESPIRATORY INFECTIONS

The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples


An NTM-NET collaborative study

Wouter Hoefsloot¹, Jakko van Ingen¹, Claire Andrejak, Kristian Ängeby,


Fact: The more we detect – the more we treat – the more we cure ! - but we also select DR-NTM !

REVIEW

PLOS Neglected Tropical Diseases https://doi.org/10.1371/journal.pntd.0007083 February 14, 2019


trd Infection Source and Epidemiology of Nontuberculous Mycobacterial Lung Disease Doosoo leon, M.D. Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea TB prevalence (notification rate) - TB incidence (new case notification rate) NTM prevalence 120.0 106.5 103.8 106.9 100.0 81.2 81.3 100,000 80.0 65.6 60.0 per Case 40.0 12.8 15.9 18.7 21.8 26.8 26.8 20.0 0.0 2009 2010 2011 2012 2013 2014 2015 2016 Year

https://doi.org/10.4046/trd.2018.0026 ISSN: 1738-3536(Printi/2005-6184(Online) + Tuberc Respir Dis, Respir Dis 2019;82:94-101

Figure 1. Trend in the prevalence of tuberculosis (TB) and nontuberculous disease from 2009 to 2016 in South Korea. NTM: nontuberculous mycobacteria. Adopted from Yoon et al. BMC infect Dis 2017;17:432, according to Creative Commons license⁶⁰.

Figure. Prevalence of positive test results for NTM and MTB in respiratory specimens from patients in US-affiliated Pacific Island jurisdictions, 2007–2011. *Data for 2007 were extrapolated from data for August–December 2007. MTB, Mycobacterium tuberculosis; NTM, nontuberculous mycobacteria.

Increasing Prevalence of Nontuberculous Mycobacteria in Respiratory Specimens from US-Affiliated Pacific Island Jurisdictions¹

HOW TO FIGHT M/X/TDR-TB & NTMs?

THE GLOBAL PLAN TO STOP TB 2011-2015

Transforming the Fight

(Crashatt

THE


Global Plan to End TE

Stop TB Department

PARADIGM

INSTITUTO DE HIGIENE E MEDICINA TROPICAL

actions for Life

THE GLOBAL PLAN

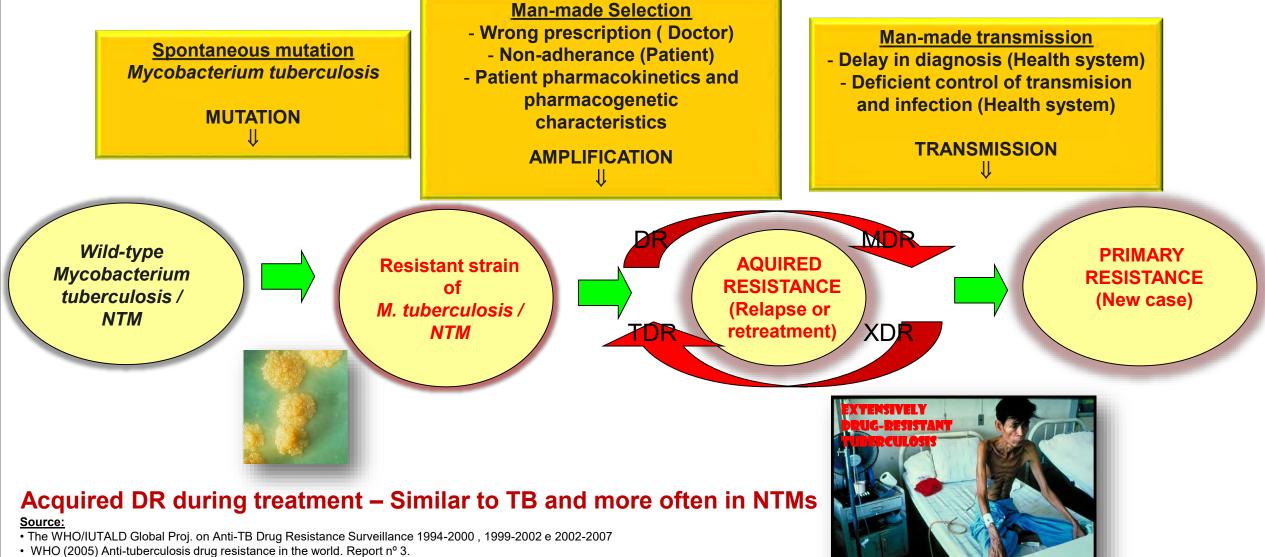
to stop tb

2006 - 2015

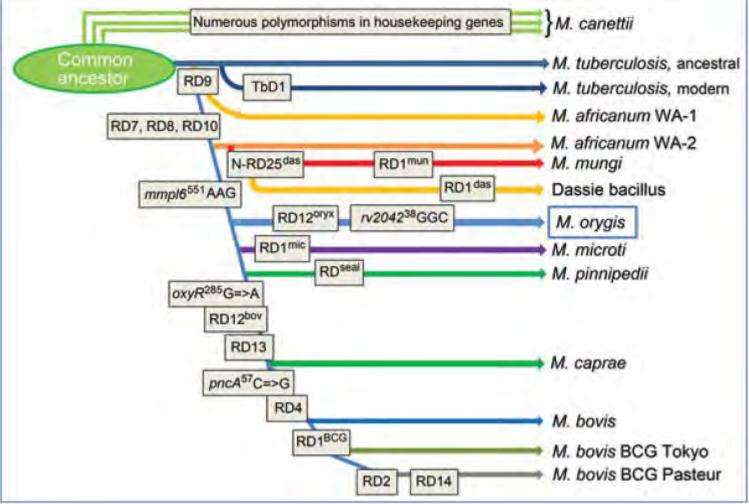
World Haatt

"<u>Early</u>" detection of TB + M/XDR-TB + NTM

(Laboratory)


DOT strategy (Ministry of Health)

HOW M/X/TDR-TB and DR-NTMs IS GENERATED – THE CURRENT DOGMA ?


• Raviglione M. XDR-TB: entering the post-antibiotic era? Int J Tuberc Lung Dis. 2006 Nov;10(11):1185-7

With molecular epidemiology it became possible to study the phylogenetic relationships of the Mycobacterium tuberculosis complex species and how they evolved and adapted to humans and animals !!

In contrast to other bacterial pathogens, where genetic diversity arises as a result of recombination, duplication, insertion and exclusion events, *M. tuberculosis* complex presents a clonal evolution from its common ancestor losing ancestral genomic regions without any genetic exchange with other species.

Schematic illustration of phylogenetic relationships between members of the M. tuberculosis complex according to van Ingen et al. (2012), based on the initial study by Brosh et al. (2002).

van Ingen J, Rahim Z, Mulder A, Boeree MJ, Simeone R, Brosch R, van Soolingen D. Characterization of M. orygis as M. tuberculosis complex subspecies. Emerg Infect Dis. 2012 Apr;18(4):653-5. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002;99:3684–9.

lineages of *M. tuberculosis*

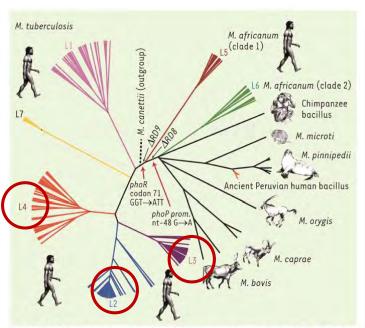


FIGURE 3 Whole-genome phylogeny of 261 strains belonging to the MTBC. Animal and M. africanum specific deletions are indicated, as well as mutations affecting the PhoPR virulence regulator. Adapted from Bos et al. (55) and Gonzalo-Asensio et al. (34).

Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, Nicol M, Niemann S, Kremer K, Gutierrez MC, Hilty M, Hopewell PC, Small PM. 2006. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 103(8): 2869-73.

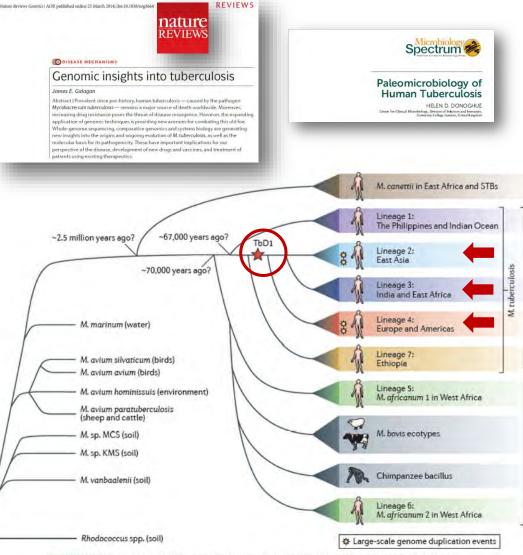
Galagan JE. 2014. Genomic insights into tuberculosis. Nat Rev Genet 15:307-320

Donoghue HD. 2016. Paleomicrobiology of Human Tuberculosis. Microbiol Spectr. 4(4). doi: 10.1128/microbiolspec.PoH-0003-2014

Barbier M, Wirth T..2016. The Evolutionary History, Demography, and Spread of the Mycobacterium tuberculosis Complex. Microbiol Spectr. 2016 Aug:4(4).

sequence polymorphisms Large (LSPs) led to the identification of distinct strains of seven Mycobacterium tuberculosis. which were categorized as "old" or "modern" according to the presence or absence of the TbD1 region. "Old" lines 1, 5, 6 and 7 are geographically restricted, while "Modern" Lineages 2, 3 and 4 form a monophyletic group, with lineages 2, 3 beina and frequently isolated from g patients with widespread global spread and enormous an capacity cause cavitary to disease and acquire resistance -After all **Mycobacterium** tuberculosis are not the all same - some strains are worse [L2, L3 & L4] than others!

Spectrum 🛸

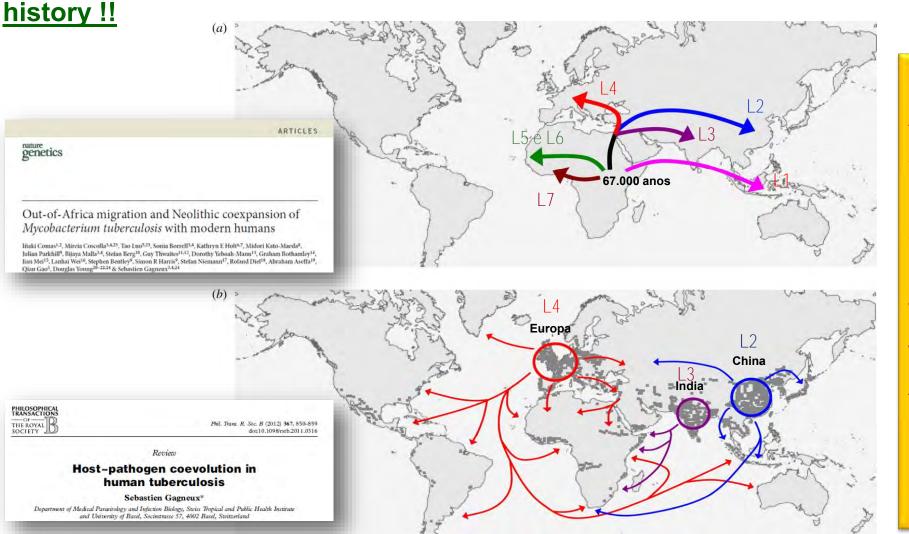

The Evolutionary History,

Demography, and Spread

of the Mycobacterium tuberculosis Complex

MAXIME BARBIER and THIERRY WIRTH

ICOHAR International Conference on One Health Antimicrobial Resistance



MTBC

FIGURE 2 Evolutionary relationship between selected mycobacteria and members of the Mycobacterium tuberculosis complex (MTBC). The MTBC was thought to arise as a clonal expansion from a smooth tubercle bacillus (STB) progenitor population. The animal-

We know how Mycobacterium tuberculosis traveled on the globe and in modern

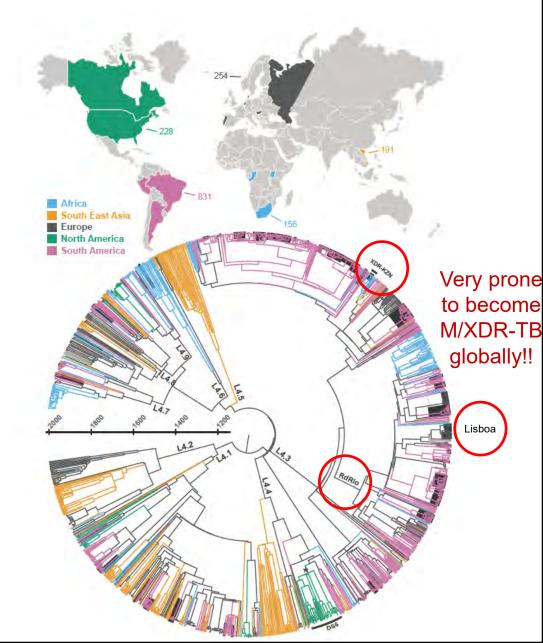
Hershberg's famous out-of-Africa - back to Africa theory supported by recent molecular epidemiology studies.

The three modern lineages travel and "re" colonize Africa in the "expansions" Indian (Sec. I-X), Chinese (Sung Sec.X-XII Dynasty) and European (Sec. XV-XVI)

Comas I, *et al.* (2013) Out-of-Africa migration and Neolithic coexpansion of *Mycobacterium tuberculosis* with modern humans. *Nat Genet.* 2013 Oct;45(10):1176-82. Gagneux S. (2012) Host-pathogen coevolution in human tuberculosis. *Philos Trans R Soc Lond B Biol Sci.* 2012 Mar 19;367(1590):850-9.

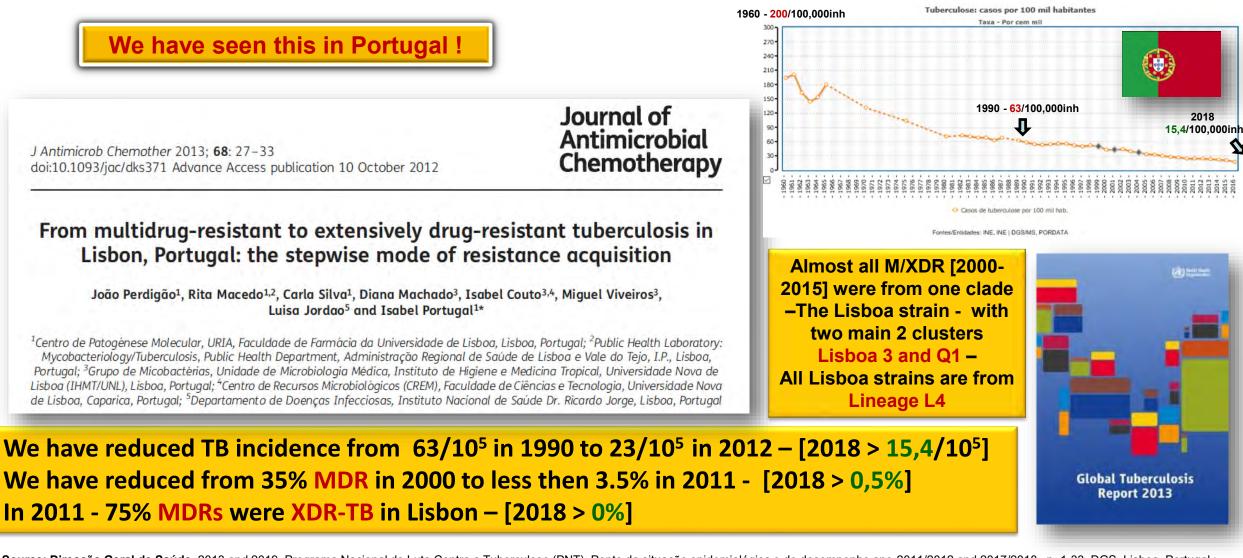
SCIENCE ADVANCES | RESEARCH ARTICLE

HEALTH AND MEDICINE

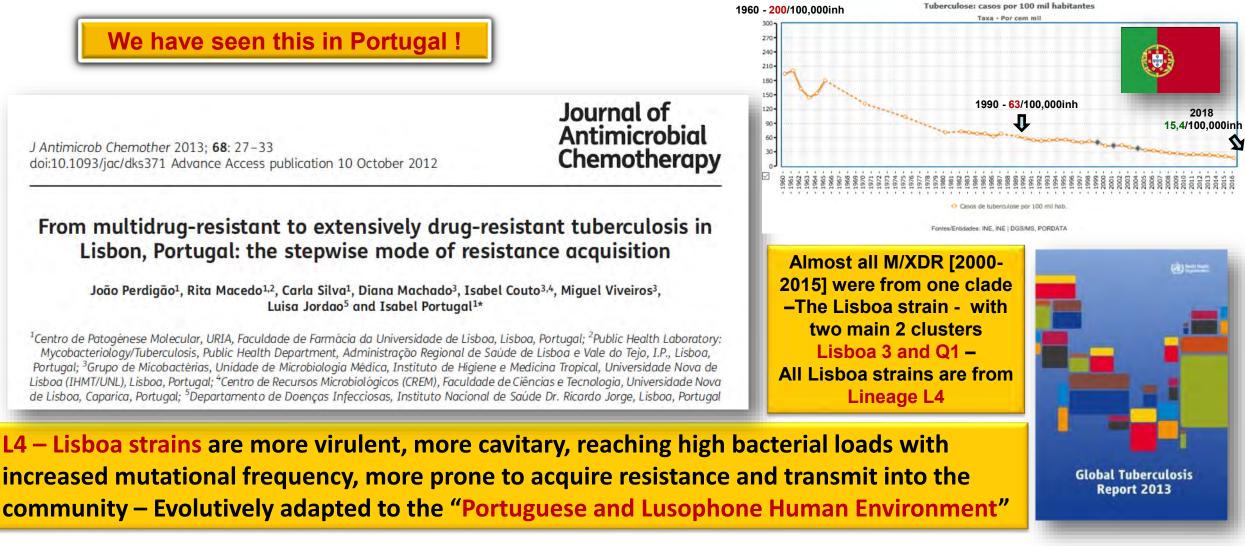

Global expansion of *Mycobacterium tuberculosis* lineage 4 shaped by colonial migration and local adaptation

Ola B. Brynildsrud¹, Caitlin S. Pepperell^{2,3}, Philip Suffys⁴, Louis Grandjean⁵, Johana Monteserin^{6,7}, Nadia Debech¹, Jon Bohlin¹, Kristian Alfsnes¹, John O.-H. Pettersson^{1,8,9,10}, Ingerid Kirkeleite¹, Fatima Fandinho¹¹, Marcia Aparecida da Silva¹¹, Joao Perdigao¹², Isabel Portugal¹², Miguel Viveiros¹³, Taane Clark^{14,15}, Maxine Caws^{16,17}, Sarah Dunstan¹⁸, Phan Vuong Khac Thai¹⁹, Beatriz Lopez⁶, Viviana Ritacco^{6,7}, Andrew Kitchen²⁰, Tyler S. Brown²¹, Dick van Soolingen²², Mary B. O'Neill^{3,23}*, Kathryn E. Holt^{14,24}, Edward J. Feil²⁵, Barun Mathema²⁶, Francois Balloux²⁷, Vegard Eldholm^{1†}

> Science Advances


Based on population genomic and phylogeographic analyses of 1669 *Mycobacterium tuberculosis M.tb* Lineage 4 (L4) genomes, we find that dispersal of L4 has been completely dominated by historical migrations out of Europe. We demonstrate an intimate temporal relationship between European colonial expansion into Africa and the Americas and the spread of L4 tuberculosis (TB).

Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).


The more we detect ! – the more we treat! – the more we cure ! – but we also select DR-TB !

Source: Direcção Geral de Saúde. 2013 and 2019. Programa Nacional de Luta Contra a Tuberculose (PNT). Ponto da situação epidemiológica e de desempenho ano 2011/2012 and 2017/2018, p. 1-33. DGS, Lisboa, Portugal; Perdigão et al J Antimicrob Chemother. 2013 Jan;68(1):27-33.

The more we detect ! – the more we treat! – the more we cure ! – but we also select DR-TB !

Source: Direcção Geral de Saúde. 2013 and 2019. Programa Nacional de Luta Contra a Tuberculose (PNT). Ponto da situação epidemiológica e de desempenho ano 2011/2012 and 2017/2018, p. 1-33. DGS, Lisboa, Portugal; Perdigão et al J Antimicrob Chemother. 2013 Jan;68(1):27-33.

Molecular tools for rapid

identification and novel effective therapy against

EXPERT REVIEWS

Miguel Viveiros

Marta Martins,

Liliana Rodrigues.

Isabel Portugal and

Diana Machado,

Leonard Amaral[†]

Unit of Mycobacteriology.

Lisboa (IHMT/UNL), Rua da

Junqueira, 100, 1349-008

Tel.: +351 213 652 600

Fax: +351 213 632 105

lamaral@ihmt.unl.pt

Lisbon, Portugal

Isabel Couto.

Journal of Antimicrobial Chemotherapy

J Antimicrob Chemother 2013; 68: 27-33 doi:10.1093/jac/dks371 Advance Access publication 10 October 2012

From multidrug-resistant to extensively drug-resistant tuberculosis in Lisbon, Portugal: the stepwise mode of resistance acquisition

João Perdigão¹, Rita Macedo^{1,2}, Carla Silva¹, Diana Machado³, Isabel Couto^{3,4}, Miguel Viveiros³, Luisa Jordao⁵ and Isabel Portugal^{1*}

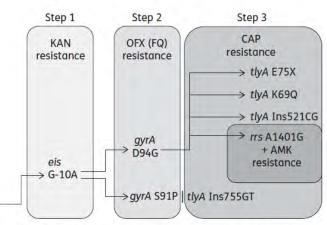
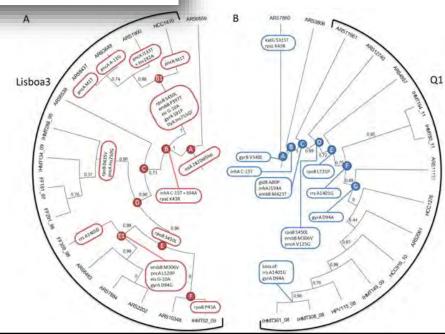



Figure 1. Multistep process of resistance acquisition dynamics in the Lisboa3 cluster. The scheme represents the process through which XDR has most likely been acquired multiple independent times in a maximum of three steps. Step 1 consists of the acquisition of low-level

MDRTB/XDRTB infections Expert Rev. Anti Infect. Ther. 8(4), 465-480 (2010) Tuberculosis (TB) is mainly an intracellular infection of the lung alveolar macrophages, and any anti-TB agent must therefore be active at the macrophage. Among the available therapies, isoniazid and rifampicin are the most effective drugs against susceptible Mycobacterium tuberculosis, but they are ineffective against multidrug-resistant TB (MDRTB) strains. Rates of MDRTB in Portugal are the highest in Western Europe, demanding effective measures for their control. Our application of molecular techniques for the early identification of MDRTB assisted in the reduction of these rates. Further examination revealed that a large number of MDRTB cases were extensively-drug resistant (XDRTB), providing evidence for the urgent need of new Author for correspondence and effective anti-MDRTB/XDRTB therapeutic strategies. This review describes in detail: the haracteristics of the main M. tuberculosis strains circulating in Portugal; the creation of a Task Instituto de Higiene e Medicina Force for TB control, based on molecular tools that allow 1-day identification of an MDRTB Tropical, Universidade Nova de patient; the usefulness of evaluating the ex vivo activity of anti-tubercular agents against the M. tuberculosis isolated from the patient's sputum; and the mode of action by which phenothiazines have been shown to promote the killing of intracellular MDRTB/XDRTB by nonkilling macrophages.

Keywords: macrophages • MDRTB • multidrug resistance • phenothiazines • tuberculosis • XDRTB

Empirical, noneffective 2nd line anti-TB treatment led to stepwise selection of mutations for **Resistance +** transmission of **M/XDRTB** Lisboa **Strains**

tuberculosis. Lancet Respir Med. 2017 Mar

15. pii: S2213-2600(17)30079-6.

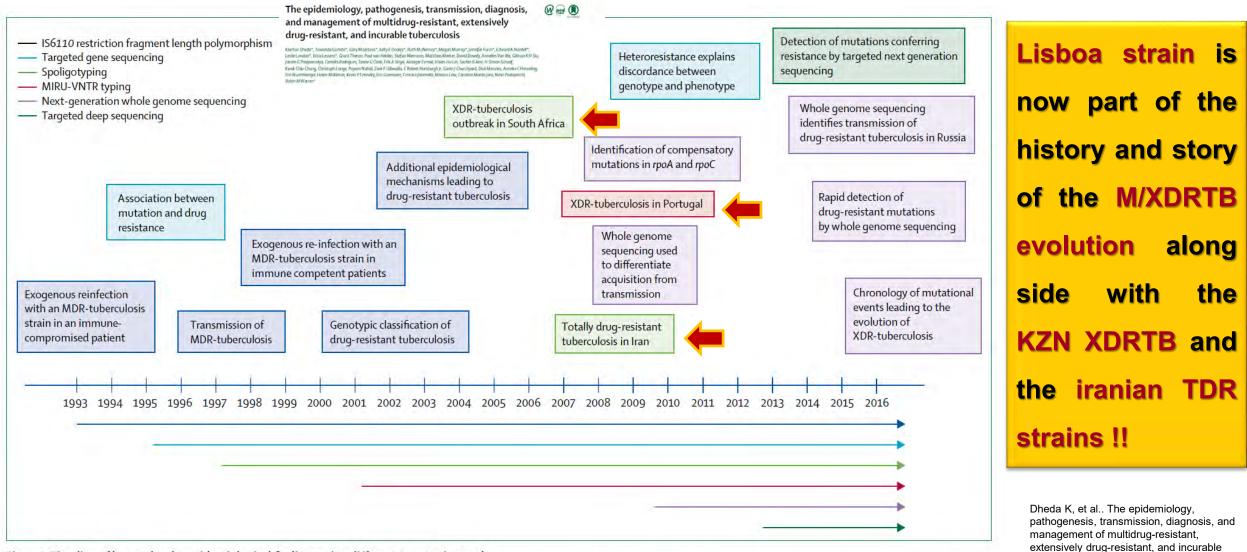
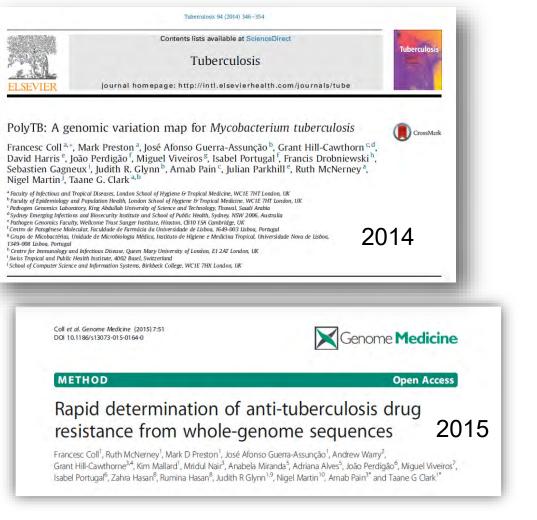



Figure 2: Timeline of key molecular epidemiological findings using different genotyping tools

Genotyping tools used for each finding are indicated by different colours. MDR=multidrug resistant. MIRU–VNTR=mycobacterial interspersed repetitive units-variable numbers of tandem repeat. XDR=extensively drug-resistant.

TB profiler - http://pathogenseq.lshtm.ac.uk/

SNP & Phy TB softwares - http://pathogenseq.lshtm.ac.uk/

genetics

ARTICLES https://doi.org/10.1038/s41588-017-0029-0

Genome-wide analysis of multi- and extensively drug-resistant *Mycobacterium tuberculosis*

Francesc Coll^{®1}, Jody Phelan¹, Grant A. Hill-Cawthorne^{©2,3}, Mridul B. Nair², Kim Mallard¹, Shahjahan Ali², Abdallah M. Abdallah², Saad Alghamdi⁴, Mona Alsomali², Abdallah O. Ahmed⁵, Stephanie Portelli^{1,6}, Yaa Oppong¹, Adriana Alves⁷, Theolis Barbosa Bessa⁸, Susana Campino¹, Maxine Caws^{9,10}, Anirvan Chatterjee¹¹, Amelia C. Crampin^{12,13}, Keertan Dheda¹⁴, Nicholas Furnham¹, Judith R. Glynn^{©12,13}, Louis Grandjean¹⁵, Dang Minh Ha¹⁰, Rumina Hasan¹⁶, Zahra Hasan¹⁶, Martin L. Hibberd¹, Moses Joloba¹⁷, Edward C. Jones-López¹⁸, Tomoshige Matsumoto¹⁹, Anabela Miranda⁷, David J. Moore^{©1,15}, Nora Mocillo²⁰, Stefan Panaiotov²¹, Julian Parkhill^{©22}, Carlos Penha²³, João Perdigão²⁴, Isabel Portugal²⁴, Zineb Rchiad², Jaime Robledo^{©25}, Patricia Sheen¹⁴, Nashwa Talaat Shesha²⁶, Frik A. Sirgel²⁷, Christophe Sola²⁸, Erivelton Oliveira Sousa^{8,29}, Elizabeth M. Streicher²⁷, Paul Van Helden²⁷, Miguel Viveiros^{©30}, Robert M. Warren²⁷, Ruth McNerney^{©1,14}*, Arnab Pain^{©2,31}* and Taane G. Clark^{©112}*

WHOLE GENOME SEQUENCING - COMPLETE GENOME IN 24 HOURS – COMPLETE DST IN 24 HOURS S/N ????! Safe prediction of mutations for M/XDR and their lineage – Lisboa strain helped to characterize many DR related mutations and assisted in bioinformatics, epidemiology, phylogeny and phylogeographic studies of DR in *M. tuberculosis BUT!!*.

INSTITUTO DE HIGIENE E MEDICINA TROPICAL UNIVERSIDADE NOVA DE LISBOA

Journal of

Antimicrobial

Chemotherapy

ICOHAR International Conference on One Health Antimicrobial Resistance

genetics

ARTICLES https://doi.org/10.1038/s41588-017-0029-0

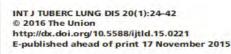
Genome-wide analysis of multi- and extensively drug-resistant *Mycobacterium tuberculosis*

Francesc Coll[®]¹, Jody Phelan¹, Grant A. Hill-Cawthorne^{® 2,3}, Mridul B. Nair², Kim Mallard¹, Shahjahan Ali², Abdallah M. Abdallah², Saad Alghamdi⁴, Mona Alsomali², Abdallah O. Ahmed⁵, Stephanie Portelli^{11,6}, Yaa Oppong¹, Adriana Alves⁷, Theolis Barbosa Bessa⁸, Susana Campino¹, Maxine Caws^{9,10}, Anirvan Chatterjee¹¹, Amelia C. Crampin^{12,13}, Keertan Dheda¹⁴, Nicholas Furnham¹, Judith R. Glynn^{© 12,13}, Louis Grandjean¹⁵, Dang Minh Ha¹⁰, Rumina Hasan¹⁶, Zahra Hasan¹⁶, Martin L. Hibberd¹, Moses Joloba¹⁷, Edward C. Jones-López¹⁸, Tomoshige Matsumoto¹⁹, Anabela Miranda⁷, David J. Moore^{© 1,15}, Nora Mocillo²⁰, Stefan Panaiotov²¹, Julian Parkhill^{© 22}, Carlos Penha²³, João Perdigão²⁴, Isabel Portugal²⁴, Zineb Rchiad², Jaime Robledo^{© 25}, Patricia Sheen¹⁴, Nashwa Talaat Shesha²⁶, Frik A. Sirgel²⁷, Christophe Sola²⁸, Erivelton Oliveira Sousa^{8,29}, Elizabeth M. Streicher²⁷, Paul Van Helden²⁷, Miguel Viveiros^{© 30}, Robert M. Warren²⁷, Ruth McNerney^{© 1,14}*, Arnab Pain^{© 2,31*} and Taane G. Clark^{§ 1,12*}

Oppong et al. BMC Genomics (2019) 20:252 https://doi.org/10.1186/s12864-019-5615-3

BMC Genomics

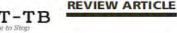
RESEARCH ARTICLE


Genome-wide analysis of *Mycobacterium tuberculosis* polymorphisms reveals lineagespecific associations with drug resistance

Yaa E. A. Oppong^{1*}, Jody Phelan¹, João Perdigão², Diana Machado³, Anabela Miranda⁴, Isabel Portugal², Miguel Viveiros³, Taane G. Clark^{1,5+} and Martin L. Hibberd¹⁺

J Antimicrob Chemother 2015; **70**: 686–696 doi:10.1093/jac/dku438 Advance Access publication 11 November 2014

Revisiting susceptibility testing in MDR-TB by a standardized quantitative phenotypic assessment in a European multicentre study


E. Cambau¹*, M. Viveiros², D. Machado², L. Raskine¹, C. Ritter³, E. Tortoli⁴, V. Matthys⁵, S. Hoffner⁶, E. Richter⁷, M. L. Perez Del Molino⁸, D. M. Cirillo⁴, D. van Soolingen^{9,10} and E. C. Böttger³†

FOR MYCOBACTERIAL

Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement

J. Dominguez,* E. C. Boettger,[†] D. Cirillo,[‡] F. Cobelens,[§] K. D. Eisenach,[¶] S. Gagneux,[#] D. Hillemann,** R. Horsburgh,^{††} B. Molina-Moya,* S. Niemann,^{‡‡} E. Tortoli,^{§§} A. Whitelaw,^{¶¶} C. Lange;^{##**+†††} for the TBNET and RESIST-TB networks

WHOLE GENOME SEQUENCING - COMPLETE GENOME IN 24 HOURS! - BUT!!!

MultiCenter Studies and Global Genome-Wide Association Studies revealed many lineage specific associations with DR and many genes correlated with the phenotypic DR levels of *M. tuberculosis* – <u>other mechanisms of resistance than simply mutations</u>.

Anti-TB drugs	Gene	Protein	Frequency of clinically resistant strains (%)	
Rifampicin (RIF)	rpoB	RNA polimerase B- subunit	96-98% ?	
lsoniazid (INH)	KatG ahpC inhA ndh	Catalase Peroxidase Alquil hidroxireductase Enoil ACP reductase NADH desidrogenase	42-68% 21-34% ?	1 st line
Ethambutol (EMB)	embCAB	arabinosil transferase	47-65% 2	
Pyrazinamid (PZA)	pncA	amidase	72-97%	
Streptomycin (SM)	rpsL rrs	Ribossomal protein S12 16S rRNA	52-59% ?	
Fluoroquinolones	gyrA	DNA gyrase	50-70%	
Aminoglicosídes	rrs	16S rRNA	90-95% ?	
Ethionamid	inhA ethA ethR	Enoil ACP redutase Flavinamonooxigenase Transcripcional repressor	50-60% ?	2 nd line
D-cicloserin	Alr ddl	D-alanin racenase D-alanin ligase	30-50% ?	
Viomicin	rrs	16S rRNA	nd	

Mutational targets for anti-TB Drugs do not explain all DR-TB NOR THE LEVEL OF RESISTANCE!

INSTITUTO DE HIGIENE E MEDICINA TROPICAL UNIVERSIDADE NOVA DE LISBOA

ICOHAR International Conference on One Health Antimicrobial Resistance

A possible and plausible explanation ?

Targeting efflux pumps of MDR

Mycobacterium tuberculosis.

Aínsa et al. (1998) J Bacteriol., 180 : 5836-43.

Viveiros et al. (2002), Antimicrob Agents Chemother, 46 : 2804-10.

De Rossi E et al. (2002) Mol Med., 8 : 714-24.

Viveiros et al. (2003), International J. of Antimicrob Agents, 22 : 274-8.;

Pasca et al. (2005), Antimicrob Agents Chemother. 49 : 4775-7;

Colangeli et al. (2005), Mol Microbiol. 55 : 1829-40.;

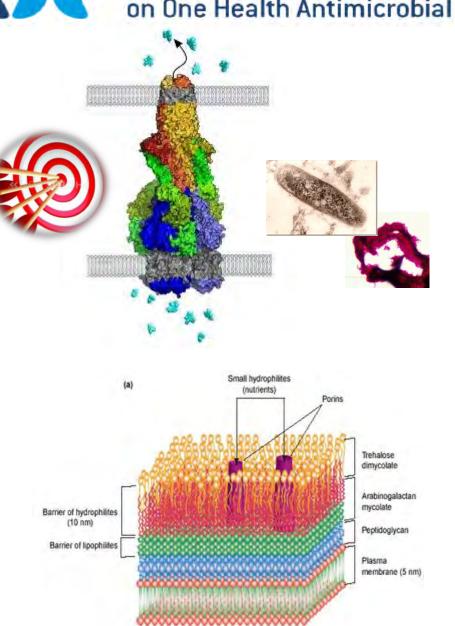
De Rossi E, et al. (2006). FEMS Microbiol Rev 30: 36-52;

Amaral L, et al (2007) J Antimicrob Chemother. 59:1237-46.

Danilchanka O, et al. (2008). Antimicrob Agents Chemother. 52:2503-11;

Louw GE, et al. (2009). Antimicrob Agents Chemother. 53(8):3181-9.;

Ramón-García S, et al. (2009). Antimicrob Agents Chemother. 53(9):3675-82.


Gupta AK,.et al (2010) Microb. Drug Resist. 16(1):21-8.

Pasipanodya JG & Gumbo T. (2011) Curr Opin Pharmacol. 11(5):457-63.

da Silva PE et al. (2011) FEMS Immunol Med Microbiol. 63(1):1-9.

Viveiros et al. (2012) Expert Rev Anti Infect Ther. 10 :983-98.

Black et al. (2014) Antimicrob Agents Chemother. 2014 Mar 10.

Nguyen, L. & C. J. Thompson. 2006. TRENDS in Microbiology.14: 304-312

0021.9193/98/\$04.00+0

JOURNAL OF BACTERIOLOGY, Nov. 1998, p. 5836-5843

Copyright © 1998, American Society for Microbiology, All Rights Reserved.

INSTITUTO DE HIGIENE E MEDICINA TROPICAL UNIVERSIDADE NOVA DE LISBOA

Vol. 53, No. 9

ICOHAR International Conference on One Health Antimicrobial Resistance

Vol. 48, No. 7

M. tuberculosis genome

ANTMUCROBIAL AGENTS AND CHUMOTHURAPY, July 2004, p. 2415–2423 0066-4804/04/508.00+0 DOI: 10.1128/AAC.48.7.2415–2423.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved.

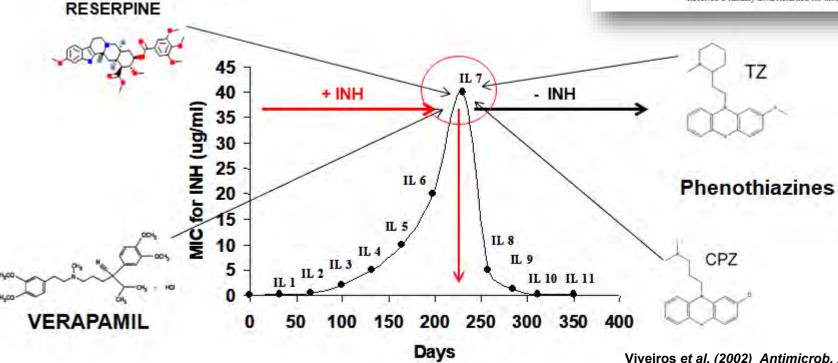
Molecular Cloning and Characterization of Tap, a Putative Multidrug Efflux Pump Present in <i>Mycobacterium fortuitum</i> and <i>Mycobacterium tuberculosis</i> JOSÉ A. AÍNSA,'† MARIAN C. J. BLOKPOEL, ² ISABEL OTAL, ¹ DOUGLAS B. YOUNG, ² KOEN A. L DE SMET, ² AND CARLOS MARTIN ¹⁺ Departamento de Microbiologis Medicine Proventiva y Salud Pública, Universida de Zaragoza, 50009 Zarageza, Spain, ⁴ and Department of Infectious Diseases and Microbiology, Imperial College School of Medicine, St. Mary's Campus, Londow & 21 PG, Unied Kangdon ²	Drug Resistance, Santiago Ramón-García, ^{1,2*} Deparamento de Microbiología, Medi CIBER Enformedades Res Life Sciences Centre, Uni	rium tuberculosis P55 Efflux Pump in Intrinsic Oxidative Stress Responses, and Growth [®] Carlos Martín, ¹ Charles J. Thompson, ² ⁴ and José A. Aínsa ¹ [†] Cina Preventiva y Salud Pública, Universidad de Zangoza, Zangoza 50009, and pratoritas, Spain ¹ ; and Department of Microbiology and Immunology, wernay of Bruis Columbia, 250 Health Sciences Mall, Vancauver, Bruish Columbia V6T 1Z3, Canada ² 109/Returned for modification 10 June 2009/Accepted 18 June 2009	MyCO Xian-Zhi Li, Department of Molecular	liated Intrinsic Drug Resistance in <i>obacterium smegmatis</i> i,† Li Zhang, and Hiroshi Nikaido* <i>ar adl Cell Biologo.</i> University of California, Berkeley, California V72D 3202 read for modification 30 January 2004/Accepted 21 March 2004 Wellcome Trust	
Received 9 March 1998/Accepted 4 September 1998		ANTIMICROBIAL ACENTS AND CHEMOTHERAPY, Sept. 2002, p. 2804–2810 0066-4804402504.00+0 DOI: 10.1128/AAC.46.9.2804–2810.2002 Copyright to 2002, American Society for Microbiology. All Rights Reserved.	Vol, 46, No. 9	Sanger Institute	
Molecular Medicine 8(11): 714-724, 2002 o 2002 North Shore-LLJ Research Institute The Multidrug Transporters Belonging to Major Facilita (MFS) in Mycobacterium tuberculosis Edda De Rossi, ¹ Patrizio Arrigo, ² Marco Bellinzoni, ¹ Pedro E. A. Silva, ^{3,5} Carlos José A. Aínsa, ³ Paola Guglierame, ⁴ and Giovanna Riccardi ⁴		Isoniazid-Induced Transient High-Level Re Mycobacterium tuberculosis Miguel Viveiros, ¹ Isabel Portugal, ² Rosário Bettencourt, ¹ Tho Annemarie M. Jordaan, ³ Clara Leadro, ¹ Diane Oro and Leonard Amaral ^{1*} Unit of Mycobacteriology, Instituto de Higiene e Medicina Tropical, Universid P-1349-098 Lubon, ² and Degramment of Mercibelogy, Facultade de P-1349-098 Lubon, ² and Degramment of Mercibelogy, Facultade de P-1349-098 Lubon, ² and Degramment of Mercibelogy, Facultade de P-1349-098 Lubon, ² and Degramment of Mercibelogy, Bardided de Diviernity of Stellanbach, Stellanbach, Saud Afra ² Received 2 January 2002/Returned fir modification 6 February 2002/Accepted	iomas C. Victor, ³ rdway, ¹ tade Nova de Lisboa, Famideia da C Centre hemistry,	4, 200 ⁴ , 600 4, 100, 000 3, 000, 000 3,) 300
Since 1998 several efflux-pumps and were shown to be correlated with inc April 2012 Volume 56 Number 4 Functional and Genetic Characterization of the Tap Efflux Pump in	Creased antibio			3, 300, 000 3, 200, 000 3, 100, 000 2, 900, 000 2, 900, 000 2, 900, 000 2, 700, 000 2, 700, 000 1, 600, 000 1, 700, 000 1, 70	100,000 200,000 00,000),000 300
		28/AAC.00610-10 ociety for Microbiology. All Rights Reserved.	Vol. 54, No. 12	2,609,000 2,500,000 2,400,2980,600 2,100,600 2,100,600 2,100,600 2,100,600 2,100,600	
Mycobacterium bovis BCG Santiago Ramón-Garcia, ^{a,b} Virginie Mick, ^a Elisa Dainese, ^c Carlos Martín, ^a Charles J. Thompson, ^b Edda De Rossi, ^d Riccardo Mangane and José A. Ainsa ^a Departamento de Mircobiologi, Medions Preventiva y Salud Pública, Universitad de Zaragora, Zaragora, Spain, and CBER Enfermedades Respiratoros ⁴ +; Department Mircobiology and Immunology and Centre for Tuberculoss Research, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada ⁴ : Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova, Italy ² ; and Dipartimento di Genetica e Microbiologa, Universita d studi di Pava, Pava, Italy ^a	Rv1218c, an Illi ^c Meenaksh Ingi Astro	28/AAC.00610-10	s with	<i>L. Soon, and L. Soon, and Soon, and L. Soon, and Soon, and L. Soon, and Soon, and A. Soon, and and A. Soon, and A. Soon, and A. Soon, and A. Soon, </i>	

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 2009, p. 3675-3682

Copyright @ 2009, American Society for Microbiology. All Rights Reserved.

0066-4804/09/\$08.00+0 doi:10.1128/AAC.00550-09

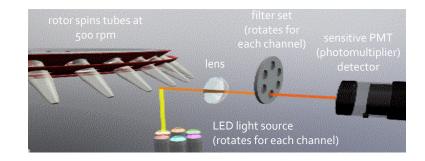
Vol. 180, No. 22

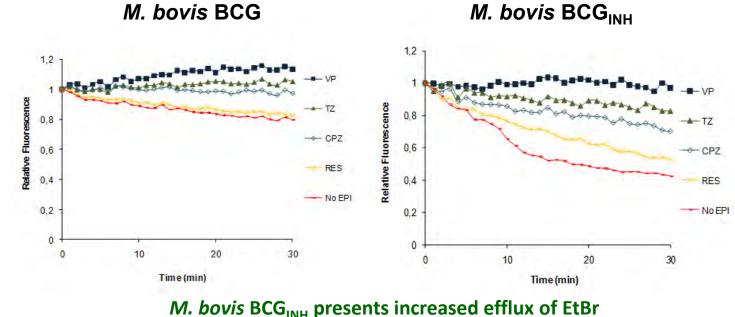


The first evidences of the role of efflux-pumps on INH resistance!

We were able to reverse induced resistance to INH by overexpression of efflux-pumps in clinical and laboratory TB and MDR-TB strains by the use of known inhibitors of efflux pumps – Verapamil, Chlorpromazine, Thioridazine and Reserpine \Rightarrow A reversible resistance to INH !!! \Rightarrow

Non mutational resistance !!!


Viveiros et al. (2002) Antimicrob. Agents. Chemother. 46 : 2804-2810



Real-time EP activity measurements and its correlation with antibiotic exposure!

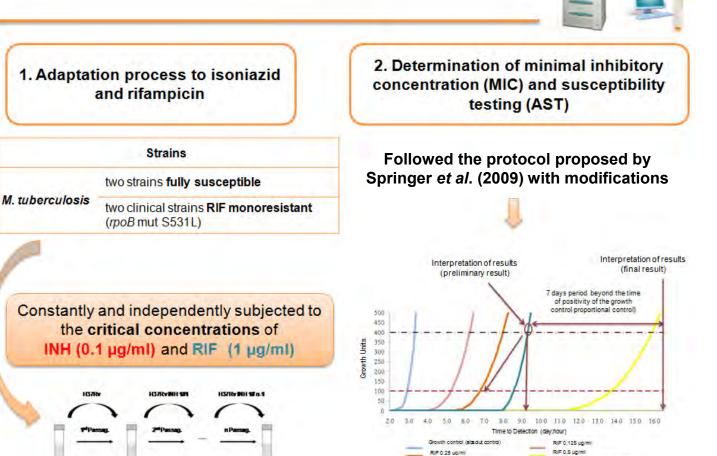
Result 1) Demonstration of efflux pumps involved in INH increased resistance in M. bovis BCG, M. tuberculosis, M. avium, M. abcessus etc...

RealTime visualization of **EtBr efflux and** inhibition in **Mycobacteria**! **Correlation with INH** resistance and with many other antibiotics!

Efflux of EtBr is inhibited by EPIs – Verapamil has the strongest inhibitory effect

Viveiros M, et al. (2010) Methods Mol Biol. 642:159-72. ; Rodrigues L, et al. (2011). BMC Microbiol. Feb 18;11:35. Rodrigues L, et al. 2012. Infect Genet Evol. 2Jun;12(4):695-700.

M. bovis BCG


Growth control (proportional control Growth control threshold

ICOHAR International Conference on One Health Antimicrobial Resistance

So what happens in the patient during the 6 month treatment that always includes INH and RIF?!

BACTEC[™] MGIT[™] 960 and the TB eXIST

HSTRY MH1 #

Result 2) The phenotypic adaptation of M. tuberculosis exposed to the critical concentration of INH during six months! using the **BACTEC TB eXIST** system and monitor the increased efflux activity during MDR-TB emergence

Machado D. et al. 2012. PLoS One. 2012;7(4):e34538. .

Result 3) INH exposure=> ↓ EtBr accumulation => ↑Efflux

The *in vitro* induction of an isoniazid resistant phenotype by prolonged serial exposure of *M*. *tuberculosis* strains to the **critical concentration of isoniazid** lead to an **enhanced real-time efflux of ethidium bromide**.

A clear relation between **overexpression of the EP genes and increased efflux pump function** was found.

Further exposure to isoniazid resulted in the selection and stabilization of spontaneous mutations and deletions in the *katG* gene along with sustained increased efflux activity.

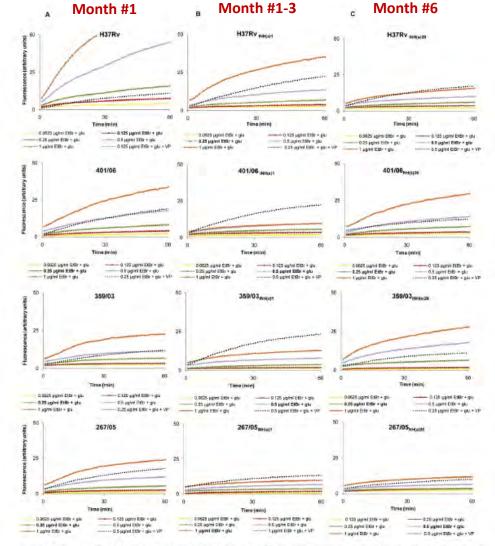
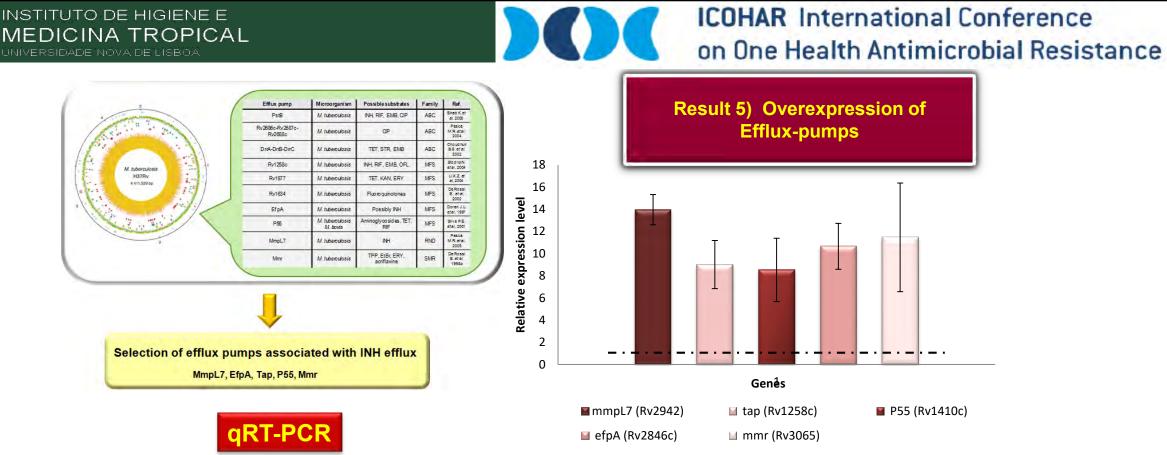
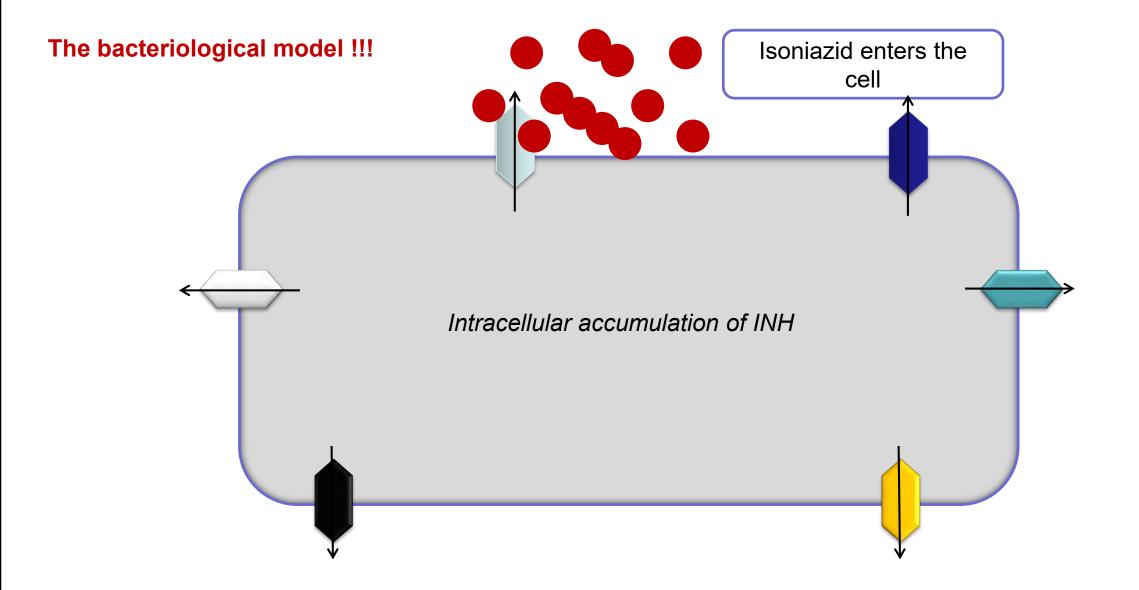



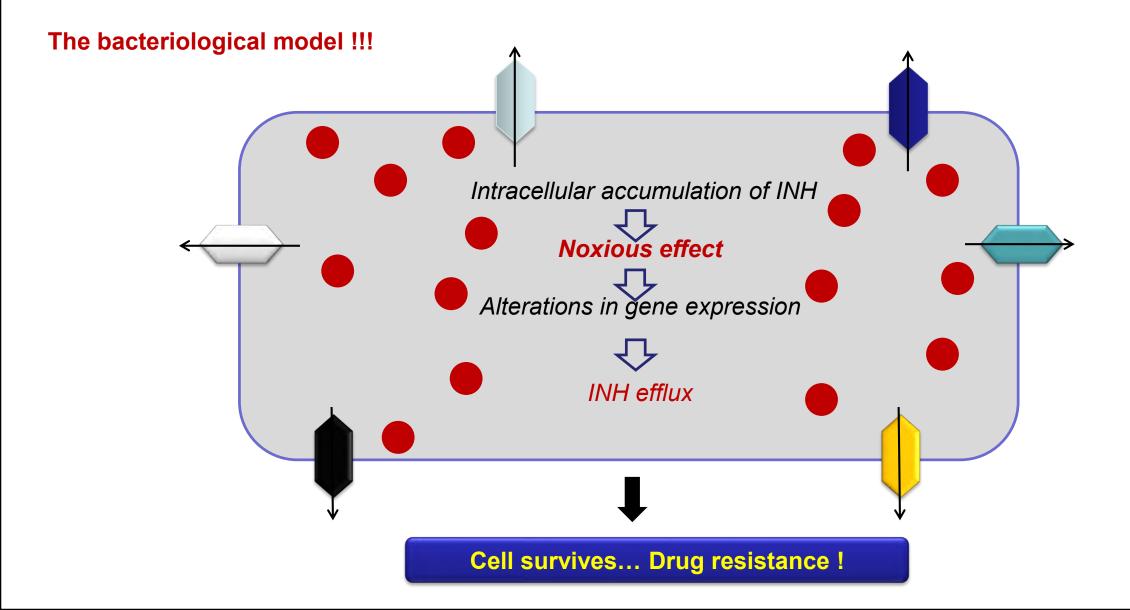
Figure 3. Accumulation of EtBr by the *M. tuberculosis* strains tested. The figure shows the accumulation of EtBr by the strains from adaptation process A as an example. The values at bold type correspond to the higher concentration of EtBr that cells can handle without detectable accumulation. The dotted line corresponds to the asay run using the EtBr concentrations for which influx-efBu are at equilibrium, in the presence of the ELW exapamil, at sub-inhibitory concentrations. Panel (A): Parental strains (passage #0); Panel (B) strains after first passage with INH and Panel (C); strains after 26 passages with INH. INH: Konlazid. doi:10.1371/journal.pone.0314538.g003

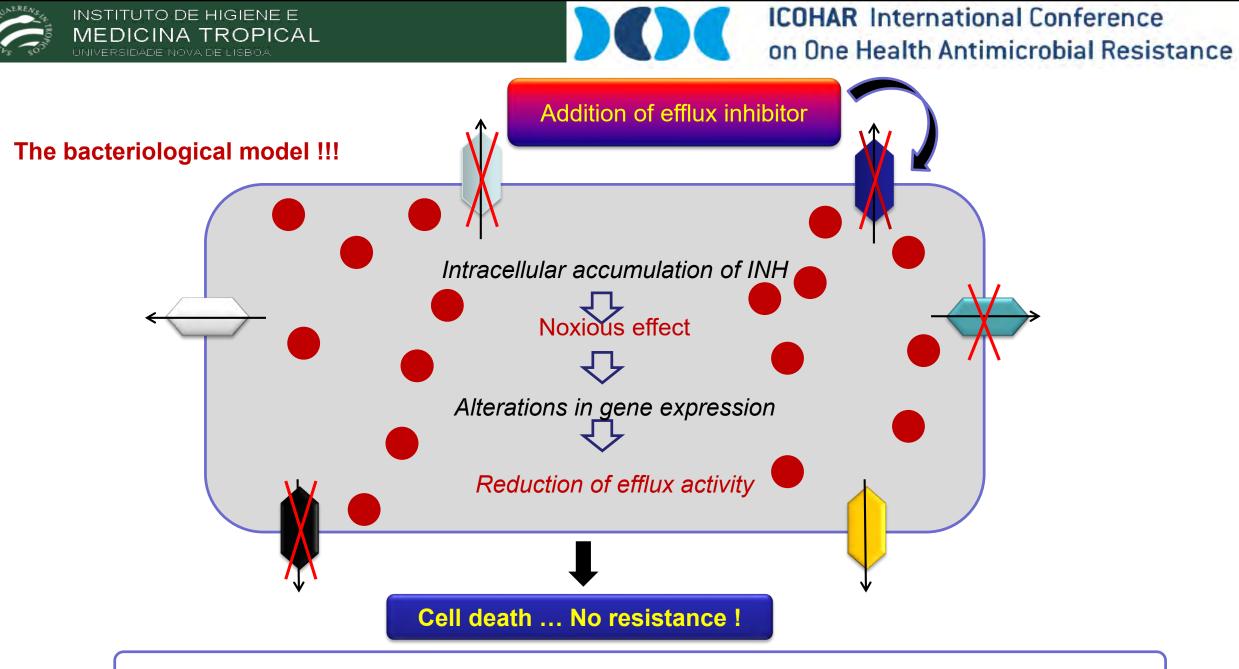
Machado D. et al. 2012. PLoS One. 2012;7(4):e34538.

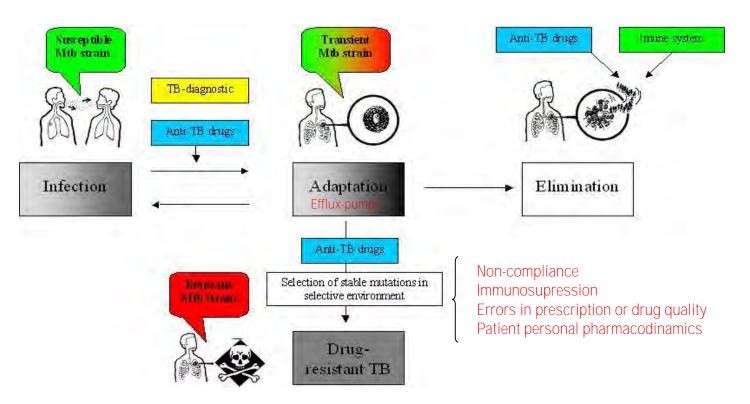

Relative expression = 1: expression level identical to the INH non-induced strain

Overexpression of all the efflux pumps previously associated with INH efflux – <u>none was specifically</u> <u>overexpressed</u>! After a few months of exposure the INH mutants emerge with **natural spontaneous and stable mutations in KatG**.

Conclusion : Enhancement of a "**multipump response**" by INH exposure at critical concentration – **a pheno-genotypic stress/survival response** !!!







Inhibition of efflux pumps can enhance the clinical effect of antibiotics that are their substrates

The clinical model !:

The results so far support the hypothesis that activity of efflux pumps allows the maintenance of anti-TB drugs resistant/tolerant populations in a sub-optimally treated patient from which genetically resistant mutants emerge. Therefore, the use of inhibitors of efflux should be considered in the development of new therapeutic strategies for preventing the emergence of M/X/TDR-TB during treatment.

Conclusions so far !!!

....on drug resistance...

1. Inhibition of efflux pumps lead to isoniazid and rifampicin intracellular accumulation and increased susceptibility to this drug despite the presence of a mutation leading to resistance

2. Isoniazid and rifampicin act like an inducer that stimulates a general stress response via overexpression of efflux pumps

3. Different levels of resistance to isoniazid and rifampicin are a balance between the induction of several efflux pumps that regulate the intracellular level of isoniazid and the mutation

...on the therapeutic usefulness of efflux inhibitors...

4. In vitro therapeutic value for compounds that have the capacity to inhibit mycobacterial efflux pumps via the retention of co-administered antibiotics that are subject to efflux

- 5. Neuroleptics, antipsychotics and anti-hypertension drugs (ion-channel blockers!!) demonstrate synergistic effect when combined with the anti-tuberculosis drugs such as isoniazid (and rifampicin!).
- 6. However, they are noxious at these concentrations *in vivo*, yet, they can be used at tolerable concentrations as efflux inhibitors.

Viveiros et al. 2002 Antimicrob. Agents. Chemother. 46 : 2804-2810 ; Machado D. et al. 2012. PLoS One 2012;7(4):e34538; Antibiotics (Basel) 2018 Mar 3;7(1); Front Microbiol. 2017 Apr 27;8:711; Future Microbiol. 2018 Sep;13:1383-1402.

ICOHAR International Conference on One Health Antimicrobial Resistance

Efflux Activity Differentially Modulates the Levels of

Diana Machado 10, João Perdigão 2, Isabel Portugal 2, Marco Pieroni 3,4, Pedro A. Silva 5,

Isoniazid and Rifampicin Resistance among Multidrug Resistant and Monoresistant

Mycobacterium tuberculosis Strains

For reprint orders, please contact; reprints@futuremedicine.com

Adjuvant therapies against tuberculosis: discovery of a 2-aminothiazole targeting *Mycobacterium tuberculosis* energetics Diana Machadol, Elika Azall²³, Isabel Couto¹, Gabriele Costantino², Marco Pieron² a MDPI

Future MICROBIOLOGY

antibiotics

Isabel Couto 1 and Miguel Viveiros 1,* 0

Future perspectives and ongoing competition!

M. avium

The Antibiotic Resistance Arrow of Time: Efflux Pump Induction Is a General First Step in the Evolution of Mycobacterial Drug Resistance

Aurelia M. Schmalstieg,^a Shashikant Srivastava,^a Serkan Belkaya,^b Devyani Deshpande,^a Claudia Meek,^c Richard Leff,^c Nicolai S. C. van Oers,^{b,d} and Tawanda Gumbo^{a,e}

Department of Medicine⁴ and Department of Immunology,^b University of Texas Southwestern Medical Center, School of Pharmacy, Texas Tech University Health Sciences Center,^{*} and Department of Microbiology⁴ and Office of Global Health,^{*} University of Texas Southwestern Medical Center, Dallas, Texas, USA

_* <u></u> * <u></u> * <u></u> * <u></u> *	↓ *↓	
*****	***	
******	***	
* * * * *	**	

Ethionamide Pharmacokinetics/Pharmacodynamicsderived Dose, the Role of MICs in Clinical Outcome, and the Resistance Arrow of Time in Multidrug-resistant Tuberculosis

Devyani Deshpande,¹ Jotam G. Pasipanodya,¹ Stellah G. Mpagama,² Shashikant Srivastava,¹ Paula Bendet,¹ Thearith Koeuth,¹ Pooi S. Lee,¹ Scott K. Heysell,² and Tawanda Gumbo^{1,0}

¹Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas; ¹Kibong oto Infectious Diseases Hospital, Sanya Juu, Tanzania; and ¹Division of Infectious Diseases and International Health, University of Virginia, Charlottesville

Future

MICROBIOLOGY

"We propose that induction of several efflux pumps is the first step in a general pathway to

drug resistance that eventually leads to high-level chromosomal-mutation-related resistance in

mycobacteria as ordered events in an "antibiotic resistance arrow of time."

Modifications on C6 and C7 positions of 3-phenylquinolone efflux pump inhibitors led to potent and safe anti-mycobacterial treatment adjuvants Tommaso Felicetti, Diana Machado, Rolando Cannalire, Andrea Astolfi, Serena Massari, Oriana Tabarrini

Giuseppe Manfroni, Maria Letizia Barreca, Violetta Cecchetti, Miguel Viveiros, and Stefano Sabatini

ACS Infect. Dis., Just Accepted Manuscript • Publication Date (Web): 25 Mar 2019 Downloaded from http://pubs.acs.org on March 25, 2019

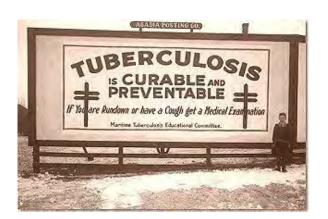
M. tuberculosis

Research Article

For reprint orders, please contact: reprints@futuremedicine.com

Adjuvant therapies against tuberculosis: discovery of a 2-aminothiazole targeting *Mycobacterium tuberculosis* energetics

Diana Machado¹, Elisa Azzali^{2,3}, Isabel Couto¹, Gabriele Costantino², Marco Pieroni² & Miguel Viveiros*, 1



• Mycobacteria lineages are not all the same – Some are more virulent and prone to be resistant.. The ones that evolved via adaptation, active disease and global dissemination versus those that are ancient, latent and locally restricted;

• Immediately after antibiotic exposure there is a stress response via activity and over-expression of efflux pumps that allows the maintenance of anti-TB drugs [resistant/tolerant] populations in a sub-optimally treated patient from which genetically resistant mutants emerge;

•Efflux-pump inhibitors enhance the activity of effluxable antibiotics against mycobacteria

• Anti-tubercular therapy employing efflux-pump inhibitors (e. g. thioridazine, verapamil) in combination with conventional anti-tubercular drugs will certainly provide advantages over conventional therapy and will contribute to prevent the emergence of *Multi - Extensively - Totally - Drug Resistant Tuberculosis*. – A clear case of the "*Red Queen hypothesis*"!! - Bacteria constantly adapt, evolve, and proliferate not merely to gain reproductive advantage, but also simply to survive against ever-evolving opposing organisms in an ever-changing environment.

Anti-Microbial Resistance in Tuberculosis and Non-Tuberculosis Mycobacteria is a slow selective and adaptative process in progress in One-Health, One-World

"The Red Queen has to run faster and faster in order to keep still where she is. That is exactly what you all are doing!"

Leigh Van Valen. (1973). "A new evolutionary law". Evolutionary Theory 1: 1-30. ;Lewis Carroll. 1960 (reprinted). The Annotated Alice: Alice's Adventures in Wonderland and Through the Looking-Glass,

Stop B Partnership

PARIS DIDEROT

fundação Calouste Gulbenkian

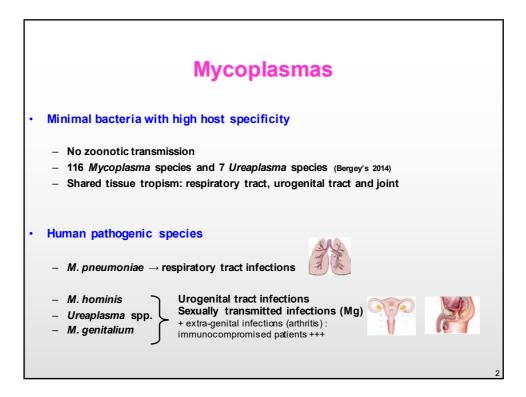
University Paris Diderot, APHP, Saint Louis-Lariboisière Hospital, NRC mycobacteria, Paris, France

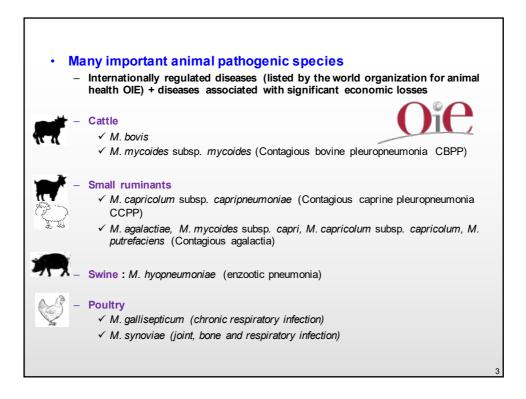
Thank you for your attention !

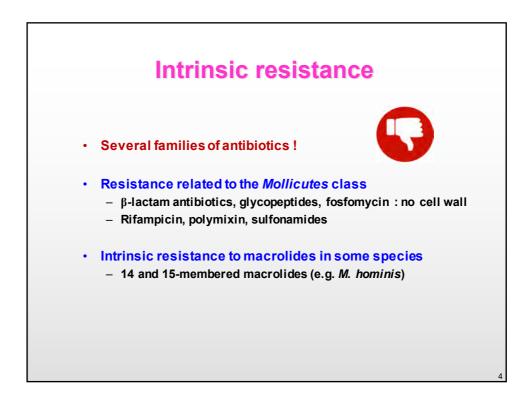
FCT Fundação para a Ciência e a Tecnologia

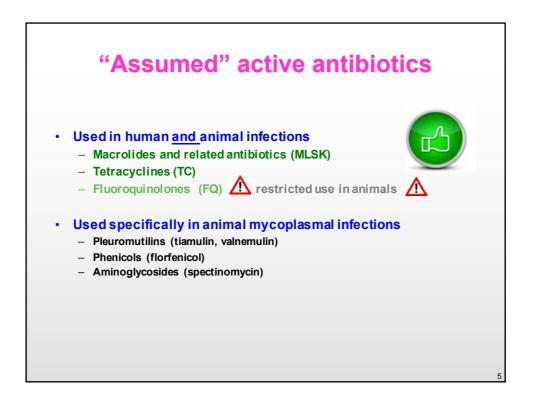
MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

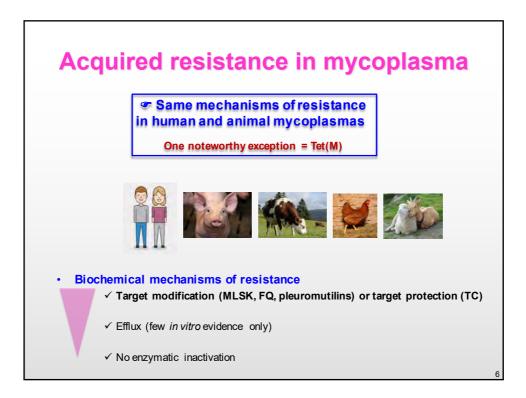
ICOHAR International Conference on One Health Antimicrobial Resistance

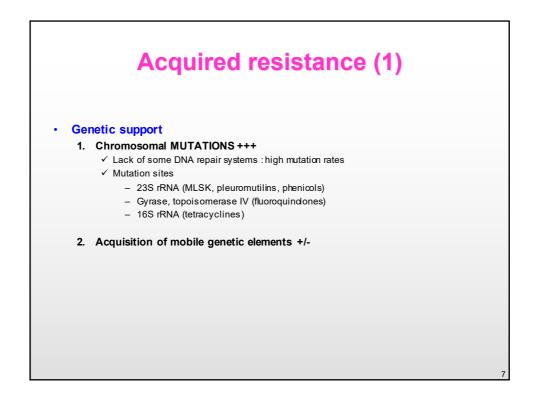

RESIST-TB Research Excellence to Stop TB Resistance

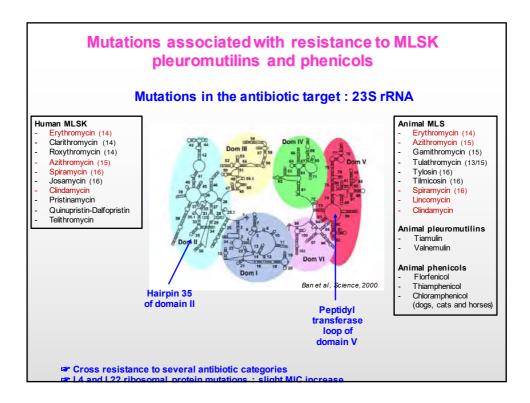


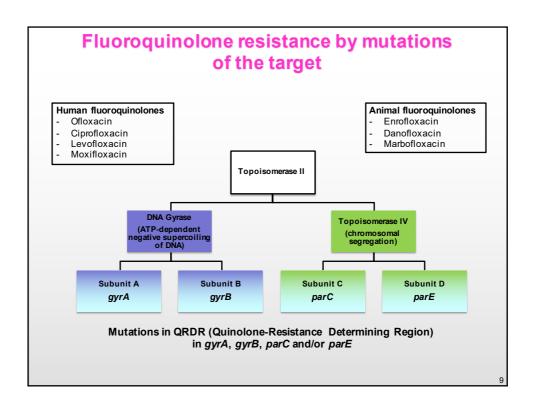


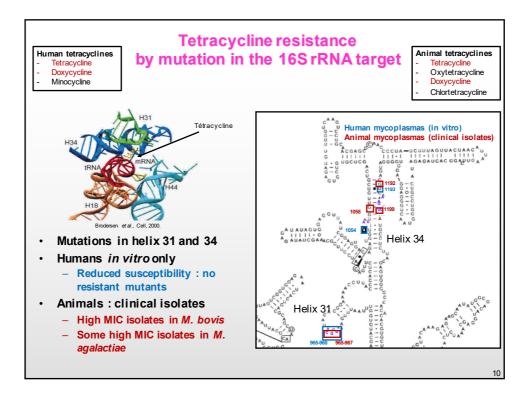


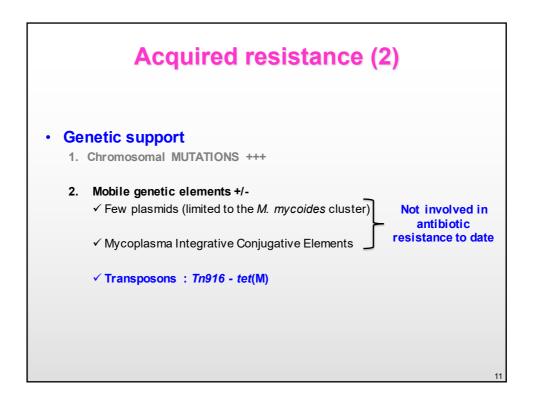


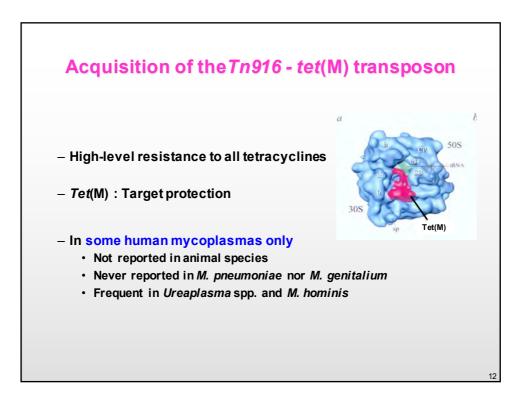


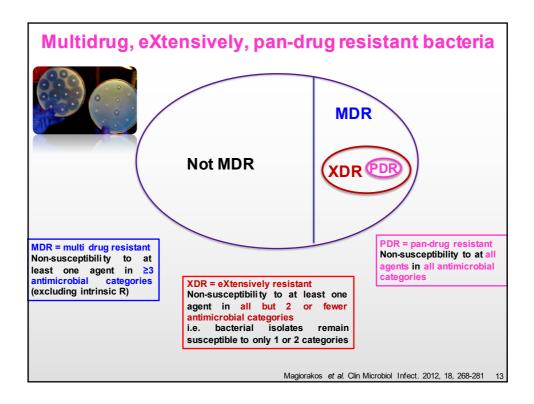


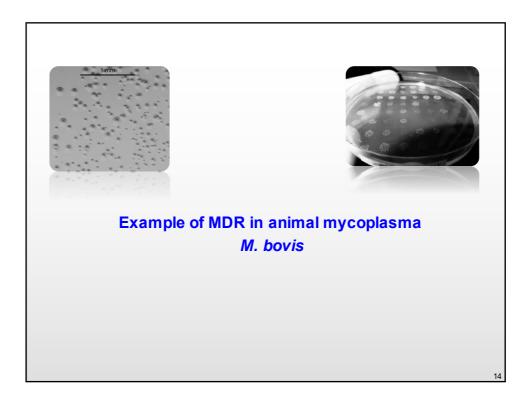


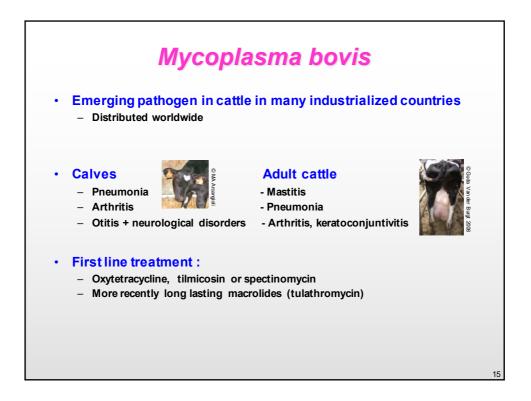


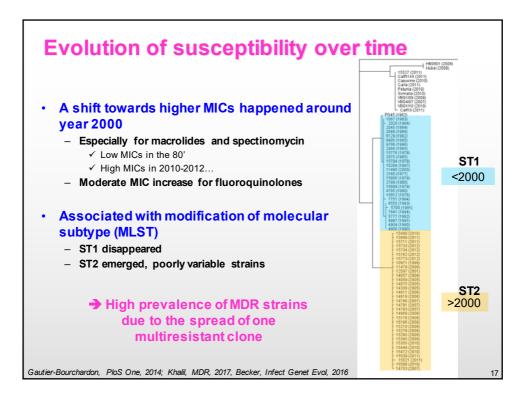


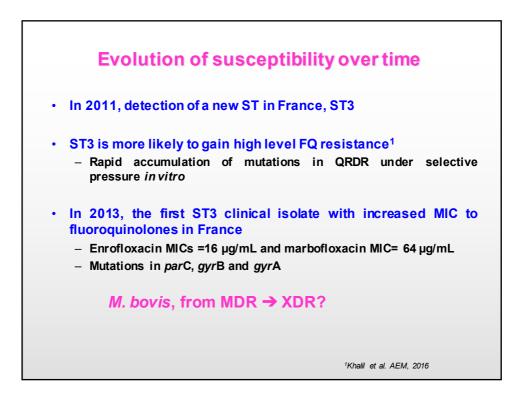


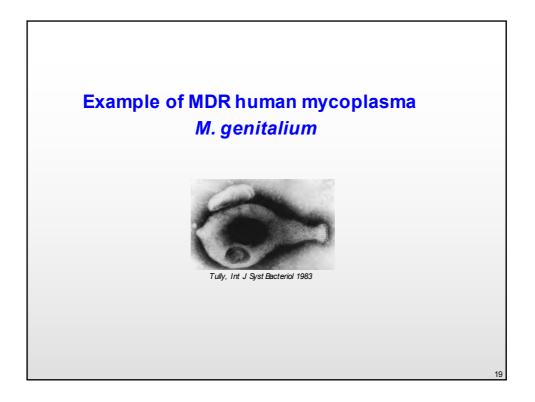


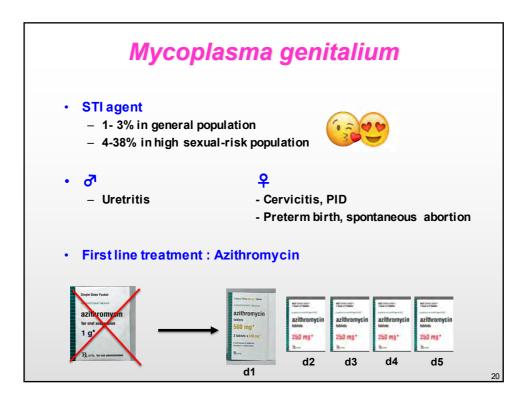


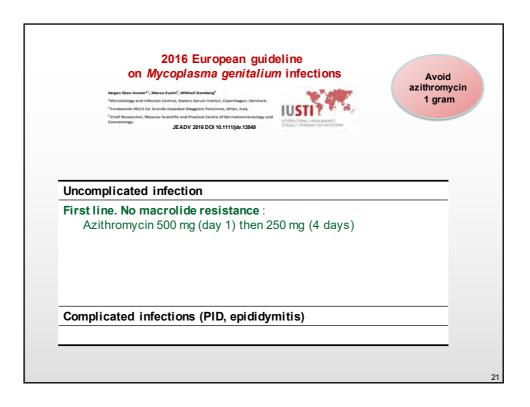


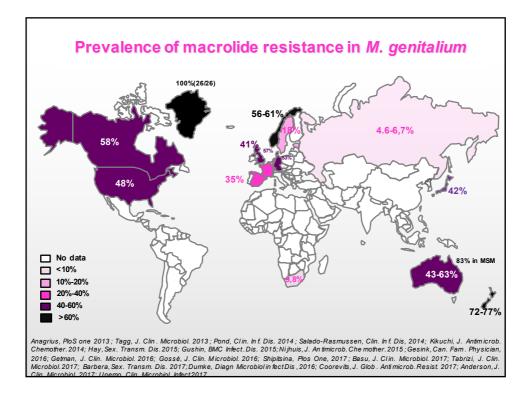


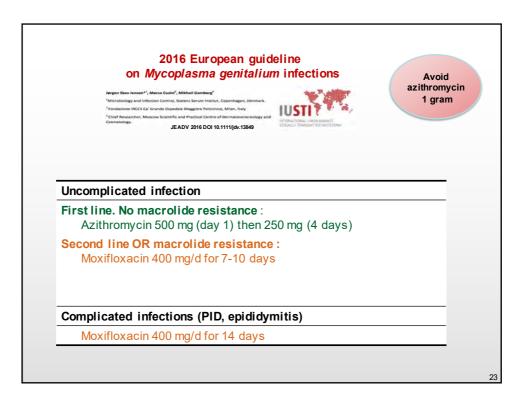


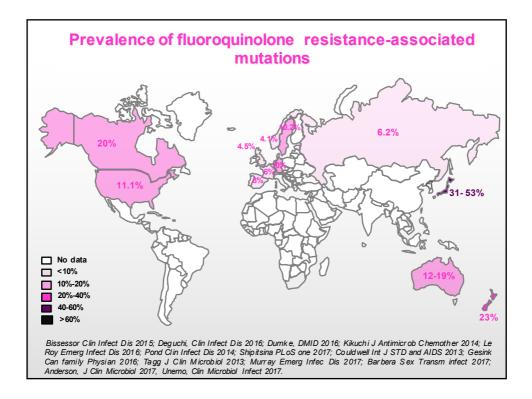


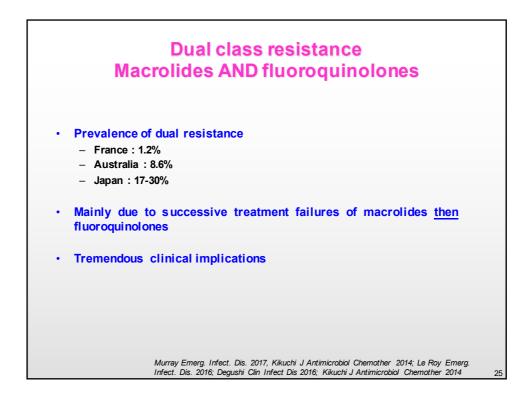

clinical br	eakpoints	for animal r	nycoplasi	mas) no S, I	, R prevalence
IC₅₀ µg/mL	(MIC that in	nhibited 50% o	of the teste	d strains)	
		- /			
	Macrolides (tilmicosin)	Tetracyclines (oxytetracycline)	Phenicols (florfenicol)	Fluoroquinolones (enrofloxacin)	Reference
Pasteurella					
usceptibility (CLSI)	≤ 8	≤ 2	≤ 2	≤ 0.25	
France	>128	>32	8	0.5	Gautier-Bouchardon et al 2014
UK	>32	8	8	0.5	Ayling et al 2014
NL	512	4	nd	0.25	Heuvelink etal 2016
Israël	128	4	nd	0.125	Gerchman et al 2009
					Kawai et al 2013
Japan China	>128	32 0.5 (doxy)	nd 2	0.5	Kawai et al 2013 Kong et al 2016
onna		0.0 (00xy)	-	0.125	rung of ar2010
USA	64	2	1	0.25	Rosenbusch etal 2005

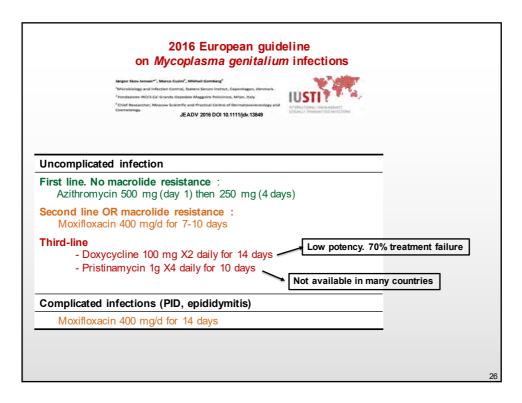


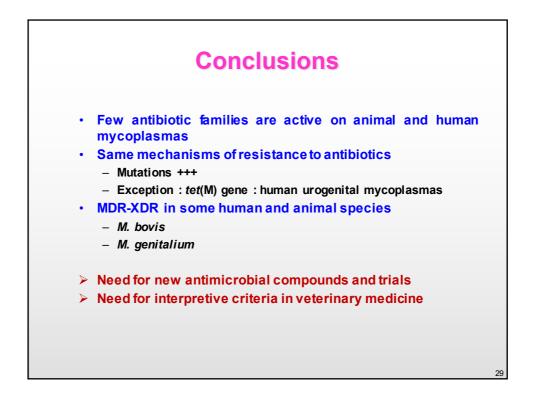


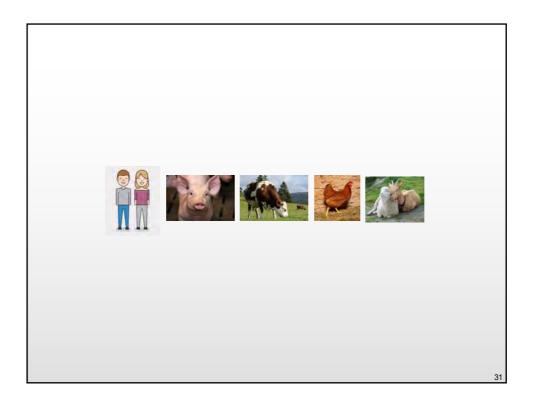

9











MDR	or XDR <i>M. ge</i>	nitalium?
WDR		
		Resistance in <i>M. genitalium</i>
Macrolides	Azithromycin	X
Fluoroquinolones	Moxifloxacin	X
Tetracyclines	Doxycycline	2/3 treatment failure
Streptogramins	Pristinamycin	
X: non susceptible	Non-susceptibility to ≥ 3 antimicrobial categor	Susceptibility to only ies one or two antimicrobial cat
	=	=
	MDR	XDR

The gut microbiome of dogs and cats shares genes and species with the human gut microbiome

LUIS PEDRO COELHO Iuispedro@big-data-biology.org

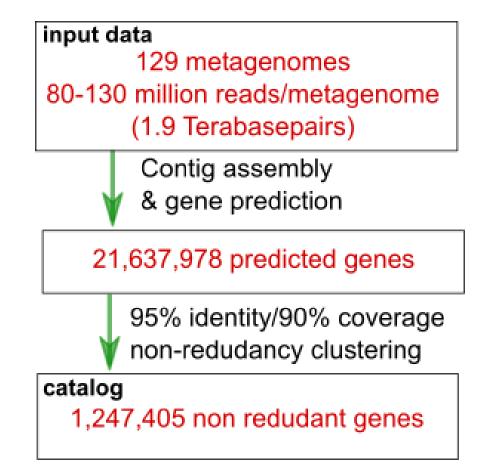
🥑 @luispedrocoelho

Pets matter

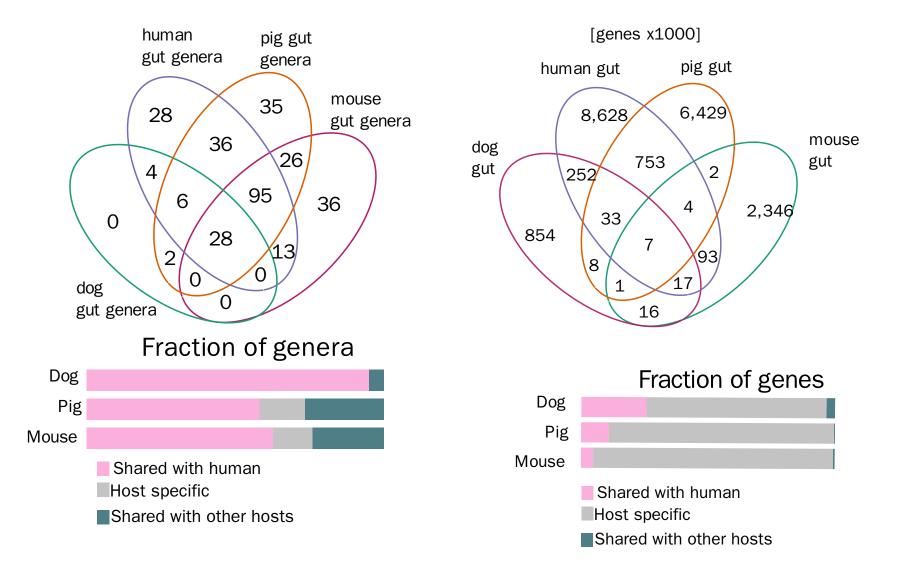
- People value their pets emotionally and this translates into economic expenditures.
- In US, ca. 30% of households own pets, spending an average of 183 USD per month on their health (Einav et al., Am Econ Review, 2017).

PETS' PROBLEMS MIRROR HUMAN PROBLEMS

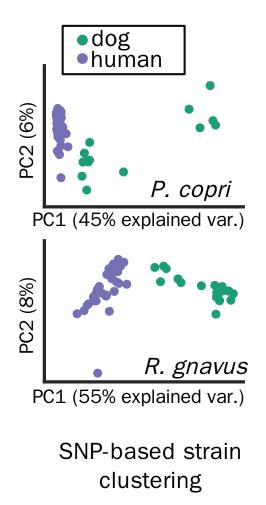
- More than half of dogs in Western world above their ideal weight (Courcier et al., J. Small An Prac., 2010; McGreevy et al., Vet Rec, 2005; Sandøe et al., Vet Rec, 2014).
- The obesity of a pet and its owner have a positive correlation (at least for dogs, maybe not for cats, see Kienzle et al., J Nutrition, 1998; Nijland et al., Pub Health Nut, 2010).
- Pets consume antibiotics.



(Waiting for the vet, Normal Rockwell)

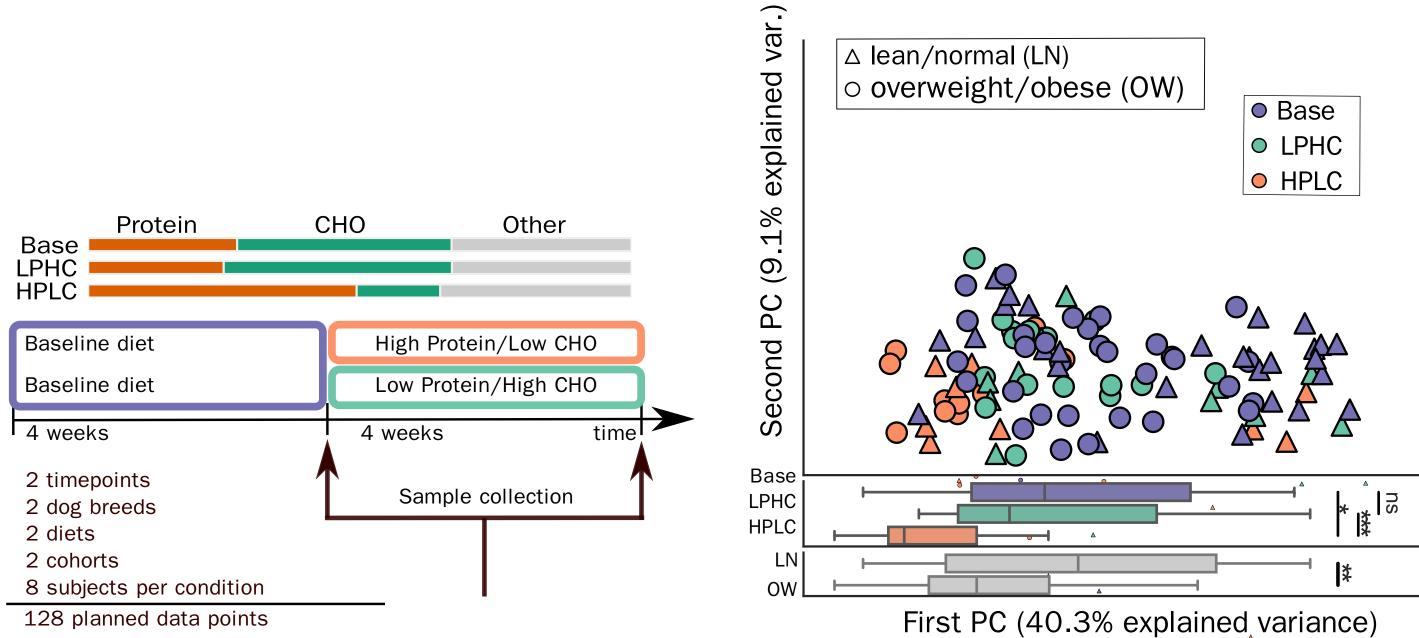

2017-18: The similarity between the dog gut microbiome and the human gut MICROBIOME

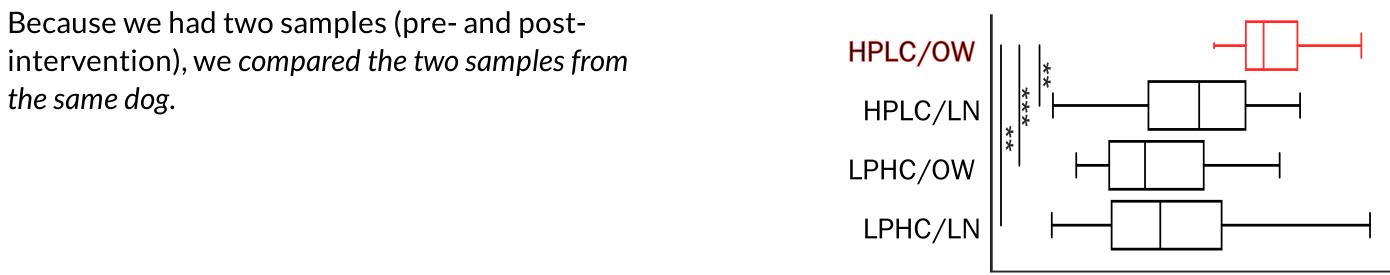
- Gene catalog of the dog gut microbiome with 1.24 million genes.
- Compared to publicly-available catalogs for human, mouse, and pig gut microbiomes.



This is published work as (Coelho et al., Microbiome, 2018)

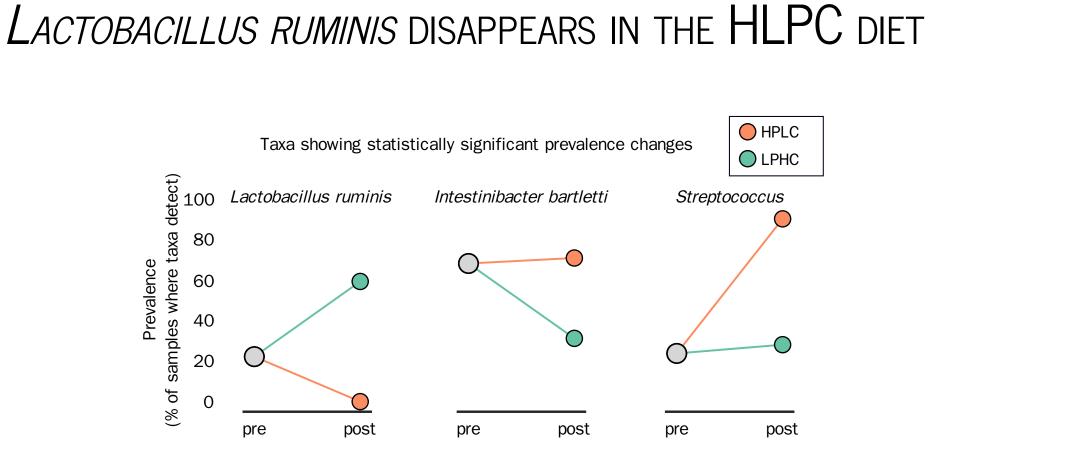
WE OBSERVE GENUS/SPECIES SHARING, BUT STRAIN SPECIFICITY


- Genera (and even species) are widely shared
- Strains are host specific


Profiled with metaSNV (Costea^{*}, Munch^{*}, et al., Plos One, 2017)

THE DOGS WERE SUBJECT TO A RANDOMIZED DIETARY INTERVENTION

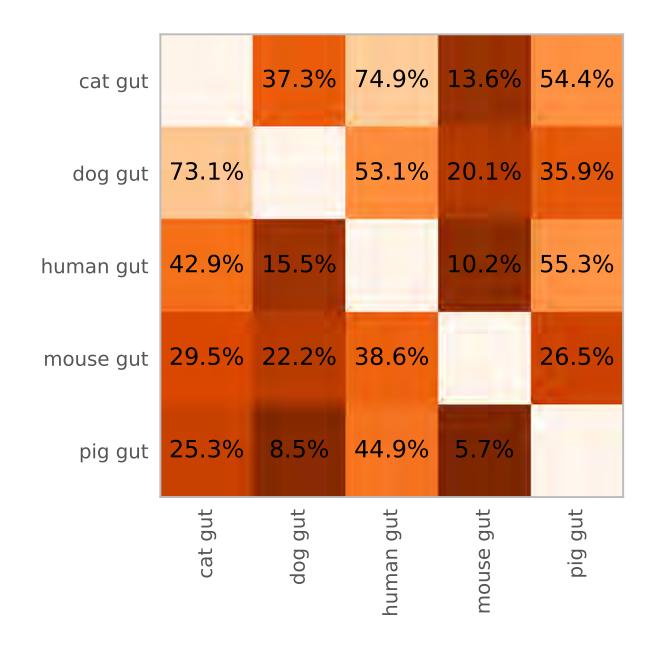
• There is an overall community shift; larger for the HPLC diet



The microbiome of obese dogs shifts more

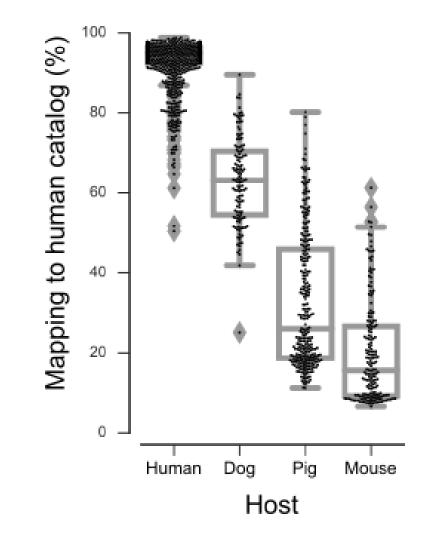
0.0

1.2 diet effect size (BC)

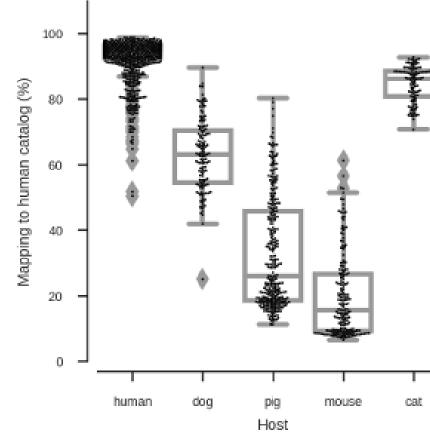

- In the HPLC diet, *L. ruminis* cannot be detected.
- Streptoccocus species are almost universally prevalent in the HPLC diet, but only detected in <1/3 of LPHC-fed dogs.
- This happened in **both cohorts**, so it is not a effect of direct transmission.
- Demonstrates the possibilities of *prebiotics* in a controlled study.

ONGOING WORK (SINCE 2017): MORE HABITATS, MORE DATA

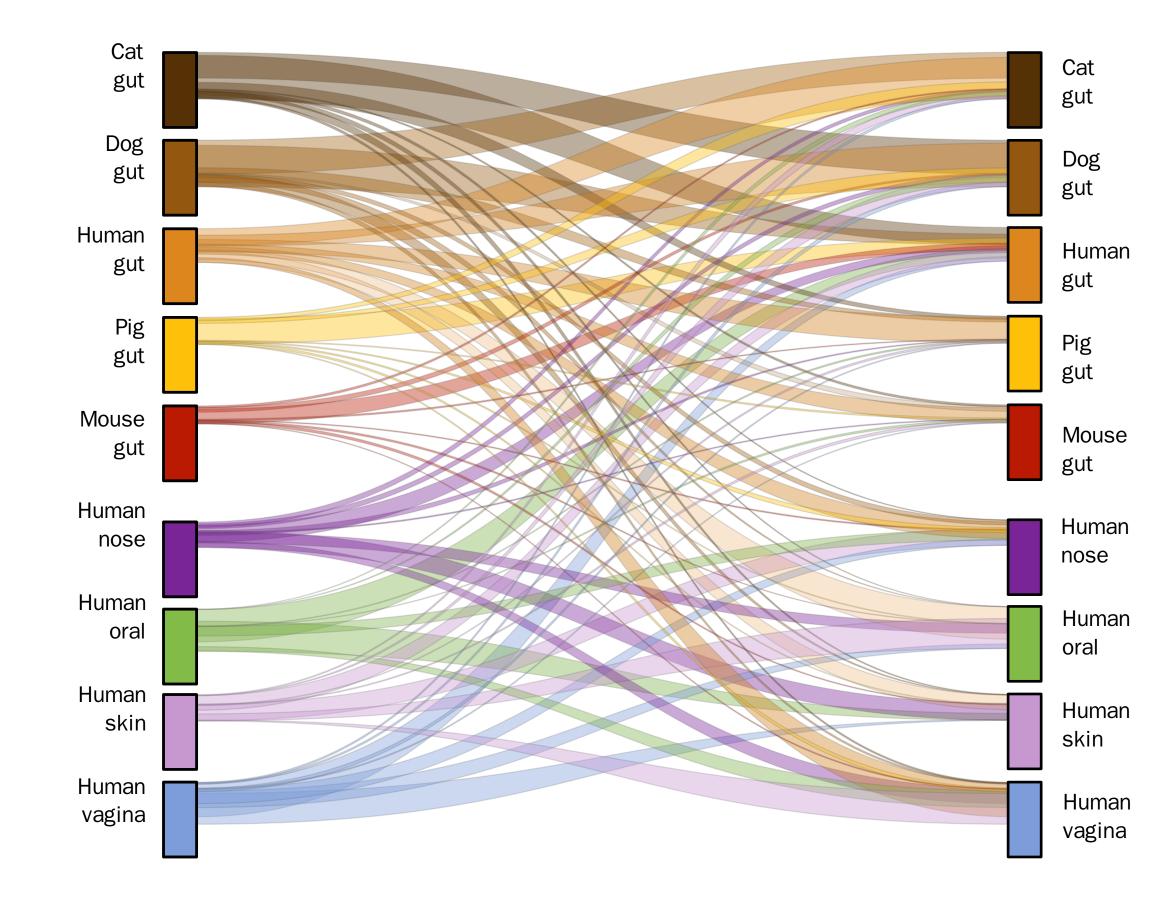
- Human gut (>7,000 samples, many projects).
- Mouse gut (230 samples, Xiao et al., Nat Biotech, 2015).
- Pig gut (195 Xiao et al., Nat Micro, 2016).
- Dog gut (129 samples, Coelho et al., Microbiome, 2018).
- Kittens gut (124 samples, Deusch et al., PIOS One, 2014; Deusch et al., PIOS One, 2015).


Reworked data from scratch using a consistent methodology.

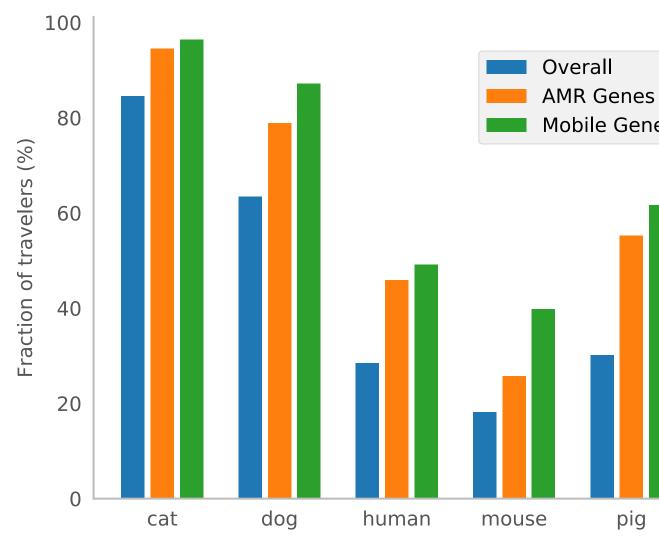
THE CAT MICROBIOME SHARES A LOT OF SPECIES WITH HUMANS


Fraction of species shared between gut microbiomes (using a single-copy marker genes as proxies for species).

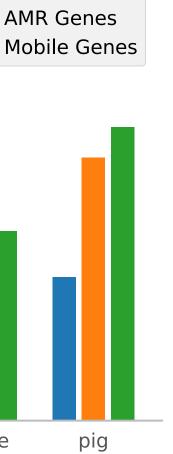
BOTH THE DOG AND THE CAT MICROBIOME CONTAIN HUMAN-RELATED GENES


(This is the published figure in 2018)

BOTH THE DOG AND THE CAT MICROBIOME CONTAIN HUMAN-RELATED GENES



(This now includes the cat data)


Genes are shared between environments (traveling genes)

AMR GENES ARE MORE LIKELY TO TRAVEL

There are millions of genes represented in each bar, all comparisons are highly significant.

SUMMARY

- The dog and cat microbiomes are similar to that of humans (although a gap remains).
- Thus, we can use pet studies to formulate hypothesis on how the microbiome may work in humans.
- Pet studies provide a triple-benefit:
 - 1. good for pets (which is very valuable in itself),
 - 2. possibly translatable to humans,
 - 3. how we treat animals may rebound to human health (One Health) as genes travel and AMR genes travel the most.
- Our animal data is still very limited (one or two populations).

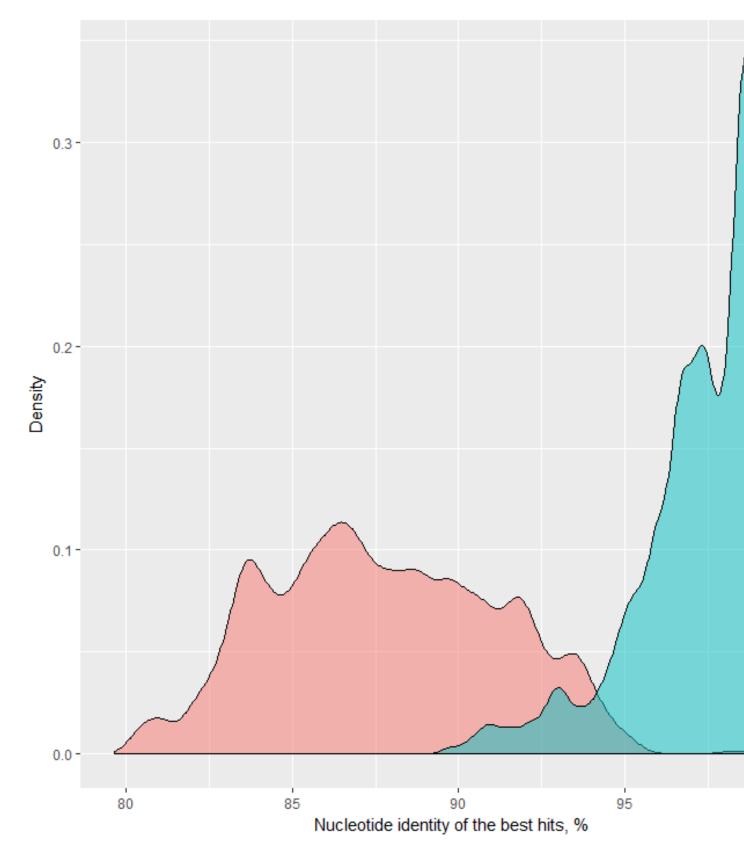
Acknowledgements

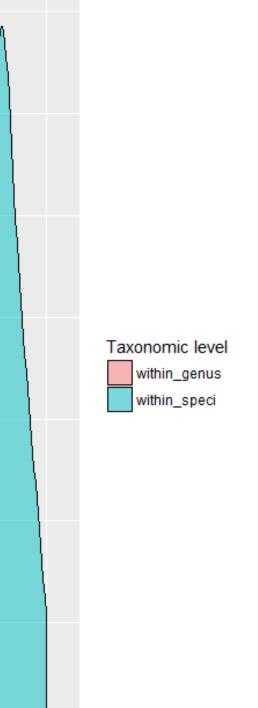
• Dog microbiome

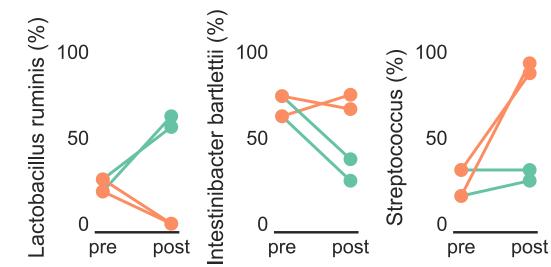
- Jens Roat Kultima (EMBL)
- Paul Igor Costea (EMBL)
- Coralie Fournier (Nestlé Research)
- Yuanlong Pan (Nestlé Research)
- Gail Czarnecki-Maulden (Nestlé Research)
- Matthew Robert Hayward (EMBL; now Broad Institute)
- Sofia K. Forslund (EMBL; now Berlin)
- Thomas Sebastian Benedikt Schmidt (EMBL)
- Patrick Descombes (Nestlé Research)
- Janet Jackson (Nestlé Research)
- Johnny Qinghong Li (Nestlé Research)
- Peer Bork (EMBL)

Global microbiome

- Renato Alves (EMBL)
- Pernille Neve Meyers (DTU)
- Thomas Sebastian Schmidt (EMBL)
- Daniel Mende (EMBL; Hawai)
- Ivica Letunic (Biobyte)
- Falk Hildebrandt (EMBL; Norwich)
- Thea van Rossum (EMBL)
- Sofia K. Forslund (EMBL; Berlin)
- Supriya Khedkar (EMBL)
- Oleksandr Maistrenko (EMBL)
- Longhao Jia (Fudan)
- Pamela Ferretti (EMBL)
- Xingming Zhao (Fudan)
- Jaime Huerta-Cepas (EMBL; Madrid)
- Henrik Bjorn Nielsen (DTU)
- Peer Bork (EMBL)

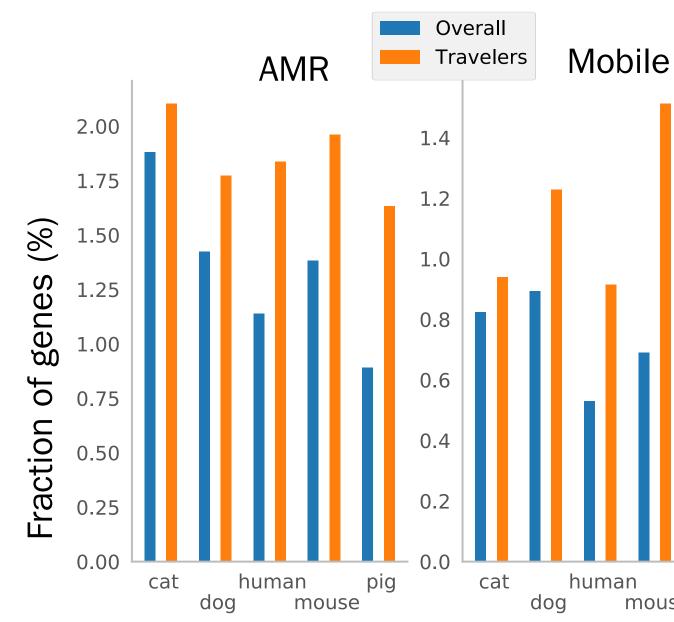

Thank You

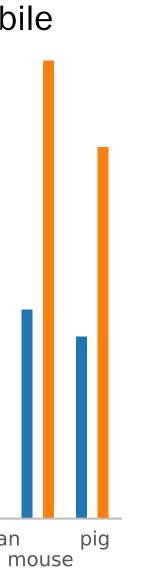

Join us in Shanghai!


Several postdoc positions open: http://big-data-biology.org/positions/ Talk to meet during the break

95% IS A SPECIES-LEVEL SEPARATION

Prevalence changes are seen in **both experimental cohorts**

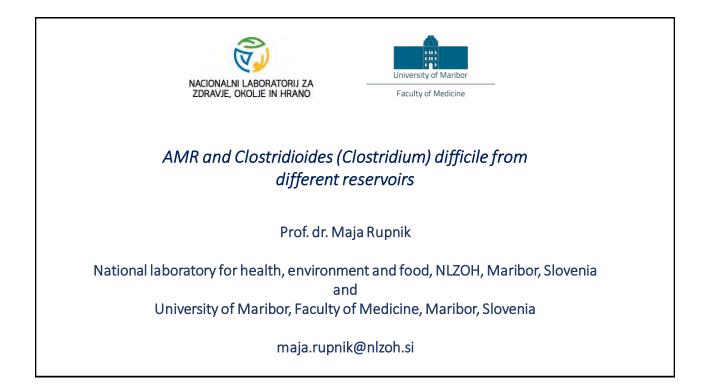


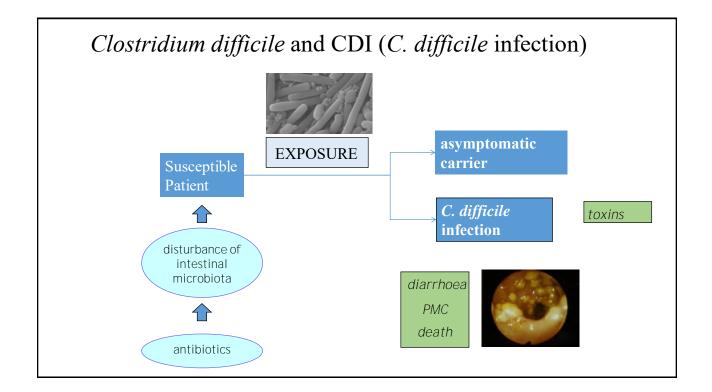

GENE FLOW (ABUNDANCE WEIGHTED) BETWEEN MAMMALIAN GUTS

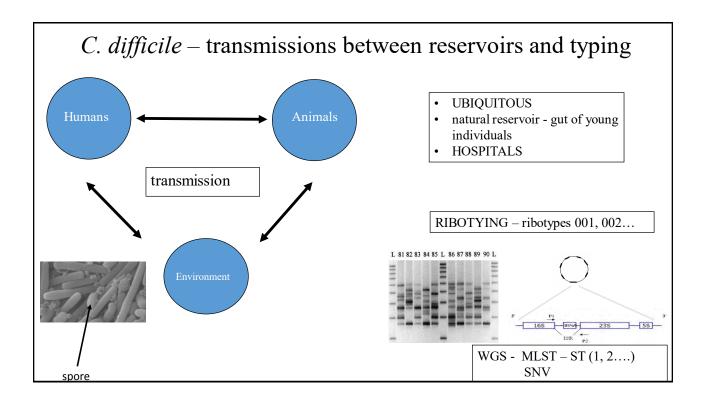
	cat gut	dog gut	human gut	mouse gut	pig gut
cat gut	92.6	45.5	22.6	3.04	4.67
dog gut	34.5	94.0	14.5	6.90	4.80
human gut	58.0	55.1	99.8	20.0	34.7
mouse gut	1.70	2.55	8.97	97.6	0.90
pig gut	20.3	19.3	16.5	2.24	99.0

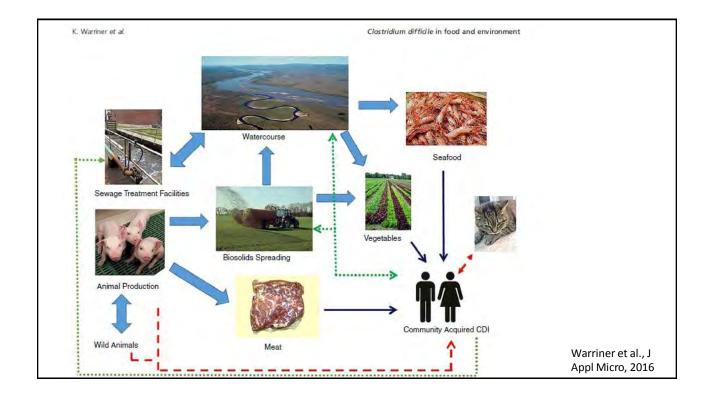
TRAVELING GENES ARE MORE LIKELY TO BE AMR (MOBILE) GENES

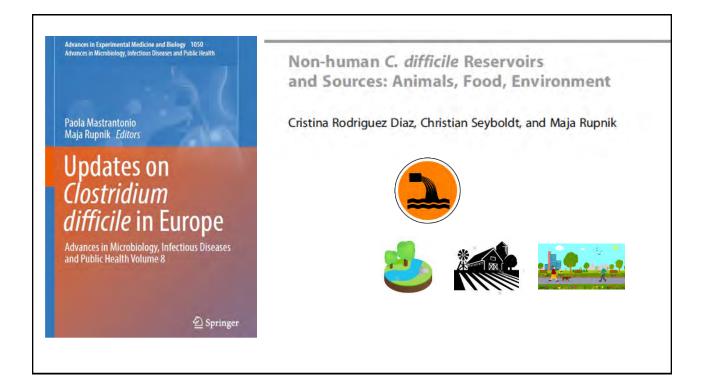
There are millions of genes represented in each bar, all comparisons are highly significant.

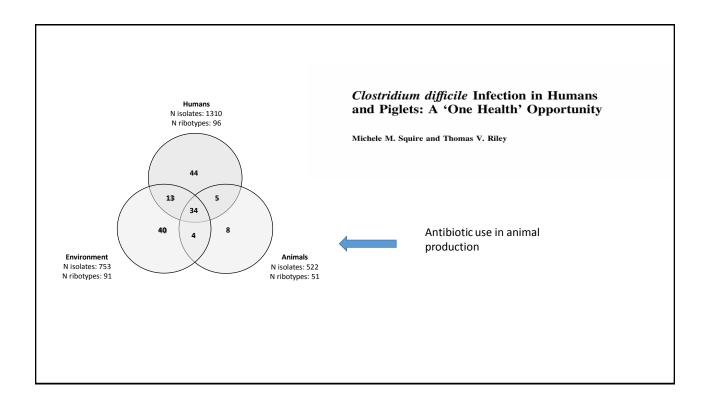

The economic drivers for One Health approaches and predictive modelling approaches to altering the usage patterns of antimicrobials in clinical practice

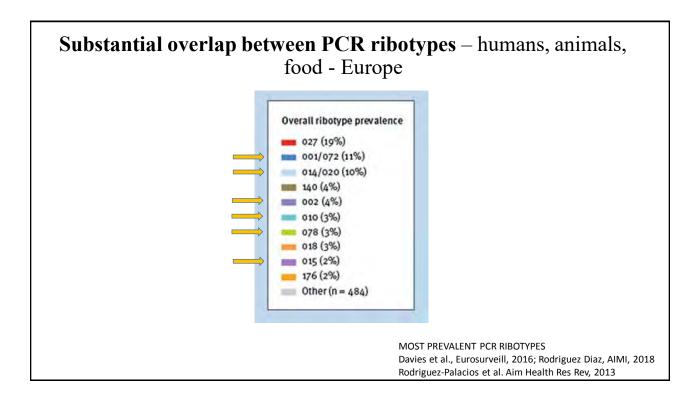

Lloyd Reeve-Johnson

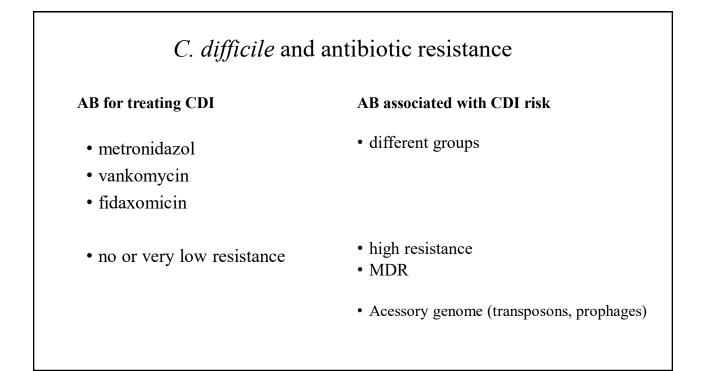

Professor of One Health, Faculty of Science, Health, Education and Engineering, University of Sunshine Coast, Queensland, Australia

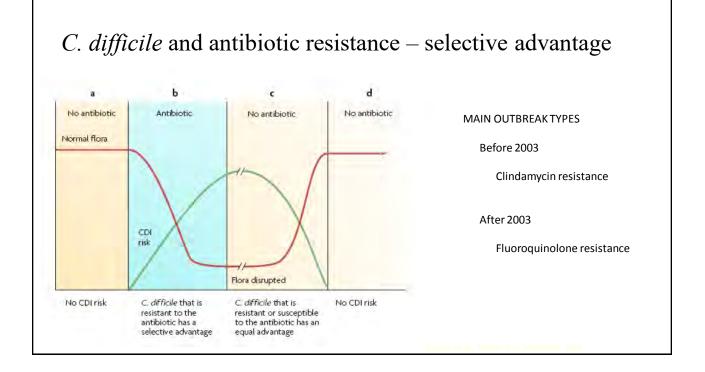

The 'One Health' approach implies multiple stakeholders with different perceptions of utility interacting daily in the highly complex system of healthcare delivery. As we adopt increasingly holistic views to major health care challenges, "complexity economics" principles include integrating change in the interaction between disease reservoirs, antimicrobial resistance patterns in multiple species, environmental change, political and economic challenges to sustainability of health services and media generated perc eptions to name a few. One Health approaches with successive iterations continue to evolve to ever greater complexity of interaction between human health, veterinary health, plant and environmental factors which in turn are continually impacted by the wider issues of politico-economic stability and consumer perception. The interplay between social, psychological, environmental and physical determinants of health mean that for health literacy to improve, it has to be targeted to cater to messages that are easily communicated, disease signs that are easily recognisable and messages that are contiguous with belief systems and perceptions that may not relate directly to the current healthcare issue.


A decision model is illustrated showing typical clinical decisions made in delivery of a prescription antibiotic agent. A reductionist approach is also discussed identifying the key stakeholders in healthcare delivery and general perspectives that each may have when interacting or making healthcare-related decisions. Probability interactions and game theory approaches are increasingly used to predict demand and to influence outcomes and cost with real-time dynamic predictive models.


C. difficile and animals


- any animal species can be colonized
- young animals
- different sensitivity for infection
- microbiological diagnostic rarely done
- variability at farm single type (pigs, dairy farms) multiple types (poultry, veal production)
- importance (for human CDI) farm animals pets





Warriner et al., J Appl Microbiol. 2017 Rodriguez et al., Adv Exp Med Biol, 2016 Bloomfield and Riley, Infect Dis Ther, 2016 Bauer and Kuijper, Infect Dis Clin North Am., 2015 Rodriguez-Palacious et al. Anim Health Res Rev, 2013 Weese, CMI, 2010 Hansgens et al., CMI 2012

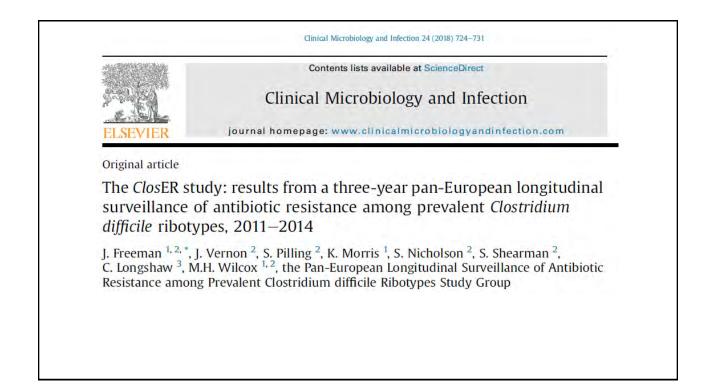

Antibiotica	Number of str	ains analyzed	Number of resistant strains	% of resistance
CFs				
	CTT	212	24	11.2
	FOX	423	404	95.5
	CRO	1252	393	31.4
	CTX	95	95	100
	CAZ	86	65	76.0
MLSB				
	ERY	2316	1138	49.1
	CLI	5839	2982	51.1
FQs		1.		
1. No.	CIP	1326	1312	99.0
	MXF	6053	2161	35.7
	GAT	199	136	68.3
MTZ	1	6724	114	1.7
VAN		5760	134	2.3
RIF		3450	525	15.2

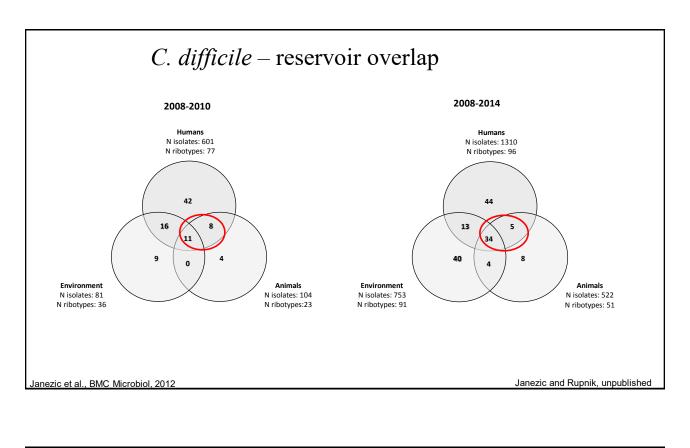
Table 1 Antibiotic susceptibility of C. difficile clinical isolates as reported in 46 papers published between 2012 and

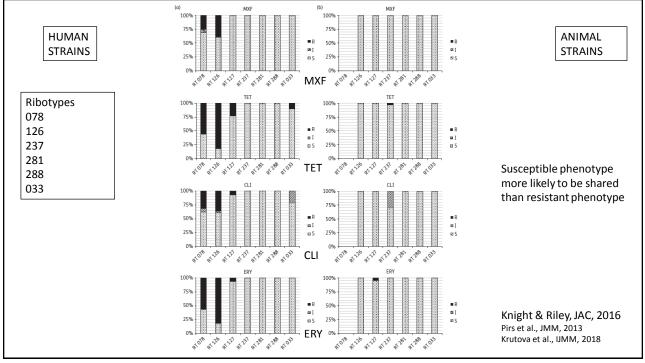
^aCFs cephalosporins, CTT cefotetan, FOX cefoxitin, CRO ceftriaxone, CTX cefotaxime, CAZ ceftazidime, MLS_B macrolide-lincosamide-streptogramin B, ERY erythromycin, CLI clindamycin, FQs fluoroquinolones, CIP ciprofloxacin, MXF moxifloxacin, GAT gatifloxacin, MTZ metronidazole, VAN vancomycin, RIF rifampin

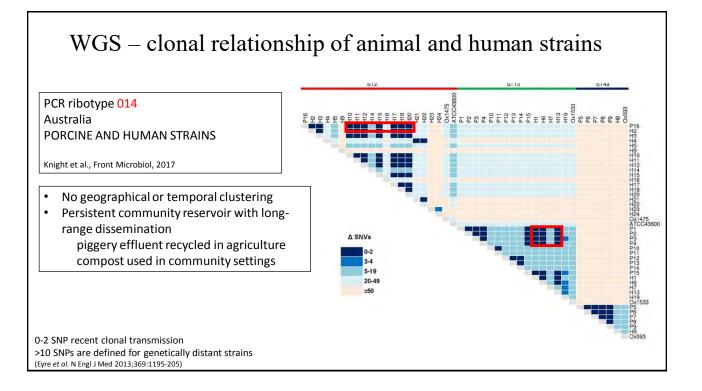
Spigaglia et al., 2018, AIMI

Year of publication	Number of strains analyzed	% of MDR strains	Main a	antibiotic	: suscept	ibility p	attems (n. of str	ains) ^a				PCR- ribotype	References
2015	15 525 66	66	ERY	CLI	MXF	GAT						(85)	018, 369	Lachowicz et al. (2015), Senoh et al.
	1		CLI	CIP	CRO				1			(51)	DTM	(2015), Kuwata et al. (2015), Spigaglia
			ERY	CLI	MXF	RIF						(48)	018, 027, 356/607	et al. (2015), Krutova et al. (2015) and Shayganmehr et al. (2015)
			ERY	MXF	CIP	IMP		1	D			(34)	027	
			CIP	CAZ	IMP	AMK					1	(25)	nd	
			ERY	CLI	MXF	CIP	IMP	1.00	*		1000	(20)	176	
			ERY	MXF	RIF			1				(15)	027	
		CIP	CAZ	IMP							(14)	nd		
			ERY	MXF	CIP	RIF						(13)	176	
			ERY	CLI	GAT			1	0			(11)	018, 369	
			ERY	CLI	MXF			-				(11)	046, 078, 126	
			CIP	CAZ	AMK			1.1	1			(10)	nd	
2017	276	62	ERY	MXF	RIF		1.000			1		(81)	017	Alvarez-Perez et al. (2017), Kullin et al
			CLI	MXF	CIP	LVX	RIF	TET	CHL	TGC	LZD	(12)	012	(2017) and Ramírez-Vargas et al. (2017
			CLI	MXF	CIP	LVX	RIF					(12)	012	
			ERY	MXF	LVX	TET	1000			1		(5)	078, 126	
		ERY	LVX	TET		·					(5)	078, 126		
		CLI	MXF	CIP	LVX	TET	CHL	LZD	1.000		(4)	012		
			MXF	LVX	TET		1		1		· · · · · ·	(4)	078, 126	
			TET	LVX	ETP	1	5 a. 1				1.00	(4)	126	

The *Clos*ER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent *Clostridium difficile* ribotypes, 2011–2014

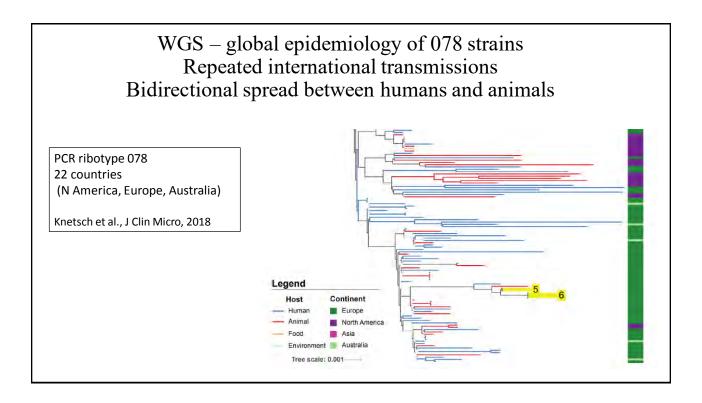

r.,	١.	La	4
1 d	D	le	4

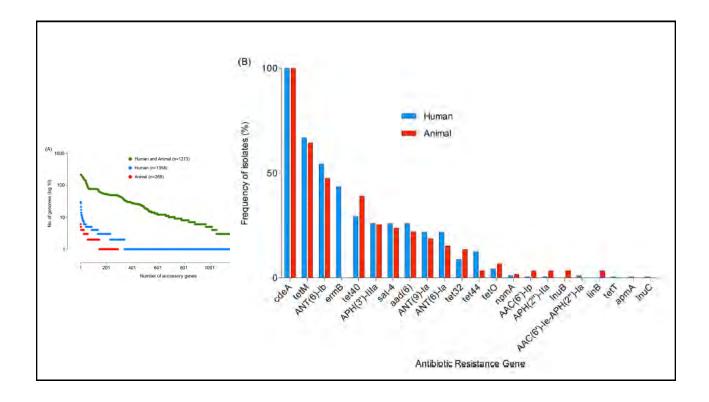

Proportions of sensitive, intermediately sensitive and resistant Clostridium difficile isolates in the 3 years of the ClosER study (July 2011 to July 2014)

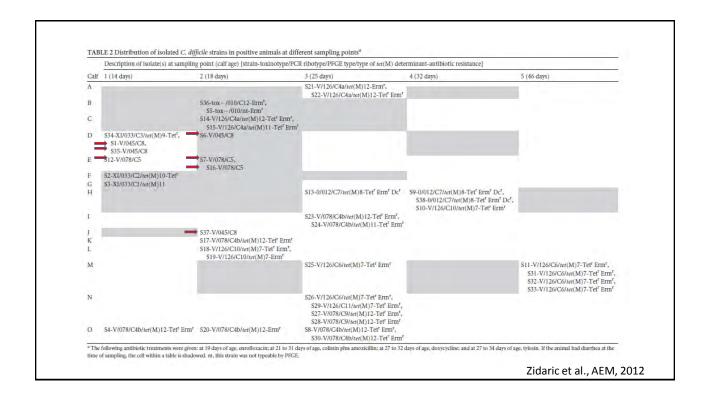

	Years	M	V	FDX	RIF	MXF	CLINDA	IMI	CHLOR	TIG
Sensitive (%)	Y1	97.9	96.7	100.0	80.5	58.7	37.6	62.7	92.9	100.0
	Y2	98.1	98.8	100.0	82.1	64.5	29.1	77.3	93.1	100.0
	¥3	96.9	99.8	100.0	86.8	66.0	18.3	78.1	91.5	100.0
	All years	97.9	98.6	100.0	83.2	63.1	29,0	72.6	92.8	100.0
Intermediately	Y1	2.0	2.4		6.0	1.8	12.4	30.1	3.5	
sensitive (%)	Y2	1.3	0.6		3.7	1.0	13.7	19.7	2.6	
	Y3	2.6	0.1		1.5	0.5	17.4	19.7	5.1	
	All years	1.9	1.1		3.9	1.1	14.4	23.3	3.7	
Resistant (%)	Y1	0.1	0.9		13.5	39.5	49.8	7.2	3.6	
	Y2	0.1			13.7	34.1	56.7	2.3	3.7	
	Y3	0.5	0.1		11.6	33.5	64.3	2.2	3.4	
	All years	0.2	0.1		13.0	35.8	56.6	4.0	3.6	

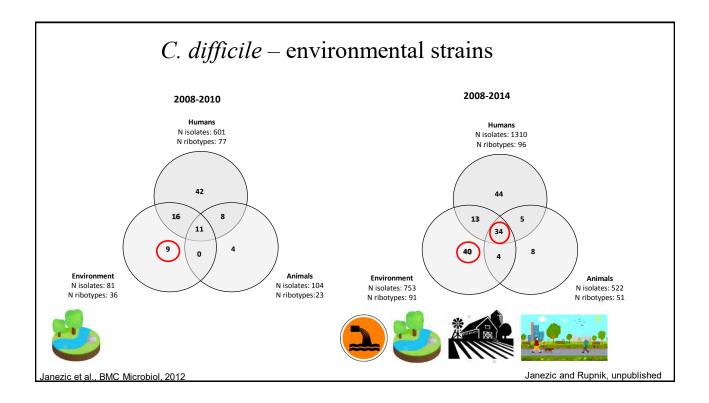
Abbreviations: CHLOR, chloramphenicol; CLINDA, clindamycin; FDX, fidaxomicin; IMI, imipenem; M, metronidazole; MXF, moxifloxacin; RIF, rifampicin; TIG, tigecycline; V, vancomycin.

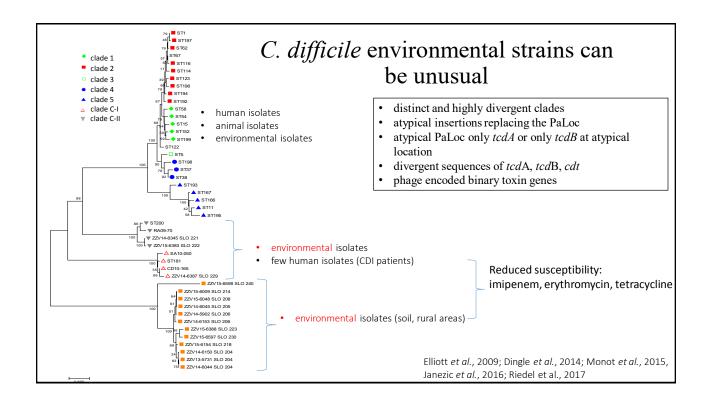
Pirs et al., Krutova et al., Spigaglia et al., 2018, AIMI








Agent	Human P	$(n = 24)^{\dagger}$	Porcine	RT014 ($n = 16$)	<i>P</i> -value [‡]	
	%S	%NS	%S	%NS		
VANa	100	0	100	0	p > 0.05	
MTZD	100	0	100	0	p > 0.05	
FDXC	100	0	100	0	p > 0.05	
RFX ^d	100	0	100	0	p > 0.05	
AMCb	100	0	100	0	p > 0.05	
CLIP	88	12	31	69	p < 0.05	
ERYb	96	4	31	69	p < 0.05	
CROb	79	21	81	19	p > 0.05	
MEMp	100	0	100	0	p < 0.05	
MXF ^b	100	0	100	0	p < 0.05	
TET ^b	100	0	31	69	p < 0.0001	
ZPb	100	0	100	0	p > 0.05	
TMP	NR	NR	NR	NR	p > 0.05	
GEN	NR	NR	NR	NR	p > 0.05	
ТОВ	NR	NR	NR	NR	p > 0.05	
SPC	NR	NR	NR	NR	p > 0.05	


VAN, vancomycin; MTZ, metronidazole; FDX, fidaxomicin; RFX, rifaximin; AMC, amoxicillin-clavulanate; CLJ, clindamycin; ERY, erythromycin; CRO, ceftriaxone; MEM, meropenem; MXF, moxifloxacin; TET, tetracycline; TZP, piperacillin-tazobactam; TMP, trimethoprim, GEN, gentamicin; TOB, tobramycin; SPC, spectinomycin; S, susceptible; NS non-susceptible (intermediate and resistant breakpoints).

Summary

- One Health approach is important in understanding and controlling CDI
- *C. difficile* has also zoonotic potential (diverse transmission routes food)
- C. difficile is a MDR pathogen (but specific!)
- Similarities in resistance profiles between reservoirs differ among ribotypes and studies

Tetracycline mediated emergence of *Clostridioides* (*Clostridium*) *difficile* PCR-ribotype 078

Kate Dingle University of Oxford ICOHAR 2019

Session: AMR in *Clostridium difficile* lineages shared by humans and animals

Oxford Biomedical Research Centre

Health Wellcome^{trust} Mr Department of Health

Animal & National Institute for Plant Health Agency Health Research

Insights that whole genome sequencing offers One Health

- Antimicrobials used to treat animals frequently overlap those used for humans, often being either identical or related.
- Strategies are required to understand the evolution and spread of antibiotic-resistance bacteria in humans, animals or the environment spread irrespective of species or geography.
- Bacterial whole genome sequencing (WGS) is an ideal frontline tool.

wellcome^{trust} Nepartment of Health

Bacterial Whole Genome Sequencing Insights

- Understanding the genetic basis of resistance to key antimicrobials; predicting resistance phenotype from genotype.
- Genotyping isolates at the highest possible resolution to improve understanding of transmission.
- Combining these strands of evidence informs our understanding of the evolution and spread of resistance (including MDR lineages) within bacterial populations and the human and animal species they colonise.

England

Introduction to *C. difficile* PCR-ribotype 078

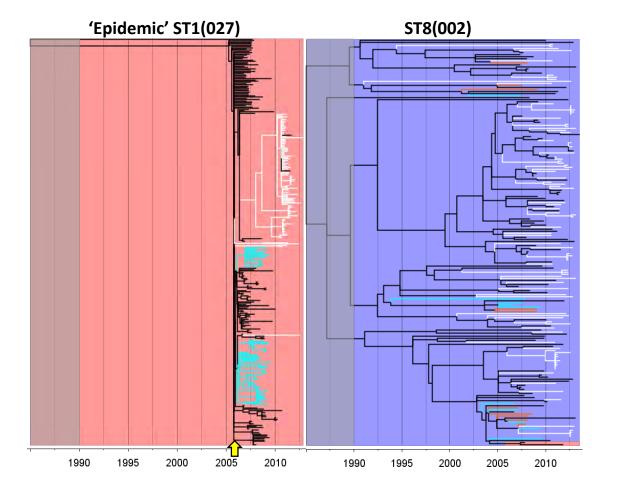
• *C. difficile* ribotype 078 first reported as a clinical problem in The Netherlands, rising from 3% to 13% of CDI cases during 2005-2008.

Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, Bergwerff AA, Dekker FW, Kuijper EJ. 2008. Emergence of *Clostridium difficile* infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162-1170.

- Similarly, a ten fold increase was noted in North America, and increases and occasional outbreaks were reported elsewhere in Europe.
- Three distinctive features of 078-associated CDI have heightened concern:
 - Severity of symptoms.
 - High genotype-specific mortality rate.
 - Higher proportion of community and younger age group infections compared to other genotypes.

Variety of Natural 078 Reservoirs

- **Agricultural settings**; sick and healthy animals (frequently pigs), bird droppings, vermin and the farm environment.
- Variety of retail meat products including pork, beef, poultry.
- Can be carried asymptomatically by human infants and adults.
- What caused 078 to emerge as a clinical problem in humans?


Phylogenetic Approach using WGS

- WGS used to construct phylogenies.
- Independently from the phylogenetic analysis, resistance genotype for each genome determined.
- Resistance genotype data used to annotate the phylogeny.
- Enables visualisation of *potential* evolutionary impact of antimicrobial selection.
- Time-scaling the phylogeny allows 'look back in time' to examine evolutionary events affecting lineage before, during and after emergence.

Phylogenetic Approach using WGS

Fluoroquinolone resistant lineage

Geographic structure and recent clonal expansions consistent with rapid, localised nosocomial transmission.

Fluoroquinolone susceptible lineage

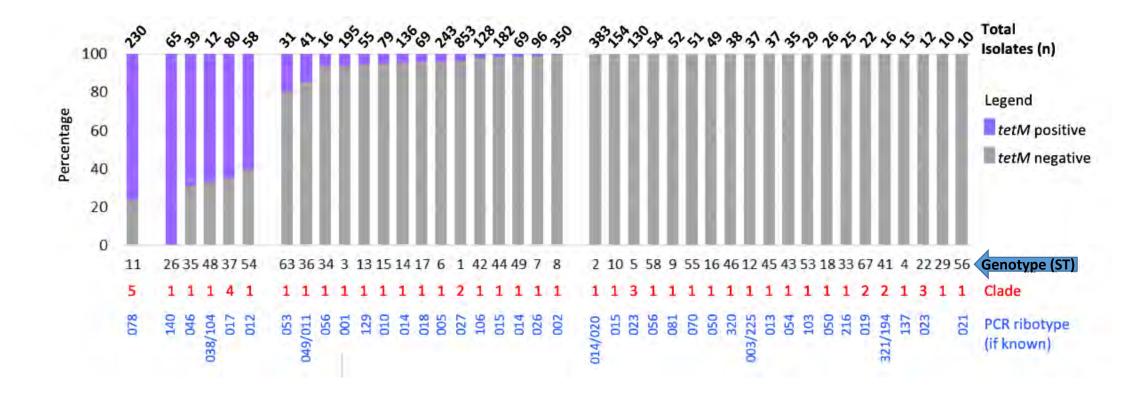
Absence of geographic structure or recent clonal expansions consistent with frequent independent introductions to the clinical environment and absence of large scale nosocomial transmission.

Isolates from four geographic locations:

See Lancet Infect Dis. 2017 Apr;17(4):411-421.

WGS-approach applied to C. difficile 078

Resistance-associated genes and point mutations searched for included:

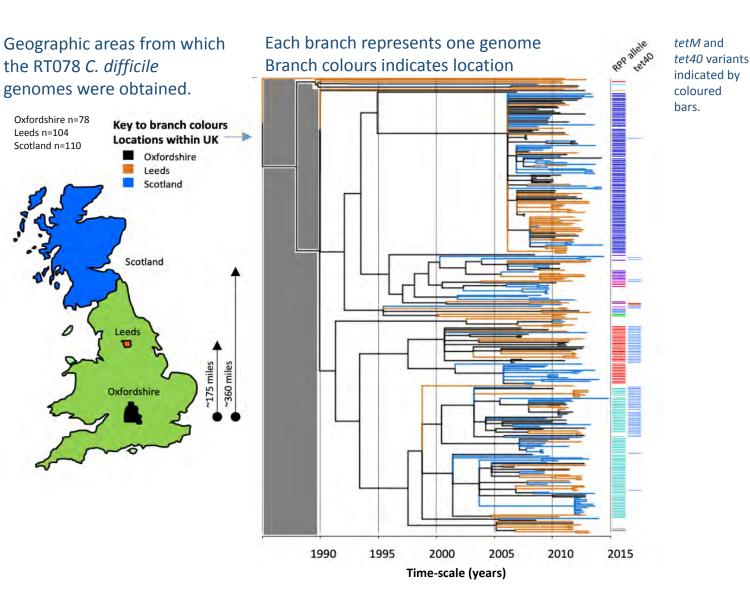

Tetracycline resistance: *tetM*, *tetO*, *tetW*, *tetO/32/O*, *tetB(P)* (Ribosomal protection proteins) **Tetracycline resistance**: *tet40*, *tetA(P)*, *tet*L (efflux)

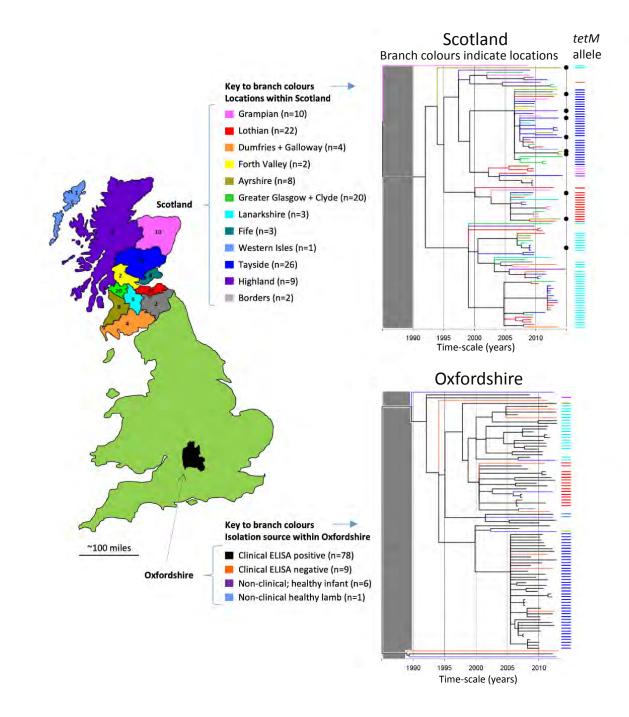
Aminoglycoside resistance: *aphA1, AAC(6')-APH(2')* **Macrolide-lincosamide-streptogramin B (MLSB) antibiotics**, including clindamycin: *ermB*

Fluoroquinolone resistance: *gyrA T[82]I* DNA gyrase subunit A **Fluoroquinolone resistance**: *gyrB D[426]N* DNA gyrase subunit **Rifampicin resistance**: *rpoB R[505]K* Beta subunit RNA polymerase.

tetM RPP gene by far the most frequently identified in 078.

Prevalence of tetracycline resistance RPP *tetM* in RT078 and clinically relevant *C. difficile* genotypes

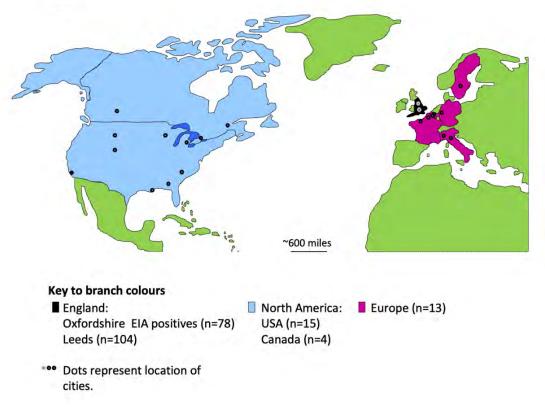

Proportion (%) of each genotype positive RPP encoding gene *tetM*

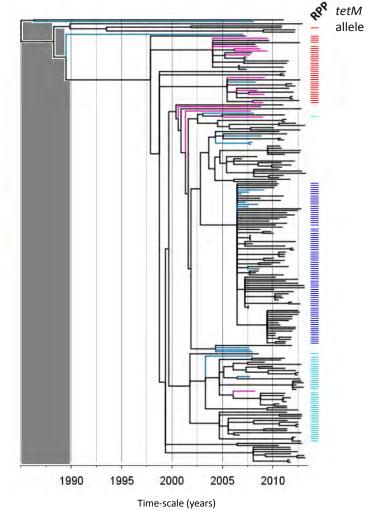

- Isolate collections: Oxfordshire (EIA positives, negatives, infant and farm), Leeds, North American and European clinical isolates.
- Total number of isolates of each genotype is shown above the bar.
- Data for genotypes having 10 genomes or more.

078 WGS phylogenies were annotated for presence of *tetM* to highlight any association between resistance acquisition and recent clonal expansion.

078 WGS Phylogeny for the UK

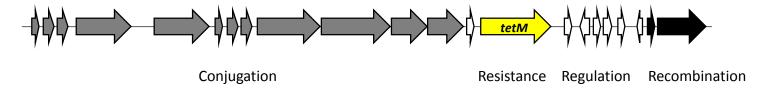
- Lack of geographic structure, illustrated by branch colours.
- Strong structuring of *tetM* variants, different variants indicated by coloured bars.
- Recent clonal expansions post *tetM* acquisition, independent of geographic location.
- Clonal expansions followed multiple, independent *tetM* acquisition events.



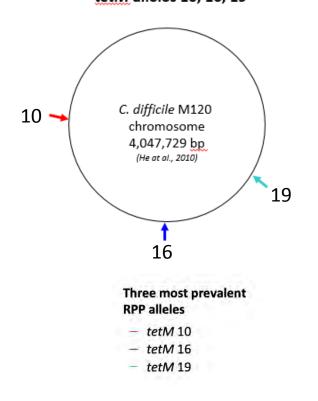

078 WGS Phylogeny for the UK Regions

- Lack of geographic structure, illustrated by branch colours.
- Strong structuring of *tetM* variants, different variants indicated by coloured bars.
- Recent geographically unstructured clonal expansions, post *tetM* acquisition.

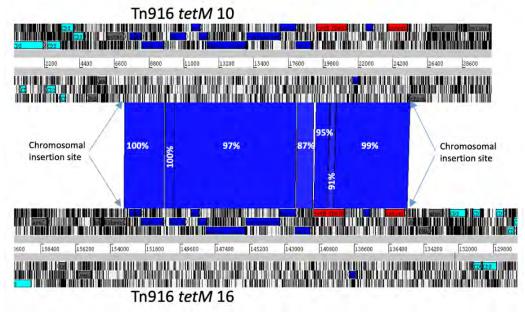
078 WGS Phylogeny Representing UK, Europe and N. America



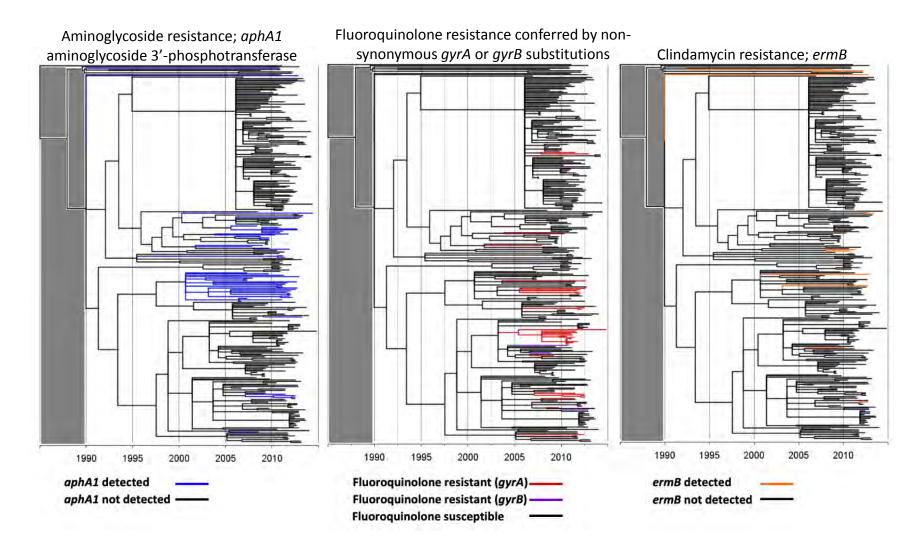
- Lack of geographic structure, illustrated by branch colours: N. American and European genomes mixed with English WGS.
- Strong structuring of *tetM* variants, different variants indicated by coloured bars.



Evidence of Multiple, independent tetM acquisitions


tetM alleles 10, 16 and 19 carried on closely related Tn916-like conjugative transposons.

Chromosomal insertion sites for *tetM* alleles 10, 16, 19



ACT comparison of Tn916 like elements carrying tetM allele 10 and allele 16, and their chromosomal ionsertion sites.

The absence of identity outside the (blue) sequence of the mobile elements highlights their insertion into completely unrelated regions of the chromosome, ie. independent acquisition events.

Non-tetracycline antimicrobial resistance determinants in 078 (UK phylogeny)

How much tetracycline is used in agricultural settings?

2017 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals (December 2018)

Tetracyclines, which represent the largest volume of domestic sales (3,535,701 kg in 2017), decreased by 40% from 2016 through 2017.

Ingredient Class	Species	Estimated Annual Totals (kg) ³	% Subtotal	
Tetracyclines ²	Cattle	1,560,542	44%	
	Swine	1,579,145	45%	
	Chicken	153,621	4%	
	Turkey	192,976	5%	
	Other ⁴	49,416	1%	
	Subtotal	3,535,701	100%	

Veterinary use of Tetracyclines: U.S.

Antimicrobial drugs approved for use in food-producing animals¹ Actively marketed in 2017 Domestic sales and distribution data Reported by medical importance and drug class

	Drug Class	Annual Totals (kg) ²	% Subtotal	% Grand Total
	Aminoglycosides	259,184	5%	2%
	Amphenicols	49,321	1%	<1%
	Cephalosporins ¹	29,369	<1%	<1%
	Fluoroquinolones	22,904	<1%	<1%
Medically Important ³	Lincosamides ¹	152,497	3%	1%
	Macrolides	468,794	8%	4%
	Penicillins ¹	690,889	12%	6%
	Sulfas	274,112	5%	3%
	Tetracyclines ¹	3,535,701	64%	32%
	$NIR^{1,4}$	76,440	1%	1%
	Subtotal	5,559,212	100%	51%
Not Medically Important ⁵	Ionophores	4,394,850	82%	40%
	NIR ⁶	979,306	18%	9%
	Subtotal	5,374,156	100%	49%
	Grand Total	10,933,367		100%

Sales of veterinary antimicrobial agents in 30 European countries in 2016

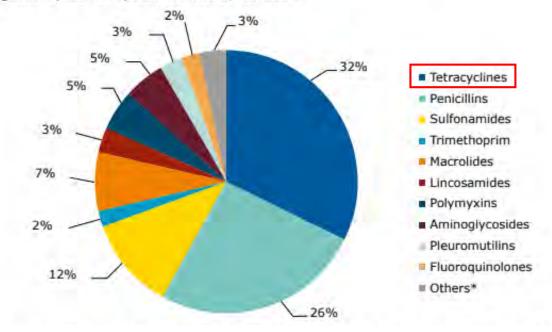
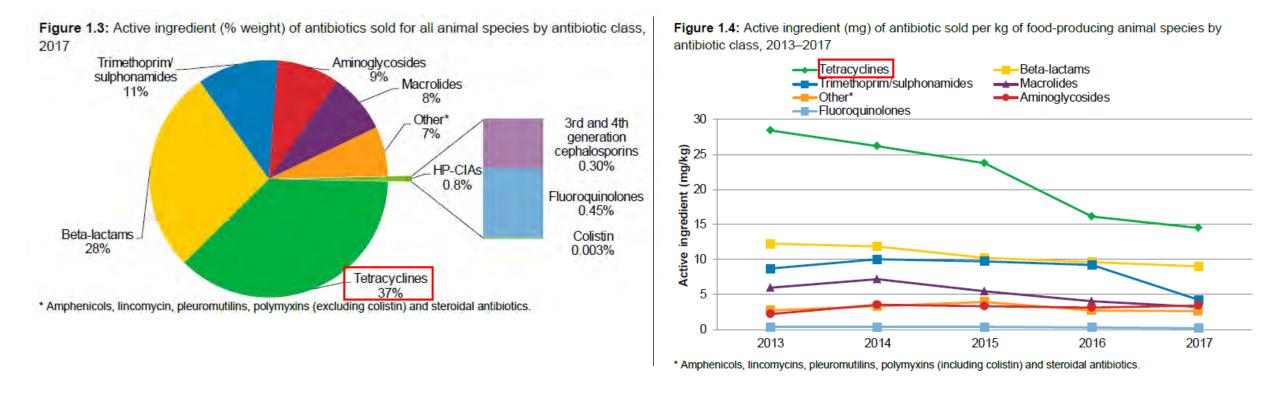

2.4.2.1. Tetracyclines

Figure 11. Spatial distribution of sales of tetracyclines for food-producing animals, in mg/PCU, by country, for 2016

Veterinary use of Tetracyclines: Europe

Figure 4. Sales of antimicrobial agents by antimicrobial class as percentage of the total sales for food-producing species, in mg/PCU, aggregated by 30 European countries, for 2016

mg/PCU - unit of measurement developed by the European Medicines Agency to monitor antibiotic use and sales across Europe.


PCU refers to the '**Population Correction Unit**' and takes into account the animal population as well as the estimated weight of each particular animal at the time of treatment with antibiotics.

UK Veterinary Antibiotic Resistance and Sales Surveillance Report UK-VARSS 2017

Veterinary use of Tetracyclines: UK

Data for Recent Tetracycline Sales (2013-2017)

"Tetracyclines remain the most sold antibiotic class (representing 37% of total sales) despite these sales falling by 89 tonnes (46%) since 2013. Beta-lactams are the second most sold class (representing 28% of total sales) and their sales have fallen at a slower rate, by 16 tonnes (17%) since 2013".

Summary: C. difficile 078

- Numerous lines of evidence indicate an important role for selection pressure via agricultural tetracycline use in the recent evolution of tetracycline resistant *C. difficile* 078.
 Dingle et al., 2019 A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated Clostridium difficile PCR Ribotype 078. MBio. 2019 Mar 12;10(2). pii: e02790-18.
- Studies using whole genome sequencing of Dutch and international RT078 isolates provide further data consistent with the rapid spread of RT078 both internationally, and between animals and humans.

Knetsch CW, et al., 2014. Whole genome sequencing reveals potential spread of *Clostridium difficile* between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill 19:20954.
Knetsch CW, et al., 2018. Zoonotic Transfer of *Clostridium difficile* Harboring Antimicrobial Resistance between Farm Animals and Humans. J Clin Microbiol 56(3). pii: e01384-17

• These studies support the hypothesis first proposed in 2012, that humans become colonised by RT078 via the food chain and/or the environment.

Hensgens MP, et al. 2012. *Clostridium difficile* infection in the community: a zoonotic disease? Clin Microbiol Infect 18:635-645.

Summary: One Health

- WGS-based approaches can inform the One Health Approach.
- As costs have fallen, WGS could realistically be more widely implemented for local, national and international surveillance.
- Key requirements capacity to store, exchange and interrogate large volumes of genomic data and bioinformatic tools to manage and interpret the data at the routine level.

Acknowledgements

٢ UNIVERSITY OF

Nuffield Department of Clinical Medicine, University of Oxford, UK Kate E. Dingle T. Phuong Quan David W. Eyre **Nicole Stoesser** Timothy E.A. Peto Sarah Walker

Derrick W. Crook

NHS National Institute for

Health Research

Leeds Teaching Hospitals and University of Leeds, UK Warren N. Fawley Mark H. Wilcox

School of Life Sciences and Department of Statistics, University of Warwick, UK Xavier Didelot

Medical

Research

MRC Council

103

England

Scottish Microbiology Reference Laboratories, **Glasgow**, UK John Coia **Derek Brown**

Population Health Sciences, School of Medicine, University of Dundee, Scotland, UK Charis A. Marwick

University of Glasgow, Scotland, UK Sarah Buchanan Umer Z. Ijaz Cosmika Goswami Gill Douce

Oxford Radcliffe Hospitals

Oxford Biomedical Research Centre

OXFORD

Public Health Wellcometrust Mit Department of Health

13 Animal & National Institute for Plant Healt Health Research Agency

University

NHS

Glasgow

DUNDER

Training the next generation of veterinary prescribers

Carmen Espinosa-Gongora DVM PhD Assistant professor at Department of Veterinary and Animal Sciences University of Copenhagen

UNIVERSITY OF COPENHAGEN

Veterinarians in the battlefield

Competencies

WORLD ORGANISATION FOR ANIMAL HEALTH Protecting animala. preserving our juture September 2013

OIE recommendations on the Competencies of graduating veterinarians ('Day 1 graduates') to assure National Veterinary Services of quality

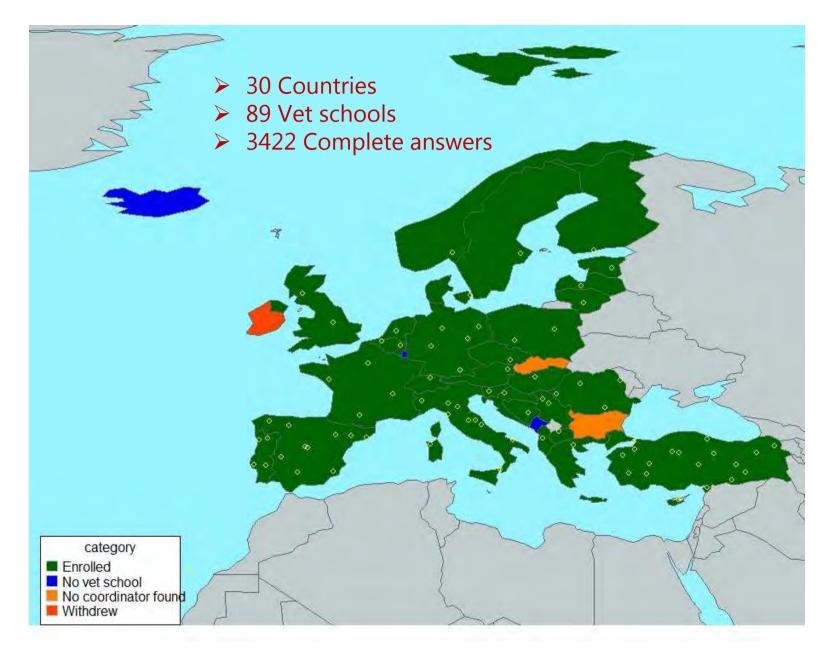
Veterinary Education Core Curriculum OIE Guidelines

- Article 38 of EU Directive 2013/55/EU
- List of subjects and Day One Competences (as approved by the ECCVT on 26 March 2015 and proposed to the EU DG Grow as Annex 5.4.1 of the EU Directive 2013/55/EU)

PREPARE-VET

ESCMID STUDY GROUP FOR VETERINARY MICROBIOLOGY European Society of Clinical Microbiology and Infectious Diseases ESCMID STUDY GROUP FOR ANTIBIOTIC POLICIES European Society of Clinical Microbiology and Infectious Diseases

Aim - To evaluate the need of further **education of European veterinary students** in the field of **antimicrobial stewardship** and to provide guidance to those responsible for educational programs and course development across Europe.


PREPARE-VET

- 🗸 12 languages 📂 🚬 📷 🎮 🕅 🛶 🎘 👫 🖾 🔪 💷
- ✓ 28 questions
 - Students (clinical rotations, performance, target professional field)
 - Perception of preparedness
 - 1. Pharmacology
 - 2. Clinical use of antimicrobials
 - 3. Antimicrobial resistance
 - "Test" questions

"What have you been taught to…" Use of guidelines

- Opinion: What is the contribution of veterinary use of AM in AMR in humans?
- Teaching methods
- ✤ Again, overall perception of preparedness

Enrolment

PERCEPTION OF PREPAREDNESS

How prepared do you feel in the following topics ... ?

- 1. Pharmacology of antibiotics
- 2. Clinical use of antibiotics
- 3. Antimicrobial resistance (AMR)

Answers

0

⁴ Well prepared

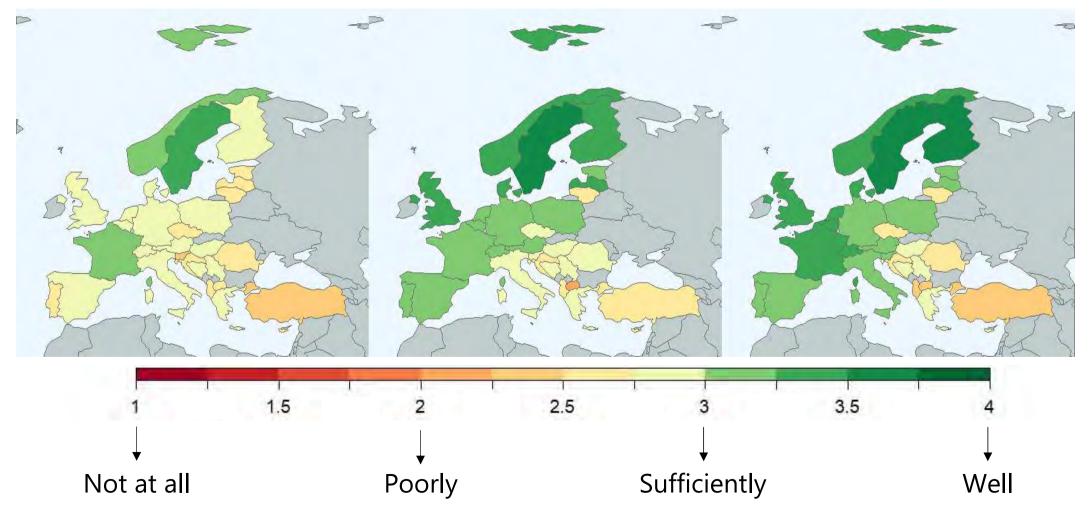
³ Sufficiently prepared

I don't know

I don't understand the question

Poorly prepared

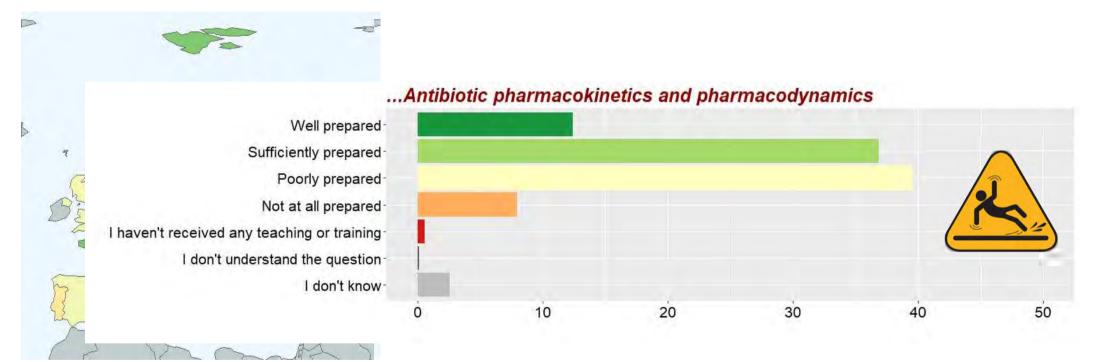
1 Not at all prepared


I haven't received any teaching/training

How prepared do you feel in the following topics ... ?

Pharmacology

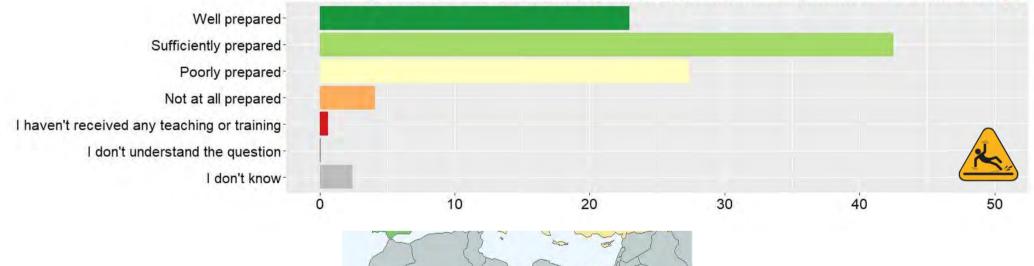
Clinical use


```
AMR
```


=Hardefeldt et al. 2018

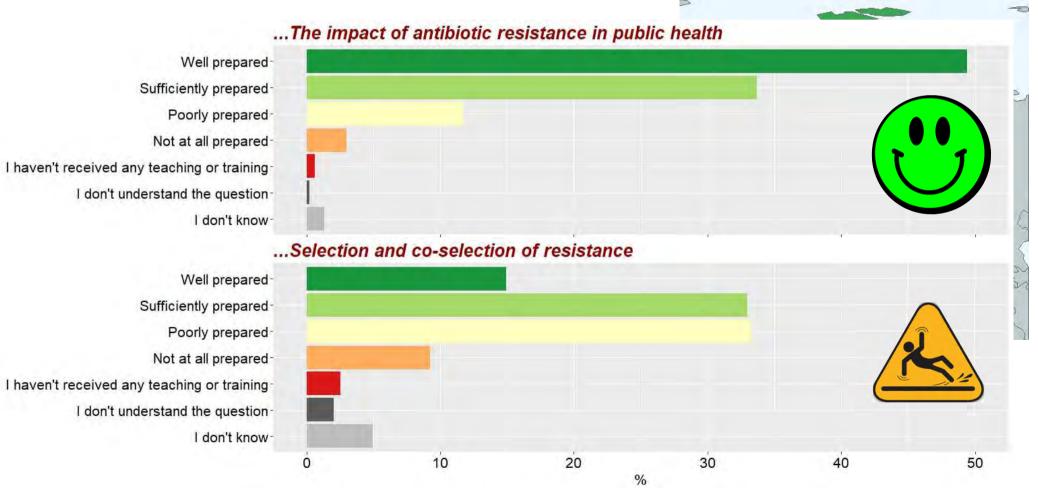
How prepared do you feel in the following topics ... ?

Pharmacology



How prepared do you feel in the following topics ... ?

Clinical use

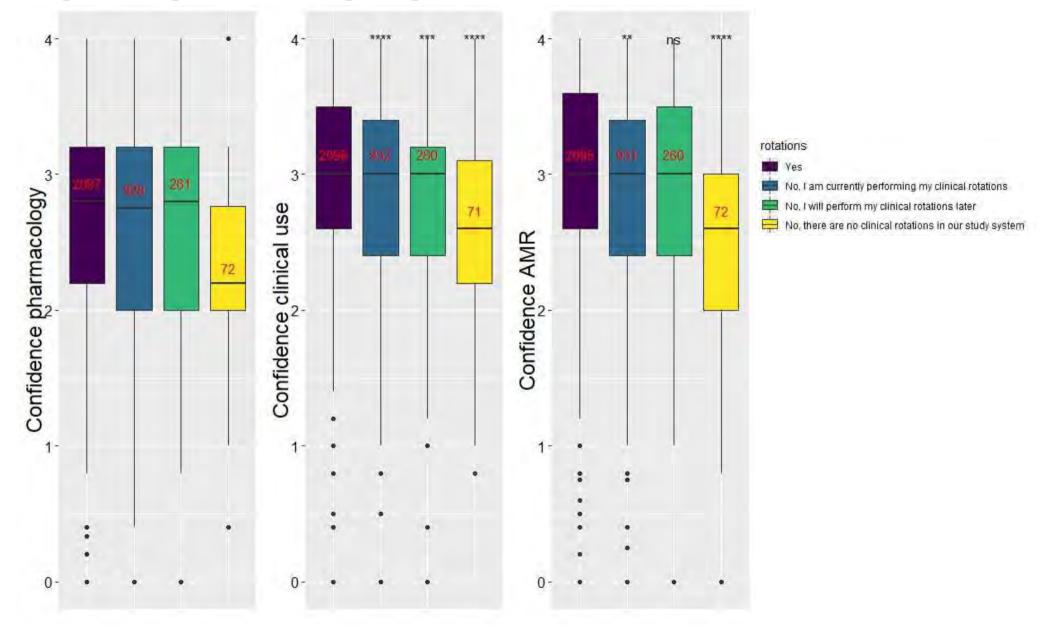


... Deciding which bacterial infections need or do not need systemic antibiotic therapy

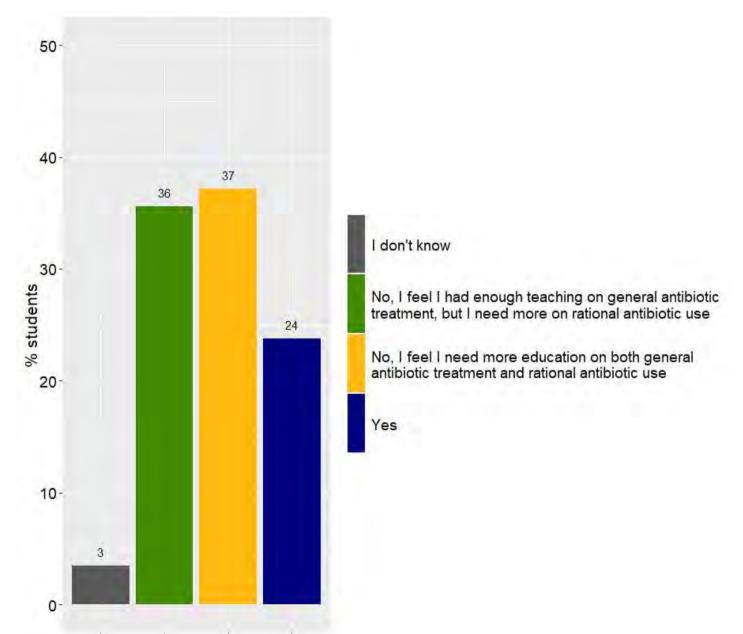
How prepared do you feel in the following topics ... ?

AMR

I haven't received any teaching or training-I don't understand the question-

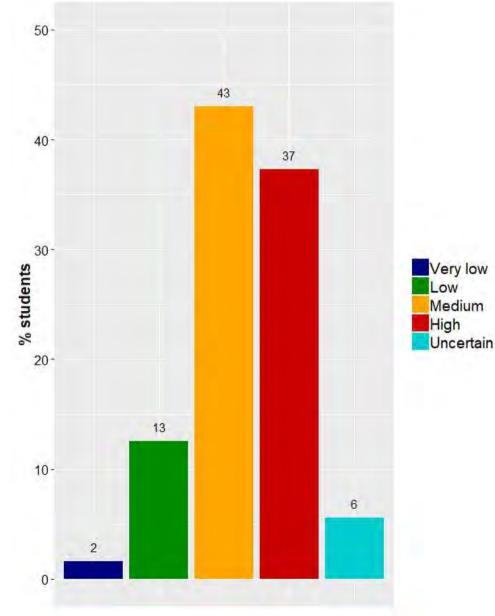

Does **perception of preparedness** correlate with **teaching methods**?

- 1. Clinical rotations
- 2. Other teaching methods


27. How often the following methods have been used to teach you on antibiotics, antibiotic resistance and antibiotic use?

	Very often	Sometimes	Rarely	Never	I don't know
Lectures	0	0	0	6	C
Small group teaching	0		53		
Discussions of clinical cases			0		
Active learning assignment (article review, oral presentation)	9		U		
E-learning					

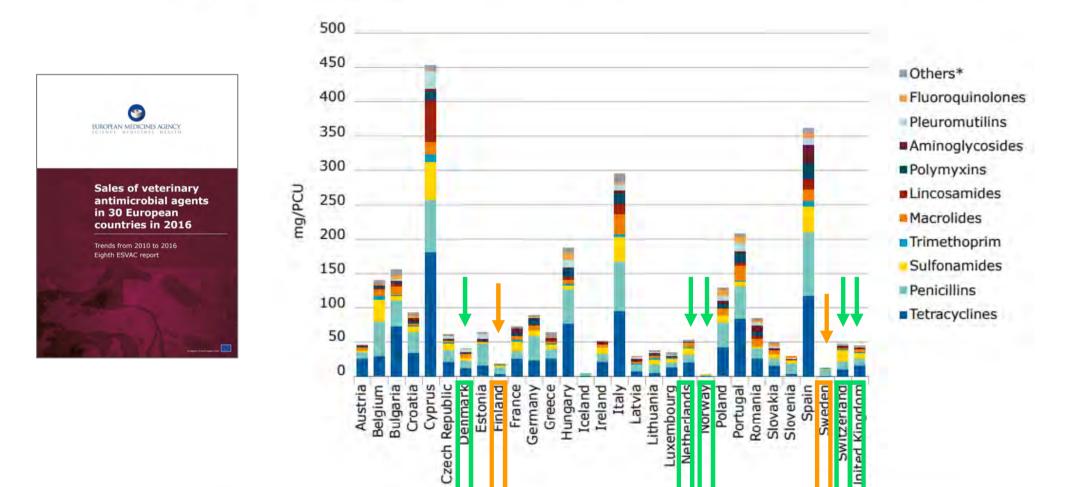
Do **clinical rotations** provide students a better **perception of preparedness**?



Overall do you think you receive **adequate teaching to face** antibiotic and resistance issues in clinical practice?

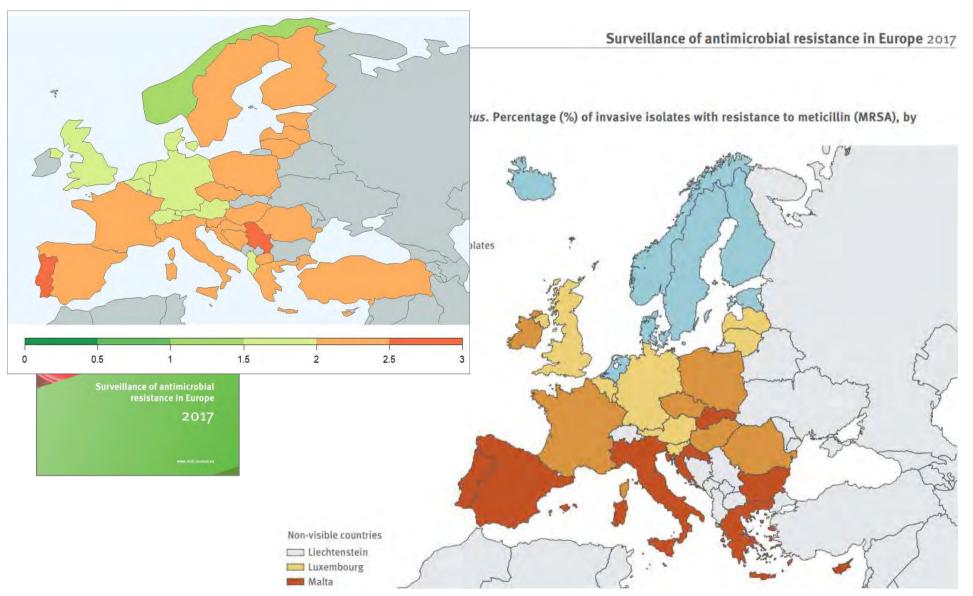
In your opinion what is the relative contribution of **veterinary use of antibiotics** to the clinical problems of **resistant bacteria in humans?**

Very low (<0.1%)
Low (<5%)
Medium (10-20%)
High (>50%)
Uncertain


In your opinion what is the relative contribution of **veterinary use of antibiotics** to the clinical problems of **resistant bacteria in humans?**

Very low <- 0 Low <- 1 Medium <- 2 High <- 3 Uncertain <- NA

Sales of antibiotics...?


Figure 2. Sales for food-producing species, in mg/PCU, of the various veterinary antimicrobial classes, for 30 European countries, in 2016¹

*Amphenicols, cephalosporins, other quinolones and other antibacterials (classified as such in the ATCvet system).

¹ Differences between countries can be partly explained by differences in animal demographics, in the selection of antimicrobia in dosage regimes, in type of data sources, and veterinarians' prescribing habits.

Prevalence of MRSA...?

Conclusions

- Veterinary students demand an improvement (75%)
- Harmonisation of curricula in AMS
- More interesting questions to analyse
 - "Test" questions
 - Teaching methods
- Fact-based communication of the veterinary role in human AMR

Thank you

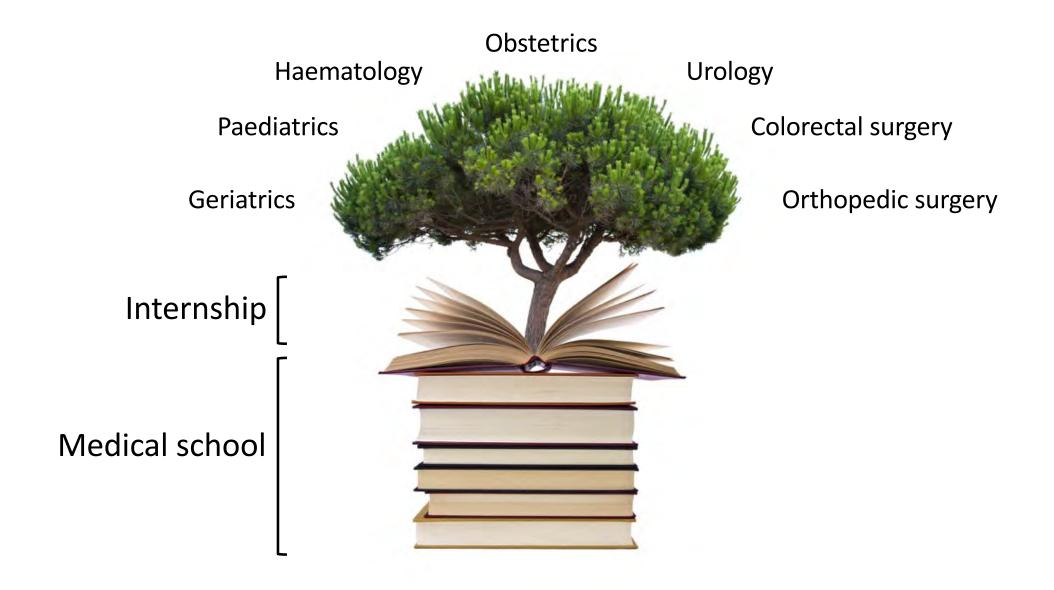
Luca Guardabassi; Lisbeth Rem Jessen

ESGAP ESGAP ENDPEDIT

Oliver Dyar; Celine Pulcini; Bojana Beovic

Are we preparing medical students to prescribe antibiotics responsibly?

Oliver Dyar



SCMID STUDY GROUP OR ANTIMICROBIAL TEWARDSHIP

European Society of Clinical Microbiology and Infectious Diseases

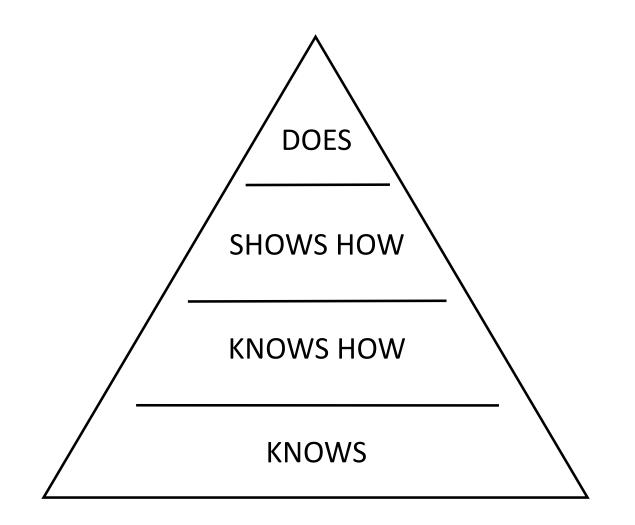
Why should students be prepared?

Are we preparing students?

"Students graduate from medical school using antimicrobial agents as a substitute for diagnostic acumen"

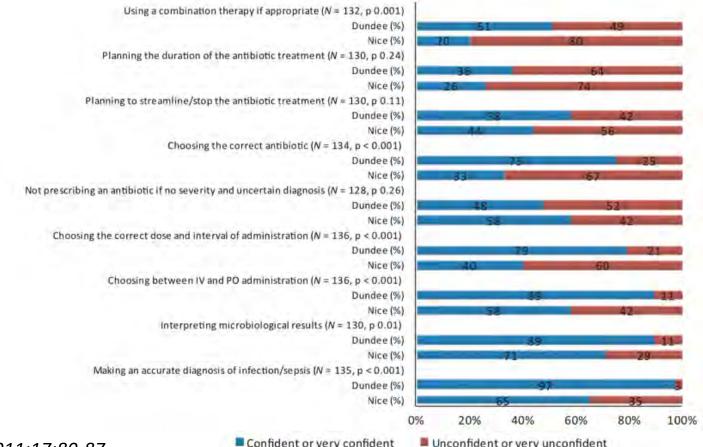
Harold C. Neu, 1978

Crossing the gap


天天天天

Skills that may be lacking:

Prescribing Decision making, treatment planning Taking responsibility for own learning Managing stress in the workplace Teamworking Interpersonal skills Competence in carrying out clinical procedures


Alexander C et al Clin Teach 2014; 11:188-192

Miller G. Acad Med 1990;65:S63-S67

Do junior doctors feel confident?

Pulcini C et al. CMI 2011;17:80-87

Confident or very confident

Unconfident or very unconfident

Curriculum study (2013)

Wide variations in content and structure

Some important principles poorly covered

National framework in only 4 countries

Pulcini C et al. CMI 2015 21(4):354-61

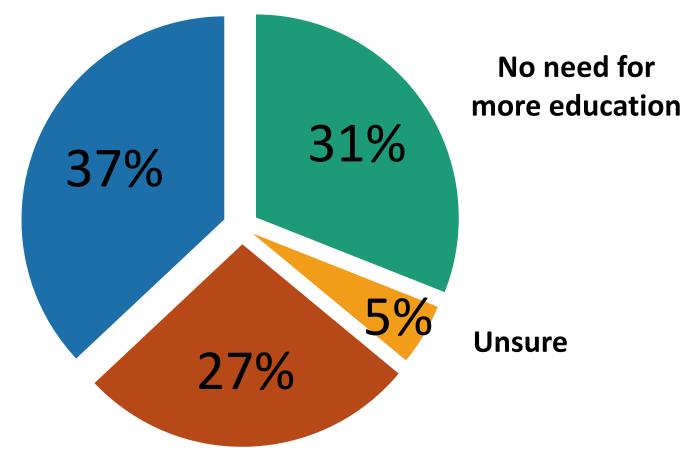
Do students feel prepared?

Study	Region	Percentage who would like or feel they need more education
Minen M et al 2010	USA	78%
Abbo L et al 2013	USA	90%
Huang Y et al 2013	China	89%
Dyar OJ et al 2014	Europe	74%
Haque M et al 2016	Malaysia	88%
Wasserman S et al 2017	South Africa	95%
Dyar OJ et al 2018	Europe	64%

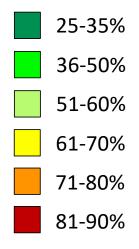
Student-PREPARE (2015)

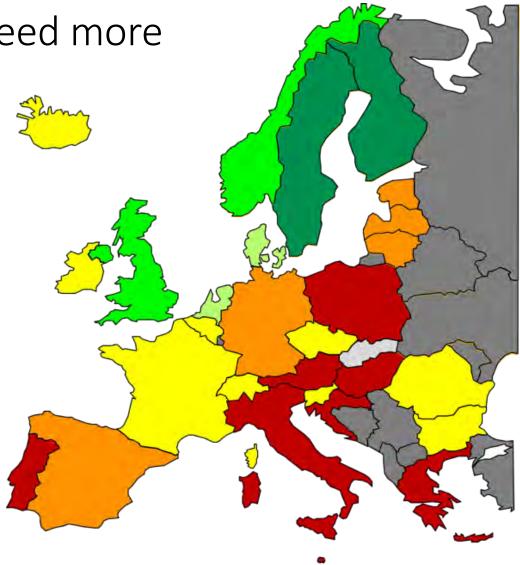
Cross-sectional questionnaire

All final year medical students eligible


Aim: identify specific unmet needs

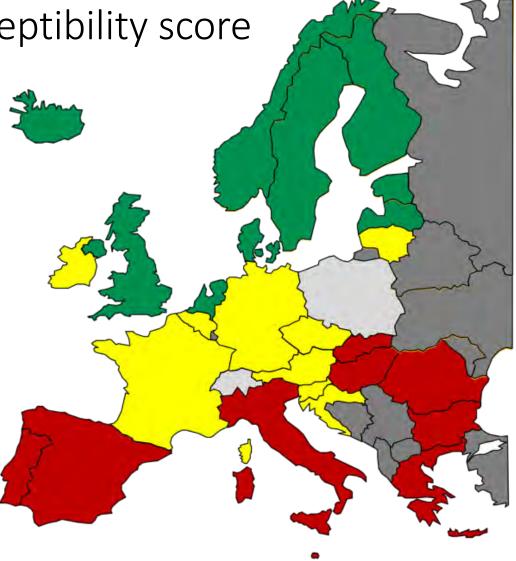
Dyar OJ et al. JAC 2018 73(8):2236-2242



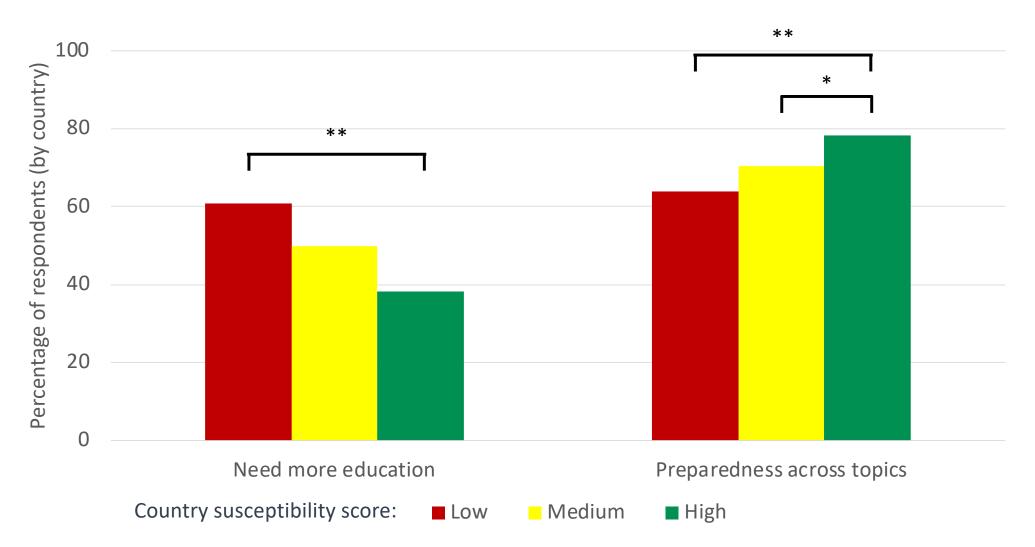

More education on responsible antibiotic use

More education on general antibiotics and responsible antibiotic use

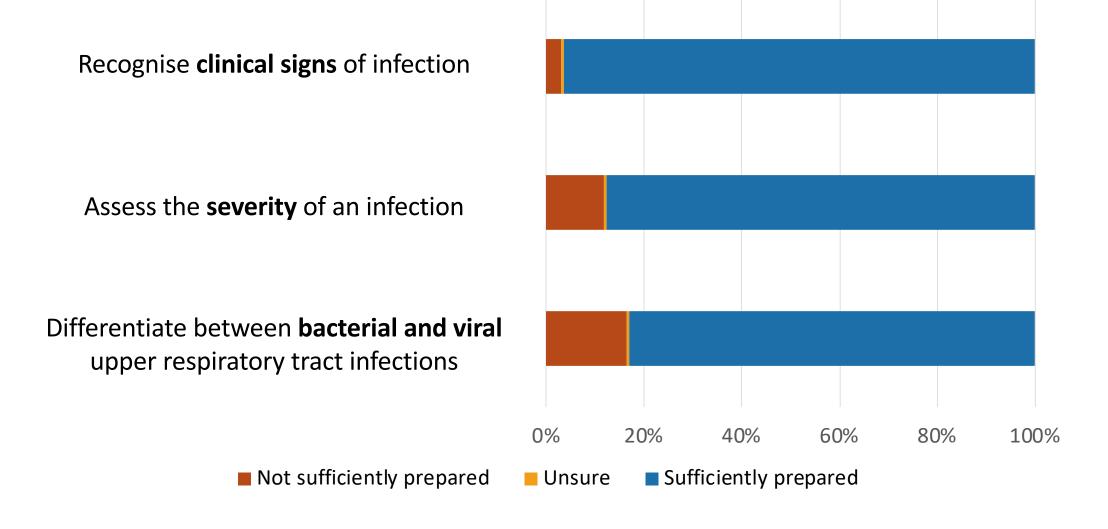
Students who feel they need more education on antibiotics



Country grouping by susceptibility score

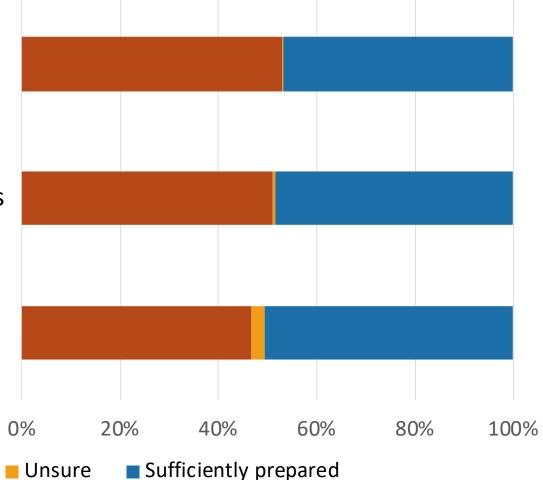


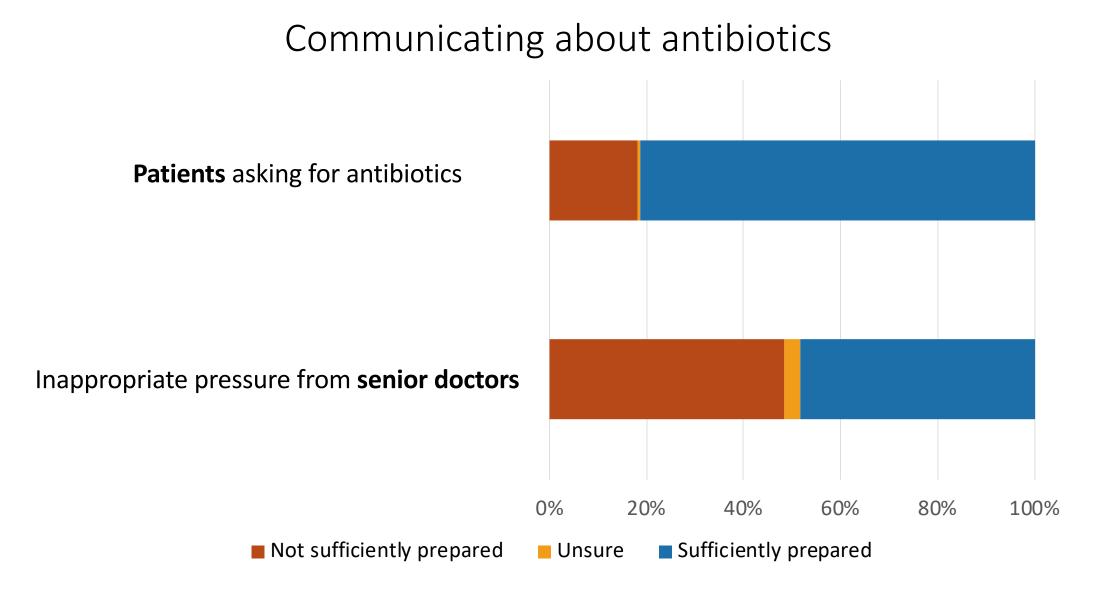
Score using 2014 EARS-NET data:


Methicillin – *S. aureus* 3rd generation cephalosporins – *E. coli* Fluoroquinolones – *E. coli* Macrolides – *S. pneumoniae*

Susceptibility score, education needs and preparedness

Students feel well prepared to


Students feel poorly prepared to


Decide the **shortest adequate treatment duration** for an infection

Use surgical antibiotic prophylaxis principles

Measure antibiotic use and interpret the results of such studies

Not sufficiently prepared

What? When? How?

World Health Organization

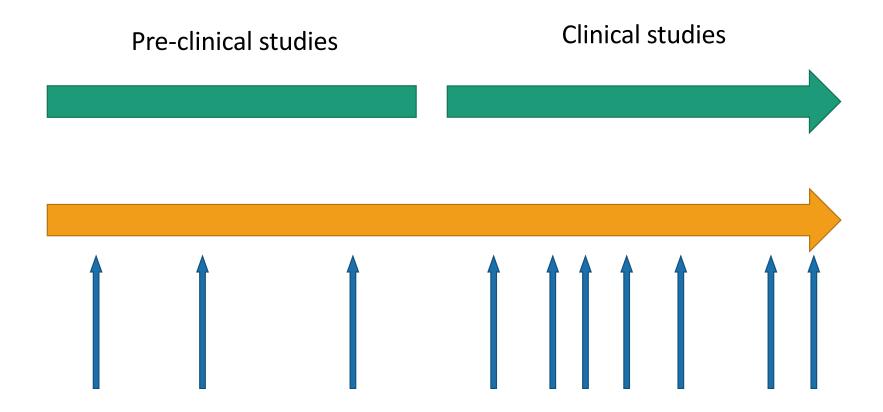
RESISTANCE

Table 1. AMR competency framework

oundations that	Antimipatrial resistance Category 1: All healt does alor?		kwarkers' Category & Prescribers		Category 1: Non-presentions"			Category 4: Public local th officers/ health corelase managers'			
oundations that						Bron Transati		Lange State	Next In the last		
	Relevance: High		Belenme: Hult	-	Relevantifich	_	Relevance Bul-	Selemma: High	Balesause: High		
build avareness of ant microbial resistance Congressory statement: that topy has the koulded approaches to ameria AMR, approaches to ameria AMR, at trace and trust al tracement des traces and trust al tracement to trace and trust al tracement ameria americane and approaches to traces and trust al tracement to trace and trust al tracement to proceed demonstra to proceed demonstra to proceed demonstra to proceed demonstra		animication device, decays, principles of admentations of animication admentations of animication admentat		Executing: Subservation for which of behaviours to a perpension. Subtra Subtra Subservation of the subservation and indexing supervises measures. 2. Other allows of the function in the medicate much subservation of the subservation of the medicate much Subservation and the subservation of the medicate much Subservation and the subservation of the medicate much Subservation		Construction for impaction office of the nucleoting indexton, resistance partners, quality offices that many sent and a family additional sentences. Sality of constructions balance international senders and day any particular balance day and constructions to animat individual senders and day any particular balance day any particular balance da	when takes cleaned and appropriate antimicrofield user. 3. Understand the takes and respectively of different shareshall be trained. Mendlers of the terminal of the terminal Mendlers				
1. 1. 1. 2.	Skills: 1. Ability to warpon communicate the	Articles Sol mistance		Category 124	beath warters'	Category	1: Prescribers'	600	pary 20 Non-prescribert		Catagory & Public health efficient
	appropriate pullic ANIX	****						-	-	Linestory classes Technical	Sealth similar managers'
	Attitudes: 1. Polonylé avazené approprise anter anonysi ali fesit palient communi privra public: 2. Act to privra public: 2. Act to privra the of antimuchials imperative and a	build of an	dations that lawareness timicrobial tance			Joppropr En antien protocci 3. Underst behavio af press	ig its settings und where (atte, excarage adhering worked in terminate y) instantions, and basic principies of an change in the convent shing antimice table and and prescripting behaviour spets				 Establish and advance compliance- with animicrobial lamalary¹ spatioal interactions allowed and narroad levels azonting to mentry policies. Iogether with only according to selection for the separatelian development of news advance the law policies.
		findiade toryeftic * Non-pri	In the prescribing comp excilores include health	Apretails, Noile Chat seleccies are releva h workers that are	pharmachers, marves an entite the different cad not allowed by regulat	nd midwhen ár Inn muy sar y a Son to periorille	ng other health care workers are also conding to susperial pointer and lo conding to susperial pointer and lo continuentials. This for that is used in the submodule of the theory of the submodule for all groups who have a loss dirith	cal regulation. Hettings, pharmacists, musies and m	abolies are allowed by regal		
			L	~							

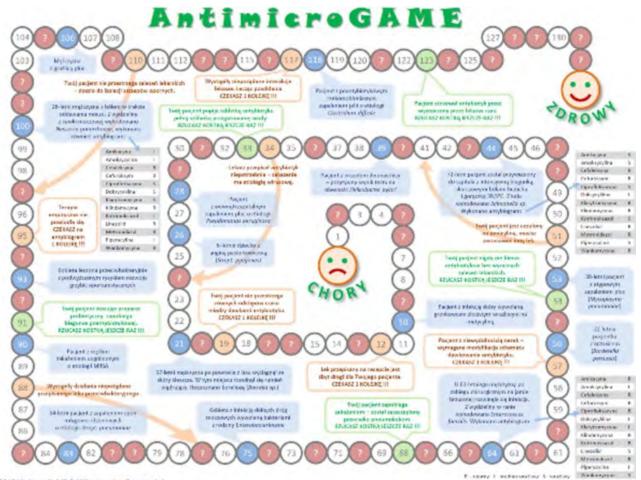
Generic competencies in antimicrobial prescribing and stewardship (2018)

66 expert panel members24 countries


High acceptance 98% of expert panel

Dyar OJ et al. CMI 2019 25(1):13-19 https://www.escmid.org/escmid_publications/white_papers/

When?


How much time?

Castro-Sanchez E et al. PLoS One 2016 11(2):e0150056

Log in			Cr	eated by P.M.B	lloemendaal	RSS Help Co	ontact Abou
You can search directly for applica start them you need to be logged new account.		Search by keyword through information on lessons of the participating institutions.					
E-mail address: Password:	Login Remember				GO Institution:	Advanced Select an institution	•
Forgot your password	Outcome		E-learning	Contro	Δ	95% CI	Р
Create a new account	Short-term						
	- knowledge	⊨	4.97	4.47	0.50	(0.04–0.95)	0.032
	Long-term						
	- overall	⊢ i	7.07	6.76	0.31	(0.08-0.53)	0.007
	- knowledge	⊢	6.87	6.55	0.32	(0.03-0.62)	0.031
	- drug choice		7.04	6.54	0.51	(0.04-0.97)	0.034

Sikkens J et al. JAC 2018 73(8):2243-2246

@ 2013 Karbownik M5 & Wiktorowska-Owczarek A

Karbownik MS et al. FEMS Microbiol Lett 2016 363(7): pii: fnw045

JAC-Antimicrobial Resistance

Education and research in antimicrobial stewardship and resistance

academic.oup.com/jacom/

ANTIMICROBIAL CHEMOTHERAPY OXFOR

Announcing the launch of

JAC-Antimicrobial Resistance

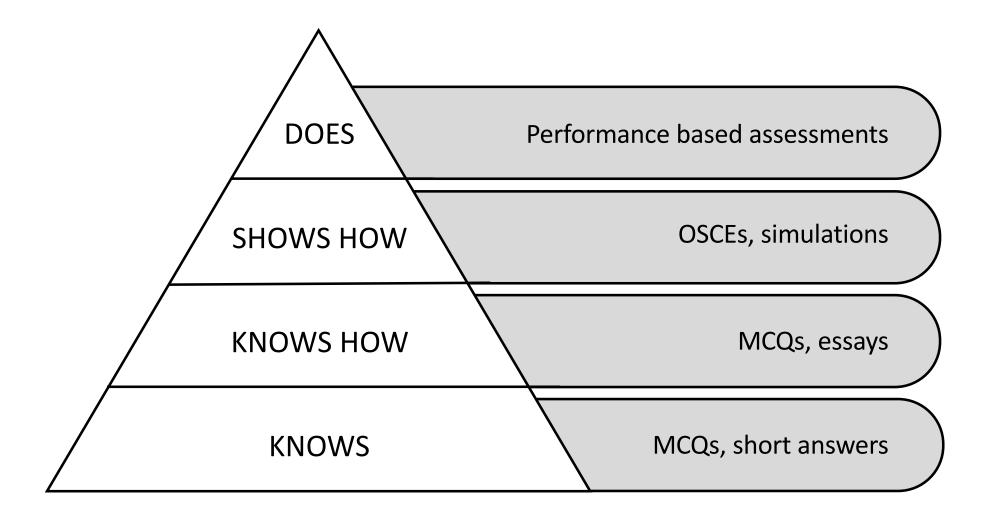
An antimicrobial revolution through learning and doing

Bringing education to life through the curation of peer-reviewed e-learning educational resources and original research from healthcare professionals, academia and commerce

Editor in Chief

Professor Dilip Nathwani, OBE

In collaboration with the Center for Infectious Disease Research and Policy (CIDRAP) http://www.cidrop.umn.edu BRITISH SOCIETY FOR ANTIMICROBIAL CHEMOTHERAPY


A global society

Dedicated to saving lives through appropriate use and development of antibiotics now and in the future

Delivering open access education for everyone around the globe

www.bsac.org.uk

Miller G. Acad Med 1990;65:S63-S67

Tomorrow's prescribers (and patients) need us to:

- Improve undergraduate education on responsible antibiotic use
- Reach a greater consensus on the what, when and how
- Develop, evaluate and share educational resources

Next generation sequencing: first diagnostic one-stop shop in one health microbiology

John WA Rossen

Personalised Microbiology

Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

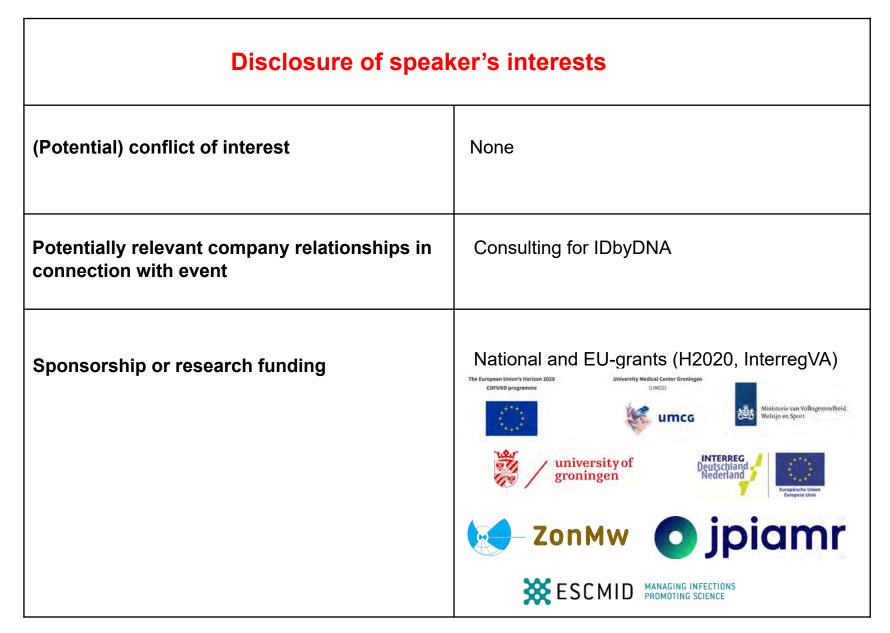
> ESCMID STUDY GROUP FOR GENOMIC AND MOLECULAR DIAGNOSTICS

European Society of Clinical Microbiology and Infectious Diseases

Rossenlab Personalised Microbiology

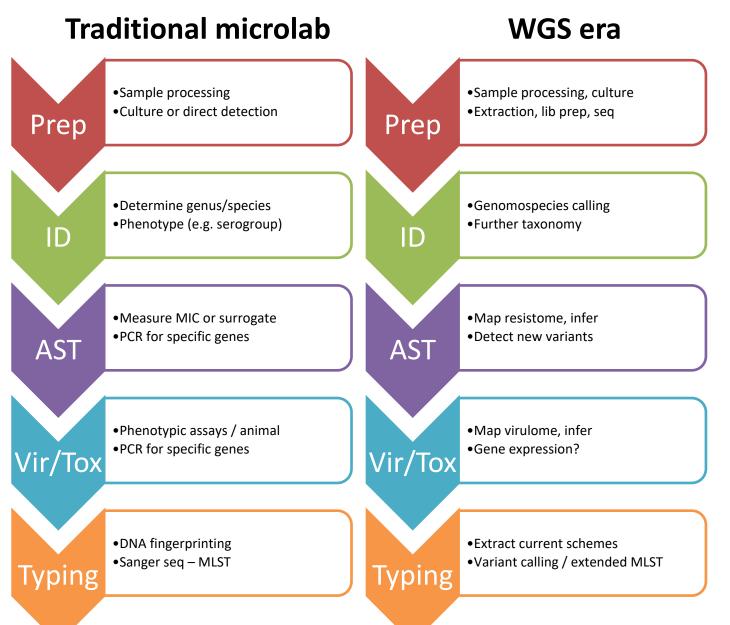
🔰 @rossenlab

@SolidnessJPIAMR Solidness.eu

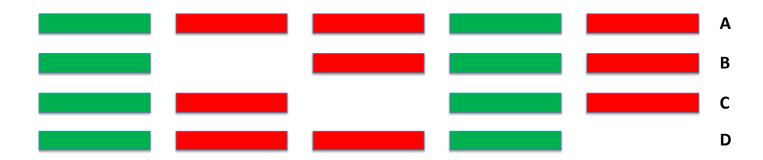

info@solidness.eu

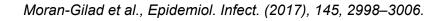
Human (AZU) Animal (VET)

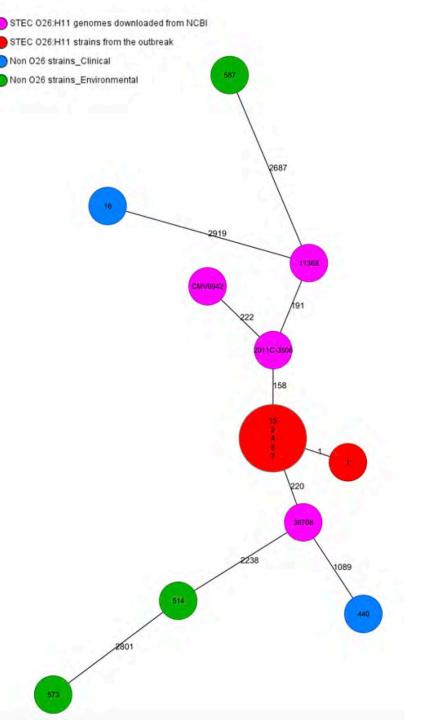
John's PhD

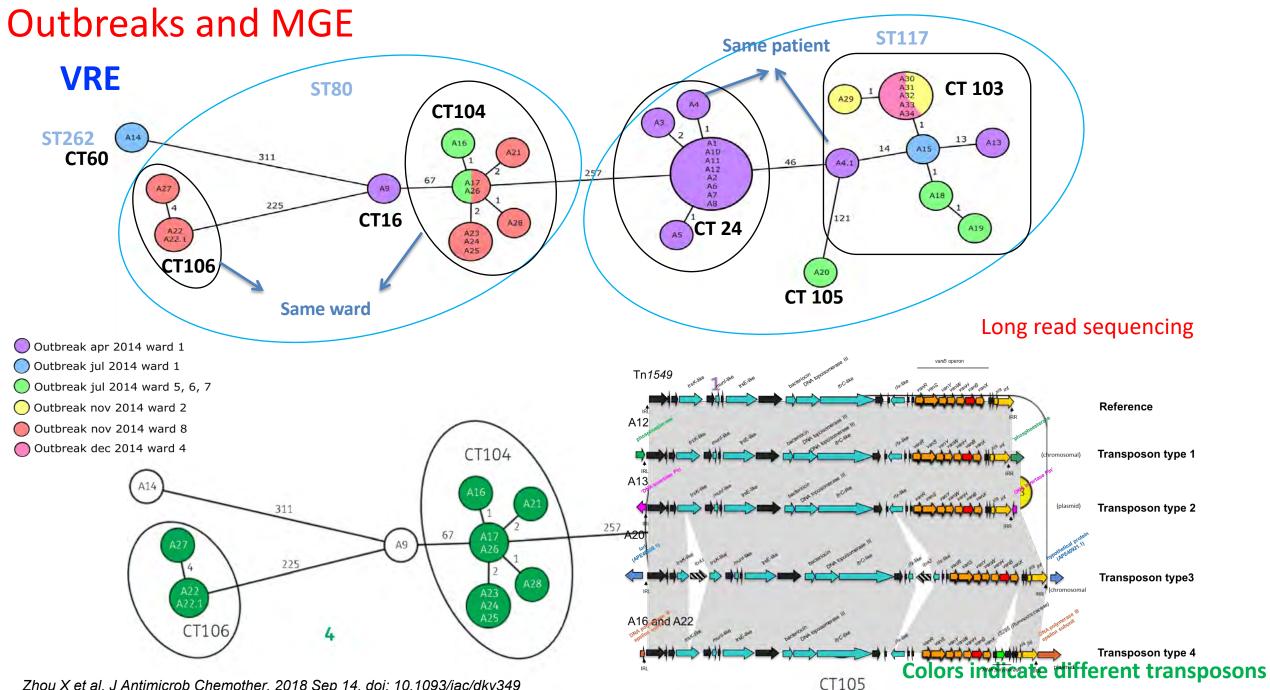

space (ENV)

WGS as 'One-Stop Shop'




By courtesy of Prof. dr. Jacob Moran-Gilad


WGS to map Outbreaks


- outbreak STEC young infants at a nursery
- repeated animal contact (animal farming and petting)
- Whole genome sequencing (WGS) → real-time investigation and revealed a unique strain of STEC O26:H11 carrying stx2a and intimin
- first STEC outbreak reported from Israel

core genome MLST → nomenclature (CT)
 accessory genome MLST
 whole genome MLST

Zhou X et al. J Antimicrob Chemother. 2018 Sep 14. doi: 10.1093/jac/dky349

Plasmid-mediated colistin resistance

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Yi-Yun Liu*, Yang Wang*, Timothy R Walsh, Ling-Xian Yi, Rong Zhang, James Spencer, Yohei Doi, Guobao Tian, Baolei Dong, Xianhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xiaojie Chen, Luchao Lv, Dandan He, Hongwei Zhou, Zisen Liang, Jian-Hua Liu, Jianzhong Shen

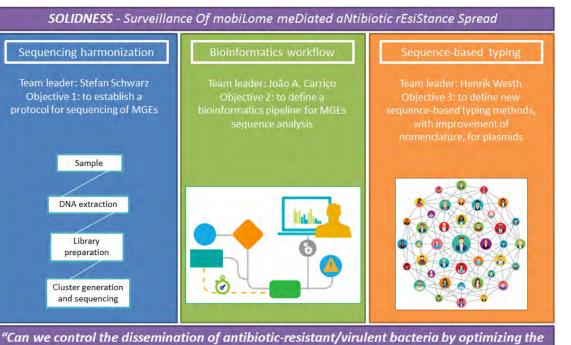
Presence of *mcr-1*-positive Enterobacteriaceae in retail chicken meat but not in humans in the Netherlands since 2009

Marjolein F.Q. Kluytmans - van den Bergh^{1,2}, Pepijn Huizinga³, Marc J.M. Bonten^{1,4}, Martine Bos⁵, Katrien De Bruyne⁶, Alexander W. Friedrich⁷, John W.A. Rossen⁷, Paul H.M.Savelkoul^{8,9}, Jan A.J.W. Kluytmans^{1,3}

Image: Section of the section of t	Loded Sangles 0 15+ E-	- Longie: \$10+(2012/01)		
 The Control of the Cont		a Vering Test		
<pre></pre>				
A Construction of the second of the		S 4. poemotion Accessory 2611 Mar.	Instantia Casta	
		And in case of the second second second		
Control of the c		5. and microsoft (4.17 (100+ 17)(1206) (1)	A Basic Schurt	a Darasterate El files El health
Beneral State		A statement of the statement of		
		Landsmann Hart & 2254 September (4)	Jack D	1084 CH003785
Benefit and the set of the s		Reader State of State Party States	and they	LODA CRIMINAL
Ben - Landrad - Landr		and the second s		HE O HOUTE
Bit Construction Bit Construction Bit Construction Bit Construction Bit Construction Bit Construction <td></td> <td>In the second</td> <td>Anderstow Galler</td> <td></td>		In the second	Anderstow Galler	
Image: Section of the sectio		In Tap and the	Parallel Trees	
 Constraints of the set of the s				
Processing in the set of the s			Gilelelin	unideant.
Constraints Constrain			Common Common	Lorris Phonestas
Augusta 10 A				
• • • • • • • • • • • • • • • • • • •				
Basel in the second secon				
Bandbard in the second se				
Books ()				
Control of a second secon				
Provide and the second se				
PODELED :				
Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation) Image: Control (interpretation)				
PORT INTER INTERNATION PORT INTERNATION				
Constrained of the set of th				
TITLE Construction Total Constructio	# CPO-2014-0032_1.00			
Production (Constraint)				
Construction C				
Provide status () Provide status (
Important (intervent) Important (intervent) Important (intervent)				
Provide status (source s				
Procession of the second				
Constant Section 2 and Se	displaying 1 (4)			
Example State	() and pre-mortan pletty 1 (4)			
Exception of the Part of				
Experimental State				
Experimental State (Second Second Secon				
El No 100-402 Constantia de la				
Const Development (Const De	II. II. MOL I NOM-4042			
Construction Statement Statement State State Statement StatementStatement Statement	11 - than 24 (1)		(inclusion)	
Experimental Vit : 2014 type UNIX-024 space 244 (pare Vit model Vit : 2014 type UNIX-024 space 244 (pare Vit model Vit : 2014 type UNIX-024 space 244 (pare Vit model Vit : 2014 type UNIX-024 space 244 (pare Vit model Vit : 2014 type UNIX-024 space 244 (pare Vit model Vit : 2014 type UNIX-024 space 244 (pare Vit model Vit : 2014 type UNIX-024 (pare Vit				
Expectation base M Expectation base			Contract	OVI 7 3018
SCA (data-14) Concept:			List Solution	
Crear-1 (page 74) (messare 22 () messare 23 () (messare 23 () () () () () () () () () ()				
Collector: Delet. This field must be filled for public publi			Marmite	
()				Ins Real must be filled for public submassion
mitter 42 (3) Dener Depretation even (Lancese Detail Service Detail Service		Dener/Depretationer/Jamore tot-J	anne Deats Ta	about Pances

Euro Surveill. 2016;21(9). doi: 10.2807/1560-7917.ES.2016.21.9.30149.

In silico resistance screening


SOLIDNESS - Surveillance Of mobiLome meDiated aNtibiotic rEsiStance Spread

The main goal of SOLIDNESS is to establish a network of excellence for surveillance of MGE- mediated antibiotic resistance and virulence spread

Natacha Couto, scientific coordinator

solidness.eu

surveillance of mobile genetic elements?"

JPI-AMR 7th call project – supported by ZonMw

university of groningen

Spyros Pournaras University of Athens Greece Martin Sundavist Örebro University Hospital Sweden Paulo Damasco Federal University of Rio de Janeiro Brazil João A. Carriço Universidade de Lisboa Portugal Annamari Heikinheimo University of Helsinki Finland Stefano Morabito Istituto Superiore di Sanità Italy Edward Feil University of Bath UK Jacob Moran-Gilad Ben-Gurion University of the Negev Israel Henrik Westh Hvidovre Hospital Denmark Hajo Grundmann University of Freiburg Germany Teresa Coque Ramón y Cajal University Hospital Spain Tjaša Cerar Kišek University of Ljubljana Slovenia Engeline van Duijkeren, RIVM, The Netherlands Adam P. Roberts, Liverpool School of Tropical Medicine, United Kingdom Holger Rhode, Universitätsklinikum Hamburg-Eppendorf, Germany Pieter-Jan Ceyssens, Sciensano, Belgium Joana Azeredo, University of Minho, Portugal

John Rossen, University of Groningen Netherlands – Lead partner

Stefan Schwarz Freie Universität Berlin Germany Silke Peter University of Tübingen Germany Alban Ramette University of Bern Switzerland

Adam Roberts Liverpool School of Tropical Medicine

WGS for discovering new resistance genes/mechanisms

- Three metronidazole resistant *P. bivia* strains
 - UMCG-3721 gluteal infiltrate of a 75-year-old patient resistant to amoxicillin, clindamycin and metronidazole, susceptible for amoxicillin-clavulanic acid and meropenem
 - UMCG-93105 abdominal infection of a 68-year-old patient resistant for amoxicillin, clindamycin and metronidazole, susceptible for amoxicillin-clavulanic acid, piperacillin-tazobactam and meropenem
 - UMCG-8631 from a previously healthy 27-year-old patient treated with cefotaxime, metronidazole, and teicoplanin (later vancomycin) → finally antibiotic treatment was switched to piperacillin/tazobactam and vancomycin

Three metronidazole resistant P. bivia strains

Fig 1. An aligment of the amino acids of the new NimK and other Nim proteins. 50 20 30 10 40 nimK -----MEREMRRKRCQLSTEECIAILEKMTSGVLALNEEGGVPYAVPLS nimJ -EFREMRRKRCQLSEEESIAILCKATAGTLALLGDNDYPYAVPIS nimI **EFREMRRKRCCLSDAECVGILENATSGTLALCGD** nimH REMRRKRCLLPTEESITILEKMTNGTLALHGD nimF EMRRKROCLSAEESIAILERMTNGVLALHGDEG nimE EMRRKRCLLPCEESVAILEKMTNGTLALHGDNC nimD EMPRERCLLPTEESVAILERMINGTLALE nim(AMRPKRHELPTDESVGILKRMTNGTLALF nimB REMRRKROLLPTEESVAILERMINGTLAL nim MRRKRCCLSTEECVAVLEKMTSGVLALNEENGY nimA EMRRKRCLLPPEESLAILERMTGGTLALHGDNGYP 100 70 80 90 60 YVYSDNKIYFHSAIKGHKIELLEKNENVSFCVIECDHIVPEEFTTY nimK FOSV nimJ YVYADGRLYFHSALSGHKVDAIRKCDKASFCVIECDEVHPEK nimI YVHADGKLYFHSALKGHKVDAIRGCDKASFCVIEQDEV YVYADGKIYFHSAVKGHKVDAILRNNKVSFCVVECDDVKPAE nimH nimF YVYADGKIYFHSAMKGHKVDAIMRNERVSFCVVERDDVCPGE nimE YVYADGKIYFHCAKIGHKVDAIMQNNKVSFCVVEQDNIKPAEFT9 nimD YVYADGKIYFHSAMQGPKVDAILRNDKVSFCVVEQDEVKPAEFT YVYSDGRIYFHTATCGHKVDALMRNDKVSFCVVECDDVKSAEFT nimC nimE YVYADGKIYFHSAMKGHKVDAILQNDKVSFCVVEQDDIRPSEF YVYADNKIYFHSAVKGHKIDLLKENCNVSFCVIGCDCIVPEEF7 nim YVYADGKIYFHGAVCGHKMDAIRCHPEVSFCVVECDRIVP nimA 110 120 130 140 150 IVFGKARILLDEKEKMSALWKLGEKYSSGNAEALSAEISKGKN nimK ILLIIE nimJ RIHIIEDETEKLETARMLVNRYNPNCEEALOF nimI IAFGRIRILEDEAERMAAARLLGDRYHPHH nimH KARILADEGEKCLAFRLLADKYSHGEV VLFGKTRILTEEAEKLAALSLLADKYSPGEP-GKDAEIAKGFN-LI nimE IVFGKAYILTDETEKRMAMTLLVNKYSFGEP-GLSDEIAKSFNF nimD IVFGKARILTDENEKRNALNLLADKYSHGEA-GMEAEMAK IPFGRARILTDETENGAALQLLADKYSSGMP-GLEAVIAKGFR ILTDELEKRVALGLLADKYSYGEA-GMEAEIAK KARILTDENEKMSALRKLGEKYSSDNPEGLSEEI RILTDEVEKRAALLRLAEKYSSGES-GMCDEIDKGFD 160 170 180 nimK AIEHMTGKESIELVRAKKnim.J DIEHLTGKEAIELVRRHOK nimI DIEHMTGKEAIELVRMKROR nimH nimF

First description of a novel *nim* gene in metronidazole resistant *P. bivia* clinical isolates nimD Bacteroides fragilis (WP063854492) 31 nimB Bacteroides fragilis (WP063854490) 34 nimH Bacteroides fragilis (ACR56004) 28 nimE Bacteroides fragilis (WP070738109) 15 21 nimA Bacteroides vulgatus (WP032488596) 67 nimF Bacteroides vulgatus (CAD56147) nimC Bacteroides thetaiotaomicron (WP063854491) nim Candidatus Bacteroides timonensis (WP044266587) 100 nimK Prevotella bivia nimJ Bacteroides fragilis (WP005812825) 100 niml Prevotella baroniae (WP021588763)

0.050

Fig 2. A phylogenetic analysis of the *nimK* gene was performed using the maximum likelihood method. Amino acid sequences were aligned using the MUSCLE method in MEGA7. A consensus tree was calculated from 500 bootstraps. The final dataset consisted out of 151 positions.

nimE

nimC

nimF

nim nimA

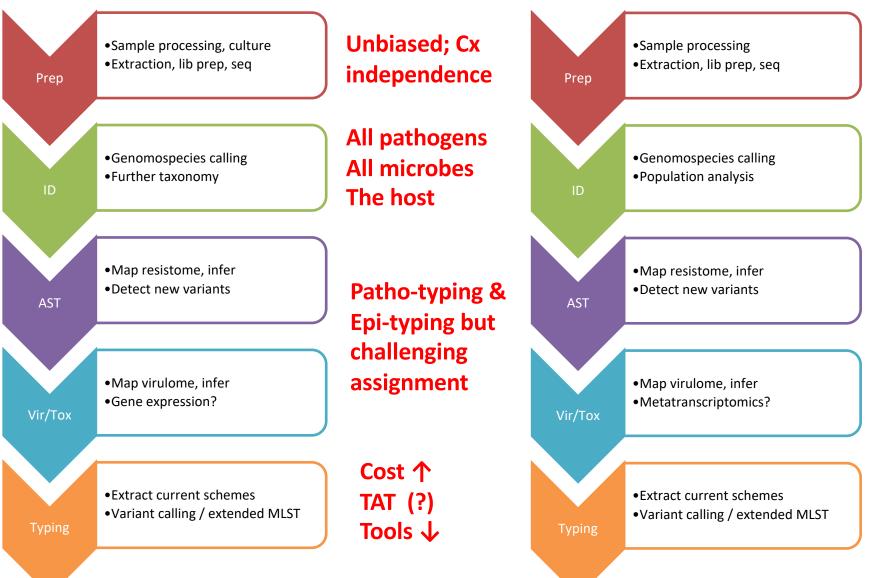
university of groningen

TVEHMTGKEAICLVRRKGNNRWDAFPSKDV

KEAIELVREKEK

KEAIELTRGRNGCS

GKESIELVREKNDM-

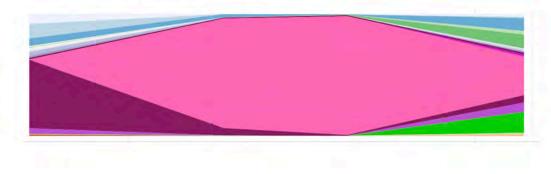

ATEHITGKEATELTKNRNDR

umcg

Shotgun Metagenomics vs. WGS

Clinical metagenomics

Bacterial WGS



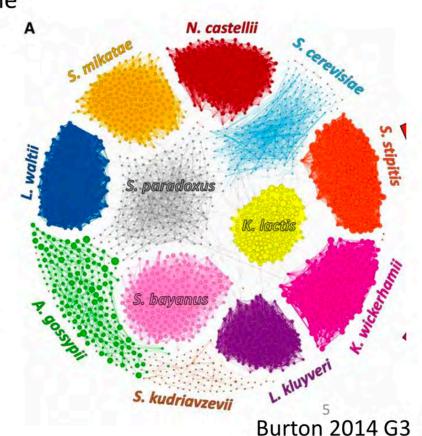
By courtesy of Prof. dr. Jacob Moran-Gilad

Metagenomics

Targeted-amplicon sequencing

- Taxonomical assignment
- Relative quantification
- Change over time

No Human DNA More sensitive Less data per sample

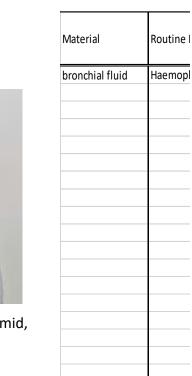

By courtesy of Claire Bertelli

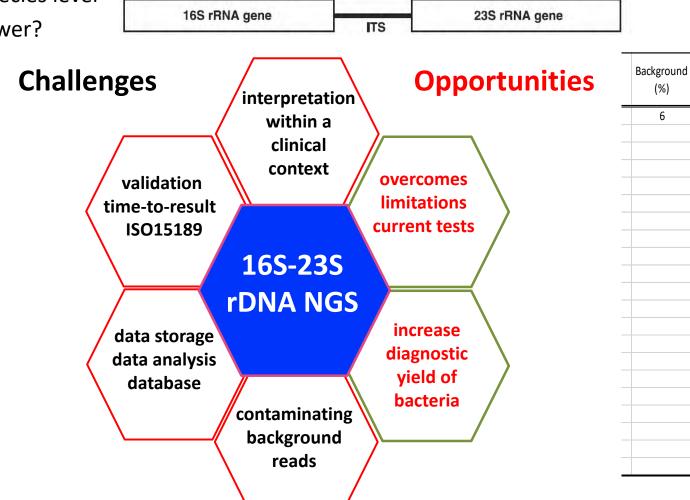
Shotgun metagenomics

- Taxonomical assignment
- Relative quantification
- Change over time
- Genomes
- Functions &

pathways

Human DNA Less sensitive More data \$\$\$\$\$


Targeted metagenomics using 16S-23S NGS


- 16S sanger sequencing: not suitable for ID of multiple pathogens in one sample
- 16 S NGS: not always ID to the species level
- 16-23S: higher discriminatory power?

Dr. Mirjam Kooistra-Smid, Certe

Sabat et al, Sci Rep. 2017 Jun 13;7(1):3434. doi: 10.1038/s41598 017-03458-6.

First pathogen detections

Nakamura 2008 Emerging infect Dis

Metagenomic Diagnosis of Bacterial Infections

Shota Nakamura, Norihiro Maeda, lonut Mihai Miron, Myonsun Yoh, Kaori Izutsu, Chidoh Kataoka, Takeshi Honda, Teruo Yasunaga, Takaaki Nakaya, Jun Kawai, Yoshihide Hayashizaki, Toshihiro Horii, and Tetsuya Ilda 🖂

Author affiliations: Osaka University, Suita, Japan (S. Nakamura, I.M. Miron, M. Yoh, K. Izutsu, C. Kataoka, T. Honda, T. Yasunaga, T. Nakaya, T. Horii, T. Iida); RIKEN Yokohama Institute, Yokohama, Japan (N. Maeda, J. Kawai, Y. Hayashizaki);

Cite This Article

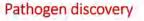
Abstract

To test the ability of high-throughput DNA sequencing to detect bacterial pathogens, we used it on DNA from a patient's feces during and after diarrheal illness. Sequences showing best matches for *Campylobacter jejuni* were detected only in the illness sample. Various bacteria may be detectable with this metagenomic approach.

34 year old male

Negative culture for Negative

Neg Norovirus PCR Metagenomics: C. jejuni


Pathogen discovery

Doan et al. Genome Medicine (2016) 8:90 DOI 10.1186/s13073-016-0344-6

RESEARCH

Illuminating uveitis: metagenomic deep sequencing identifies common and rare pathogens

Thuy Doan^{1,2†}, Michael R. Wilson^{3,4†}, Emily D. Crawford^{3,5}, Eric D. Chow³, Lillian M. Khan³, Kristeene A. Knopp³, Brian D. O'Donovan³, Dongxiang Xia⁶, Jill K. Hacker⁶, Jay M. Stewart², John A. Gonzales^{1,2}, Nisha R. Acharya^{1,2} and Joseph L, DeRisi^{3*}

A Novel Cause of Chronic Viral Meningoencephalitis: Cache Valley Virus

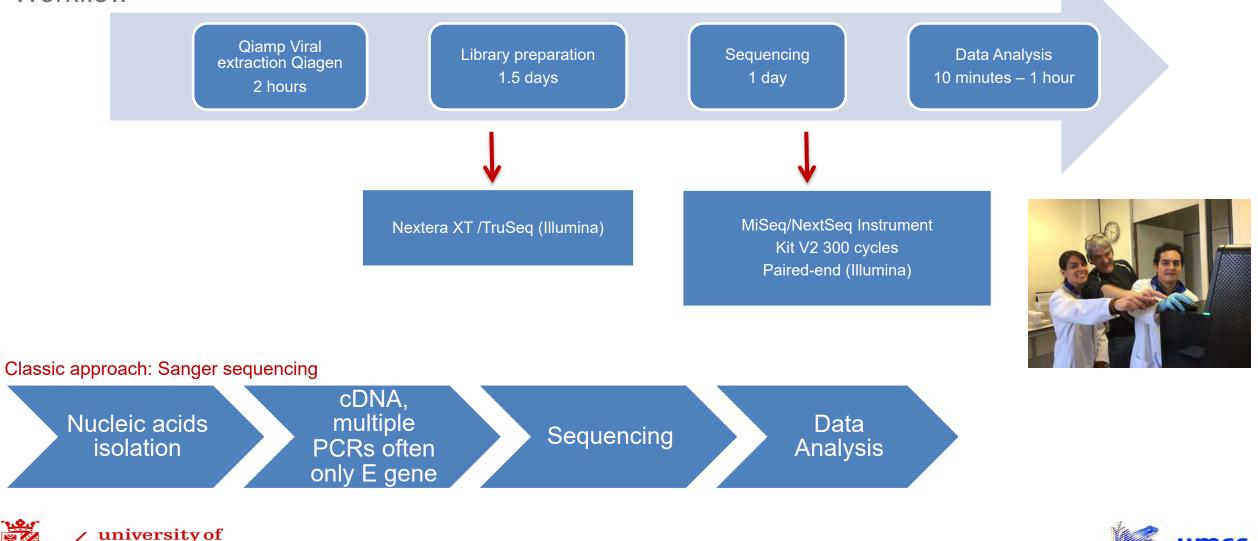
Michael R. Wilson, MD, MAS,^{1,2} Dan Suan, MBBS, PhD,³ Andrew Duggins, MBBS, PhD,⁴ Ryan D. Schubert, MD,^{1,2} Lillian M. Khan, BS,⁵ Hannah A. Sample, BS,⁵ Kelsey C. Zorn, MHS,⁵ Aline Rodrigues Hoffman, DVM, PhD,⁶ Anna Blick, BS,⁶ Meena Shingde, FRCPA,⁷ and Joseph L. DeRisi, PhD^{5,8}

Annals of Neurology, 2017;82:105-114

Genome Medicine

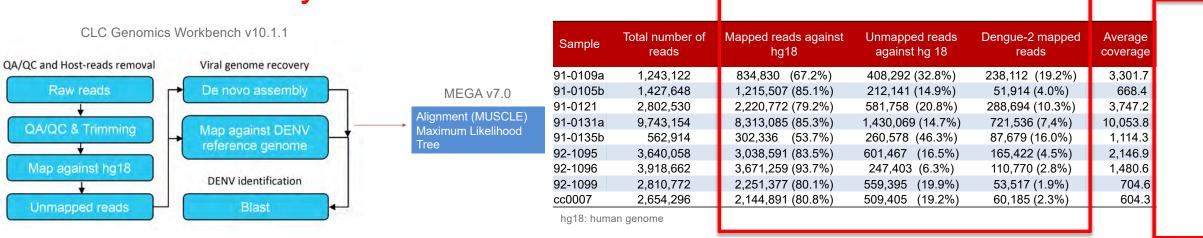
Open Access

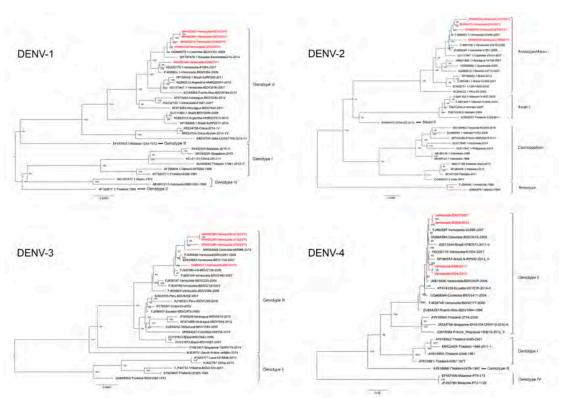
CrossMark

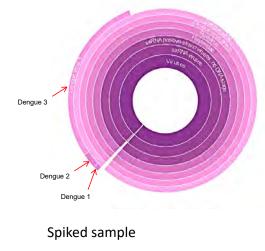


Dengue virus detection and typing from blood samples

17 DENV positive patients


groningen


Workflow



Bioinformatics analysis

Detection and visualization Taxonomer IDbyDNA)

CLC Genomics Workbench v10.1.1

Virus	Mapped reads	Coverage	Consensus (bp)	De Novo Assembly
DENV1	1180	15.45	10614	2796
DENV2	2514	32.4	10675	6736
DENV3	55952	733.66	10675	10555

Manuscript in revision, Erley Lizarazo, Natacha Couto, UMCG

Pathogen enrichment

ID	Viral reads SISPA	Viral reads SISPA+ViroCap	
1	104,363	7,391,047	
2	139,453	22,851,254	
3	22,093	650,270	
4	1,090,222	89,334,846	
5	32,472	3,032,847	
6	68,895	8,274,203	
7	57,723	8,812,685	
8	26,751	756,992	
9	191,573	37,481,234	
10	168,037	12,564,721	
11	116,148	20,913,469	
12	42,257	1,999,588	

Sequence-Independent Single-Primer Amplification (SISPA); ViroCap: enrich nucleic acid from DNA and RNA viruses from 34 families that infect vertebrate hosts

university of groningen

AMR detection in the WGS era a no go?

- published evidence for using WGS as a tool to infer antimicrobial susceptibility accurately --> poor or non-existent
- for most bacterial species major limitations are
 - current high-cost
 - limited speed
 - dependency on previous culture
- for most bacterial species there is currently insufficient evidence to support the use of WGS-inferred AST to guide clinical decision making

Antimicrobial resistance

Sample number	Conventional identification (MALDI-TOF)	Conventional susceptibility testing (VITEK 2) ^b	WGS CLC Genomics Workbench	Shotgun metagenomics		
				ReMatCh (Unix)	CLC Genomics Workbench ^a	
1	E. faecium S. haemolyticus	LEV, ERY, CLI OXA, GEN, CIP, FOS, ERY, CLI	erm(B), $msr(C)$, $ant(6')$ -Ia, aph(3')-III, $dfrGblaZ$, $mecA$, $ant(6')$ -Ia, $aph(3')$ - III, $aac(6')$ - $aph(2'')$, $erm(C)$, mph(C), $msr(A)$, $dfrG$	erm(B), msr(C), ant(6')-Ia, aph(3')-III, aac(6')-aph(2"), blaZ, mecA, erm(C), mph(C), msr(A), dfrG	erm(B), msr(C), ant(6')-Ia, aph(3')-III, aac(6')-aph(2"), blaZ, mecA, erm(C), mph(C), msr(A), dfrG	
2	E. avium E. coli Anaerobes	DOX, CLI susceptible —	# # #	Not detected Not detected catS, lnu(D), lsa(C), cepA-44, tet(Q)	Not detected Not detected catS, lnu(D), lsa(C), cepA-44, tet(Q), fusA	
3	S. epidermidis	OXA, GEN, TEC, FUS, CIP, ERY, CLI	-*	Not detected	Not detected	
4	S. aureus	PEN, ERY	blaZ, spc, erm(A)	Not detected	Not detected	
5	E. coli K. oxytoca S. anginosus E. faecalis Anaerobes	susceptible AMX susceptible DOX, CLI —	* blaOXY-1-3 * tet(M), lsa(A) *		 Not detected tet(O) cfxA4, tet(Q)	
6	E. faecium	PEN, AMX, CFX, IMP, GENhl, STRhl, LEV, ERY, CLI, AMP/SUL	erm(B), msr(C), ant(6')-Ia, aph(3')-III, aac(6')-aph(2"), dfrG	Not detected	Not detected	
7	S. aureus	PEN	blaZ	blaZ, norA	blaZ	
8	O. intermedium	AMX, PIP/TAZ, CFX, CFT, CTZ, IMP, FOX, TOB, FOS, NIT, TMP	blaOCH-2	blaOCH-5	blaOCH-2	
9	S. aureus	PEN	#	blaZ	blaZ	
10	S. marcescens	AMX, AMC, CFX, FOX, NIT, POL	-*	blaSST-1, tet(41), oqxB, aac(6')-Ic	tet(41), oqxB, aac(6')-Ic	

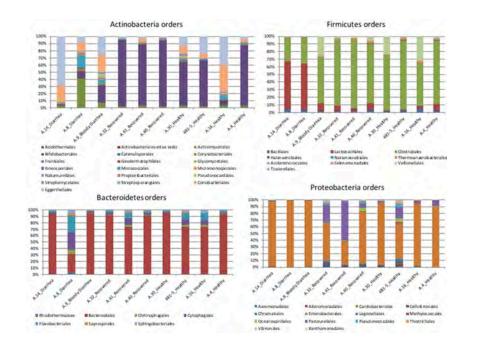
- 1, 7 and 9 genotypes and phenotypes correlated well
- Other samples not all AMR genes explaining phenotypic resistance identified
 - 1, 5, 7 and 10 different results ReMatCh vs CLC Genomics workbench

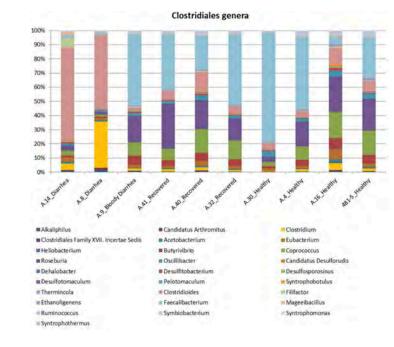
Couto N et al., Sci Rep. 2018 Sep 13;8(1):13767. doi: 10.1038/s41598-018-31873-w

university of

There is hope...

- WGS-based MIC prediction allows reliable MIC prediction for five gonorrhoea antimicrobials Eyre et al. J Antimicrob Chemother 2017; 72: 1937–1947
- WGS can aid in the timely diagnosis of *Mycobacterium tuberculosis* drug resistance and guide clinical decision-making Ruesen et al., scientific reports / (2018) 8:9676 | DOI:10.1038/s41598-018-27962-5
- Whole-genome sequencing effective tool for predicting antibiotic resistance in nontyphoidal *Salmonella*, although the use of more appropriate surveillance breakpoints and increased knowledge of new resistance alleles will further improve correlations *McDermott et al. Antimicrob Agents Chemother 60:5515–5520. doi:10.1128/AAC.01030-16.*





Metagenomics and the microbiome

 changes in the intestinal microbiota in samples from patients with Shiga Toxinproducing E. coli (STEC) infection compared to healthy and healed controls

- Inducing immune respons
- Protecting against GI pathogens colonization (competition of binding to EC)
- *in vitro* protection of host epithelial cells from the effect of Shiga toxin

Higher abundance of Bifidobacteriales and Clostridiales in STEC negative persons (healthy, healed)

•

Challenges

- Clinical sensitivity and specificity → depletion human DNA /enrichment microbial DNA/RNA
- Genotype not always phenotype (AMR) \rightarrow RNAseq?
- Which genes belong to which pathogen ? \rightarrow Single cell sequencing
- Presence of contaminant DNA \rightarrow reagents, sample taking
- Persistence of DNA from dead microbes \rightarrow RNAseq
- Presence of microbial DNA in healthy individuals \rightarrow host response?
- Colonization versus infection → host response, RNAseq?

Collaborations and acknowledgements

UMCG – Guide

Natacha Couto Kai Zhou Silvia Garcia-Cobos Monika Chlebowicz Bhanu Sinha Linda Veloo Jan Maarten van Dijl Ymkje Stienstra Artur Sabat Alex W Friedrich Erik Bathoorn Mariette Lokate Xuewei Zhou Nilay Peker Ana Carolina da Cruz Campos Leonard Schüle Maaike van den Beld Mithila Ferdous Erley Lizarazo Forero Kathleen Boiten Sigrid Rosema Brigitte Dijkhuizen Erwin Raangs Fenna Bosma Yvette Bisselink **Ruud Deurenberg**

UMCG – Guide cont. Willy Baas Hamideh Ahmad Viktoria Akkerboom Jessica de Beer Henry Wiersma Anna Rubio Garcia Suruchi Nepal Adriana Tami Maria Eugenia Grillet Maria Vincenti-Gonzalez Corinna Glasner Jerome Lo Ten Foe Greetje Kampinga

UMCG – Griac

Maarten van den Berg Ben Ditz Jeunard Boekhoudt Huib Kerstjens Irene Heijink Martijn Nawijn Reinoud Gosens Alen Faiz

Certe Mirjam Kooistra-Smid

Evert van Zanten Guido Wisselink

eriba Victor Guryev

UCSF Stephanie Christenson

Universitätsklinikum Tübingen Silke Peter Ingo Autenrieth

Faculdade de Medicina de Lisboa

João André Carriço Catarina Inês Marques de Sousa Mendes Mário Ramirez

Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel Jacob Moran-Gilad UMC Utrecht Amphia/MicroVida Jan Kluytmans Marjolein Kluytmans – van den Bergh Suzan Pas Eefje Schrauwen Joep Stohr

Universidade do Estado do Rio de Janeiro Paulo Damasco Ana Claudia Rosa

Metanet (not yet listed)

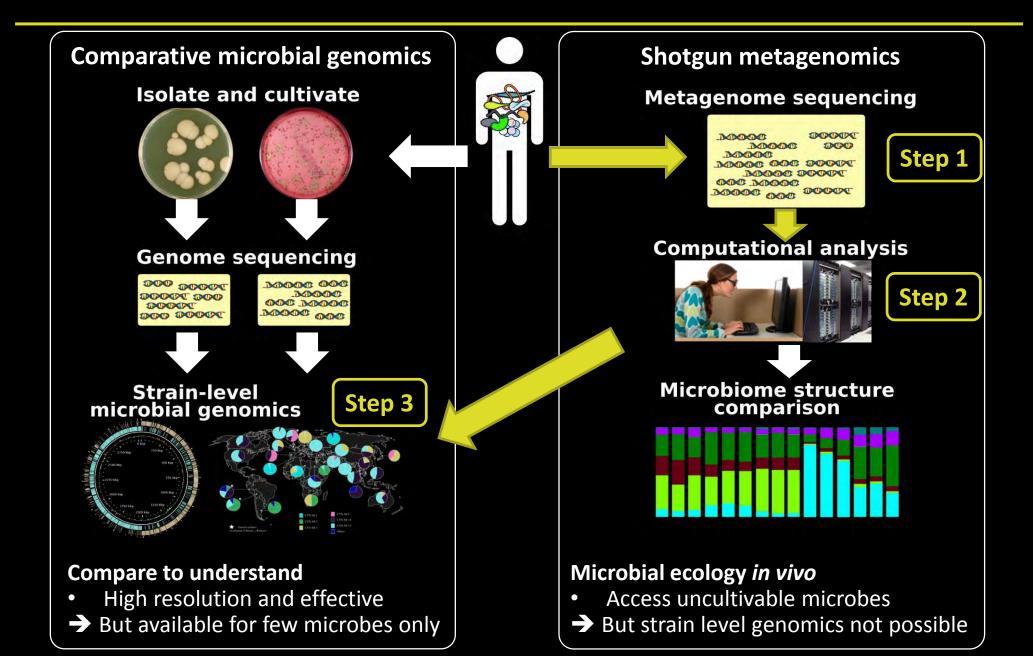
Henrik Torkil Westh Alexander Melmann Dag Harmsen Robert Schlaberg

I apopologize in advance if I forget to mention people – please contact me afterwards if you think your name should be on this slide

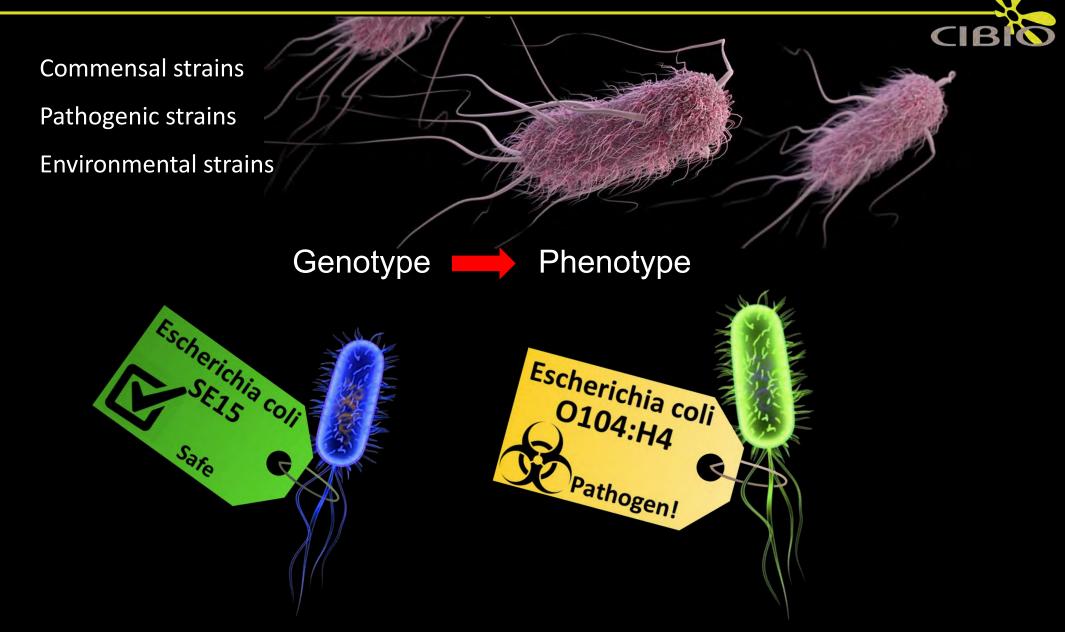
Cultivation-free detection and characterisation of pathogens by metagenomics

Adrian Tett

Laboratory of Computational Metagenomics Centre for Integrative Biology, University of Trento, Italy


17th April, 2019

Netherlands


DI TRENTO

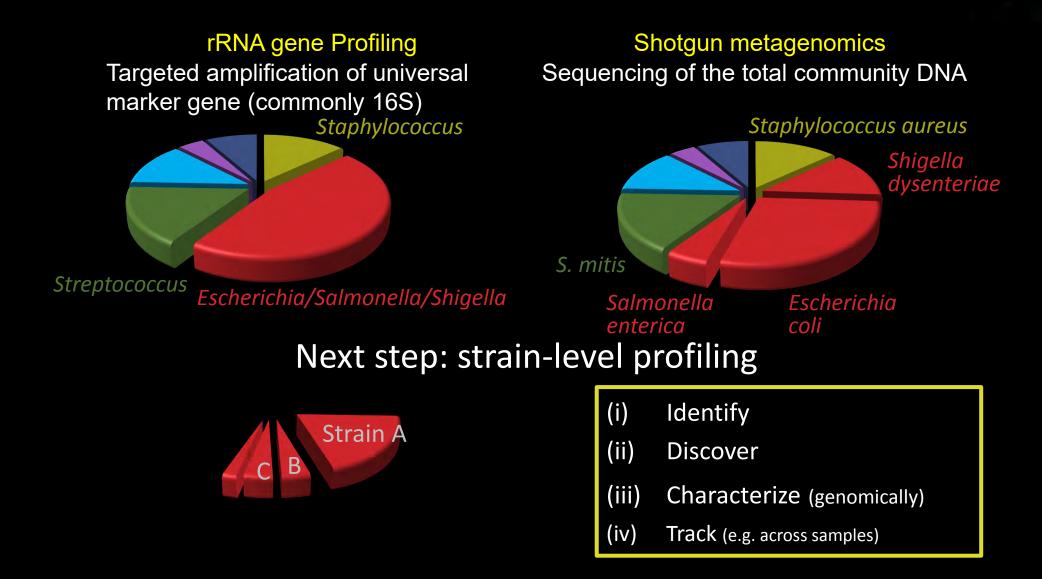
UNIVERSITÀ DEGLI STUDI

Toward strain-level comparative genomics from metagenomics

Strains matter not only for pathogens

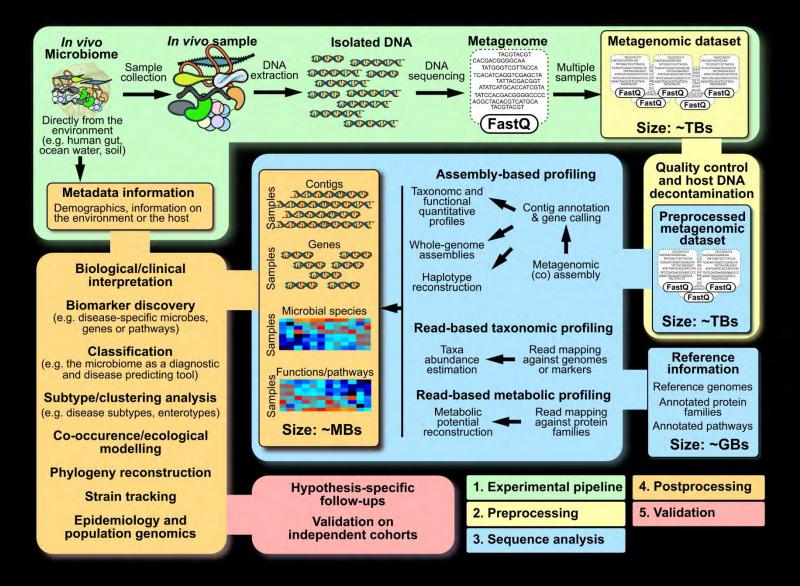
The non-culturable revolution

rRNA gene Profiling Targeted amplification of universal marker gene (commonly 16S) Shotgun metagenomics Sequencing of the total community DNA


- Not genome-wide
- Limited taxonomic resolution
- No functional insights
- Cannot catch viruses and eukaryotes
- Cost-effective
- Avoids host DNA contamination
- Several (usually underestimated) biases
- Almost impossible for cross-study comparisons

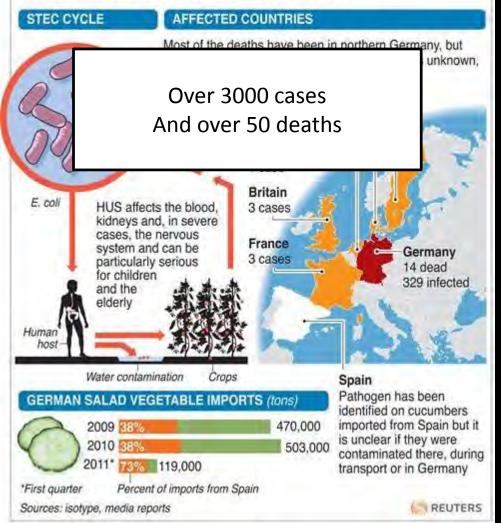
- Genome-wide
- High taxonomic resolution
- Functional profiling
- Can survey all domains of life simultaneously
- More expensive
- Host DNA contamination
- Computational challenges

The non-culturable revolution

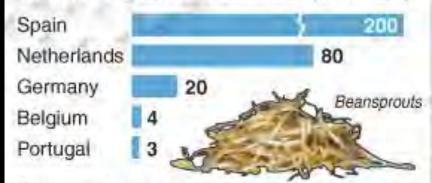


Moving toward strain-level metagenomics

CIBIO



Pathogens from Metagenomes


ESCHERICHIA COLI OUTBREAK

Hemolytic-uremic syndrome (HUS) is a serious complication of a type of E. coli known as Shiga toxin-producing E. coli (STEC)

WEEKLY ECONOMIC DAMAGE (in millions)

CIB

Raw sprouts are popular among Germans and often mixed in salads or added to sandwiches

The outbreak strain is a (re)combination of:

- an enteroaggregative (EAEC) strain: pAA plasmid
- an enterohemorrhagic (EHEC) factors: Shiga-toxin gene
- an antibiotic resistence factor: beta-lactamase

Metagenomes from [Loman et al., 2013]

Recent Metagenomic tools

Nucleic Acids Research

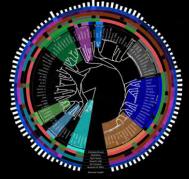
ENOME

MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples

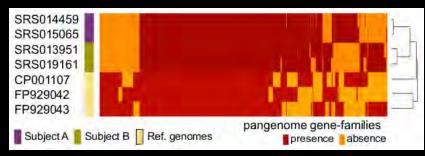
Moreno Zolfo¹, Adrian Tett¹, Olivier Jousson¹, Claudio Donati² and Nicola Segata^{1,*}

MetaMLST

Assumption: Each strain has a unique combination of.....


Method

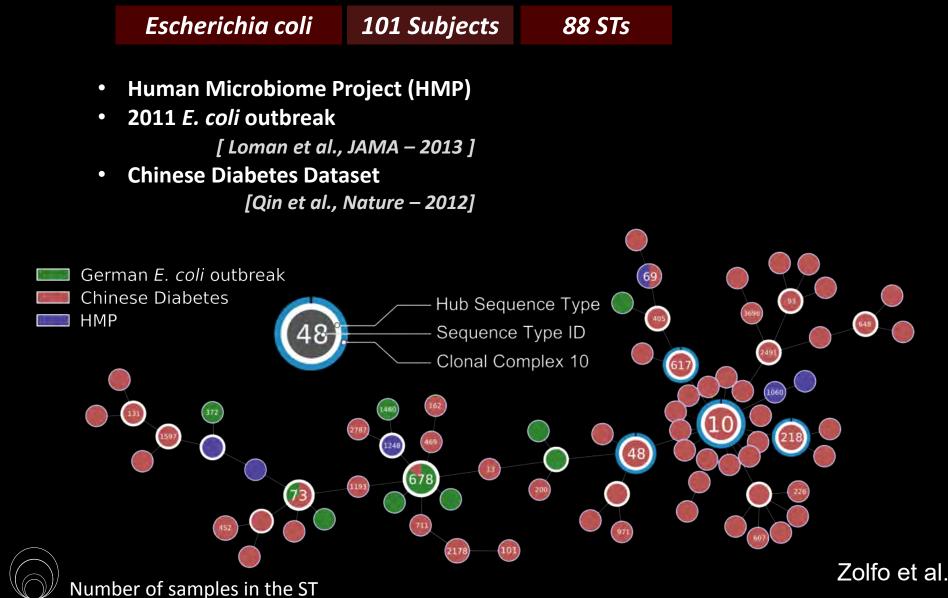
Microbial strain-level population structure and genetic diversity from metagenomes


Duy Tin Truong, 1 Adrian Tett, 1 Edoardo Pasolli, 1 Curtis Huttenhower, 2,3 and Nicola Segata 1

nd genetic genome, StrainPhIAn

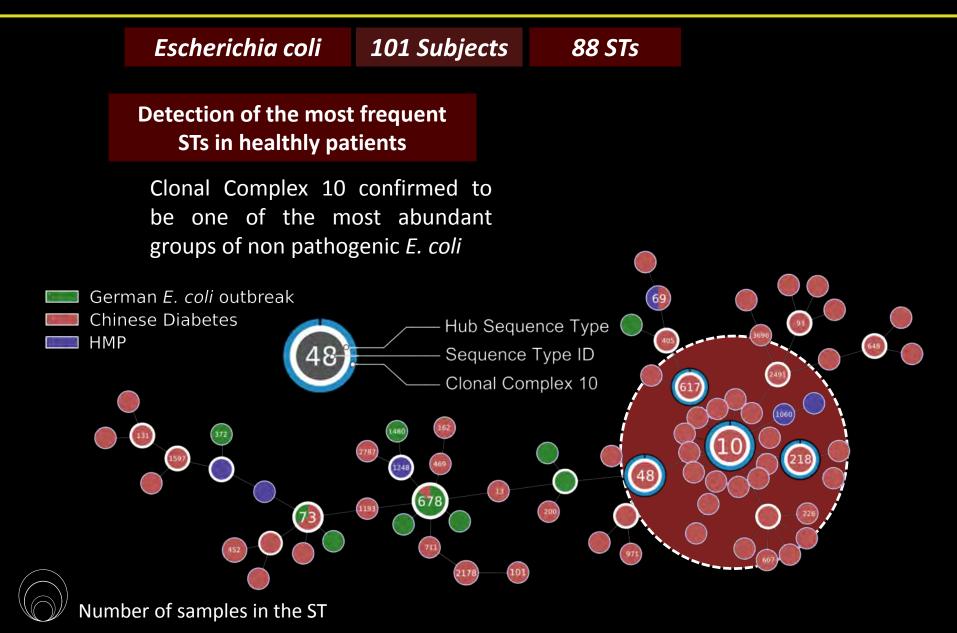
.....SNPs in the core

.....genes from the overall species pangenome, PanPhIAn

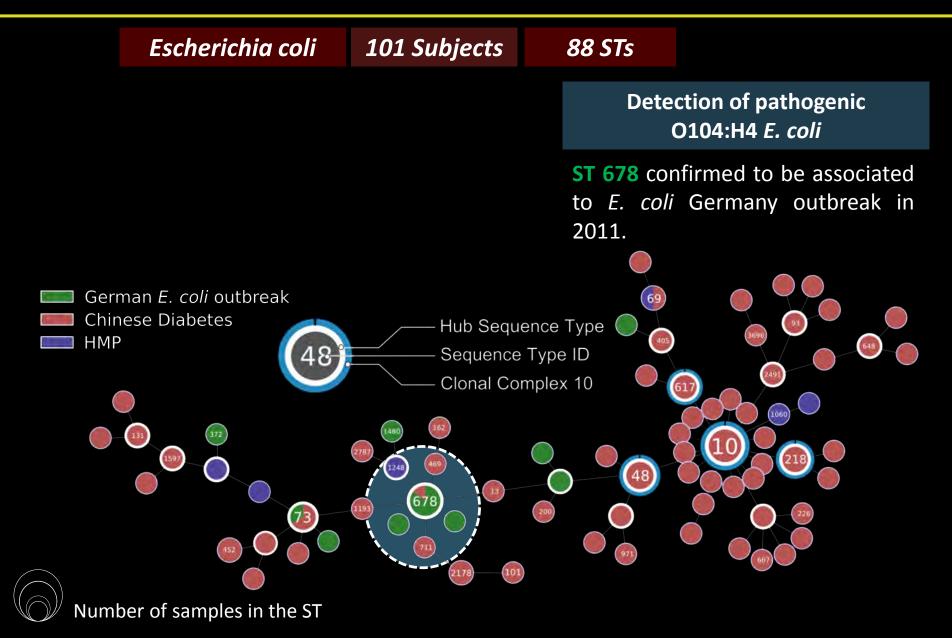


http://segatalab.cibio.unitn.it/

NATURE METHODS Strain-level microbial epidemiology and population genomics from shotgun metagenomics

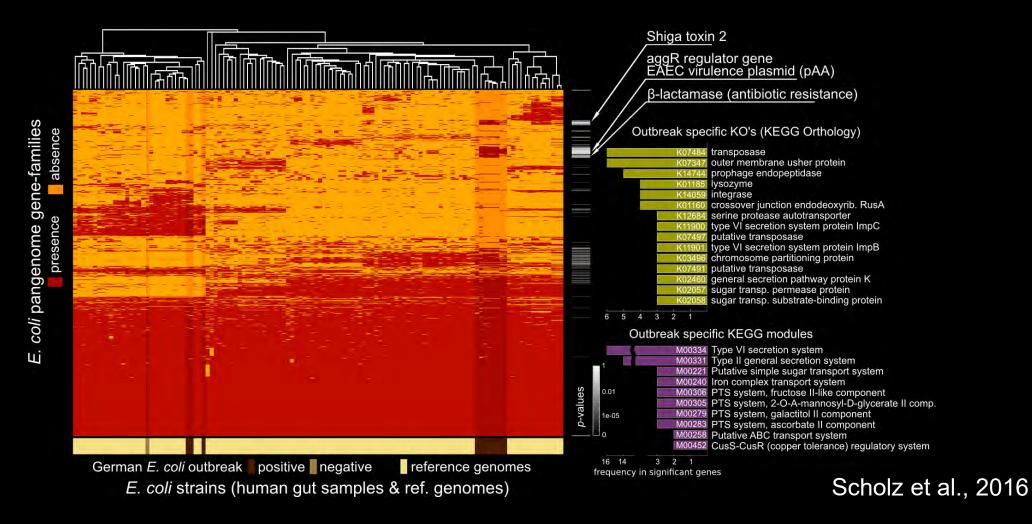

Matthias Scholz^{1,4}, Doyle V Ward^{2,4}, Edoardo Pasolli^{1,4}, Thomas Tolio¹, Moreno Zolfo¹, Francesco Asnicar¹, Duy Tin Truong¹, Adrian Tett¹, Ardythe L Morrow³ & Nicola Segata¹

MetaMLST tracks *E. coli* in gut microbiome



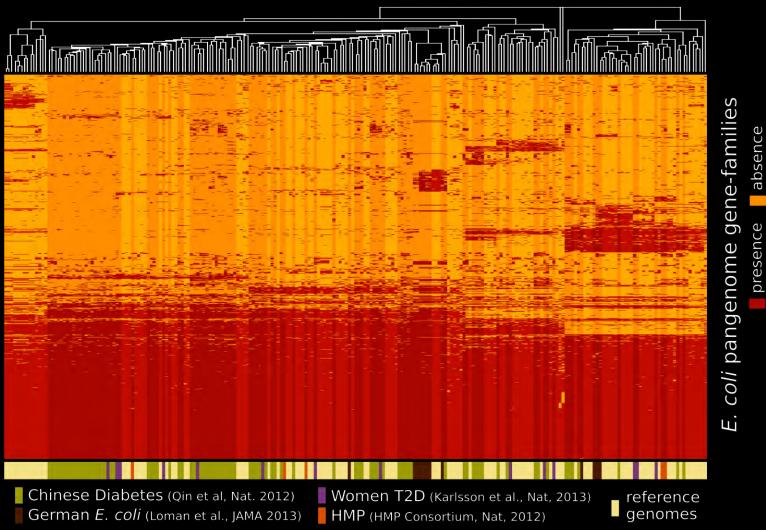
Zolfo et al., 2017

MetaMLST tracks *E. coli* in gut microbiome


MetaMLST tracks *E. coli* in gut microbiome

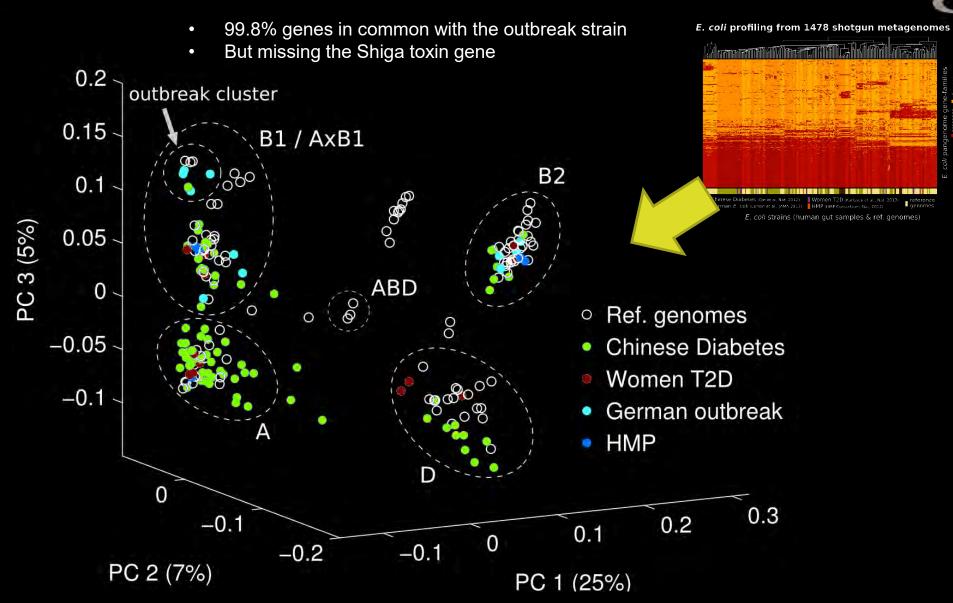
Strain level approaches

PanPhlAn for "meta-epidemiology"

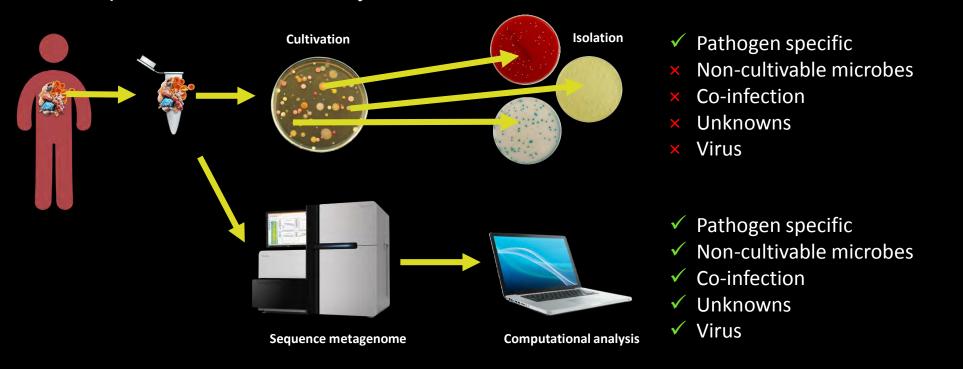


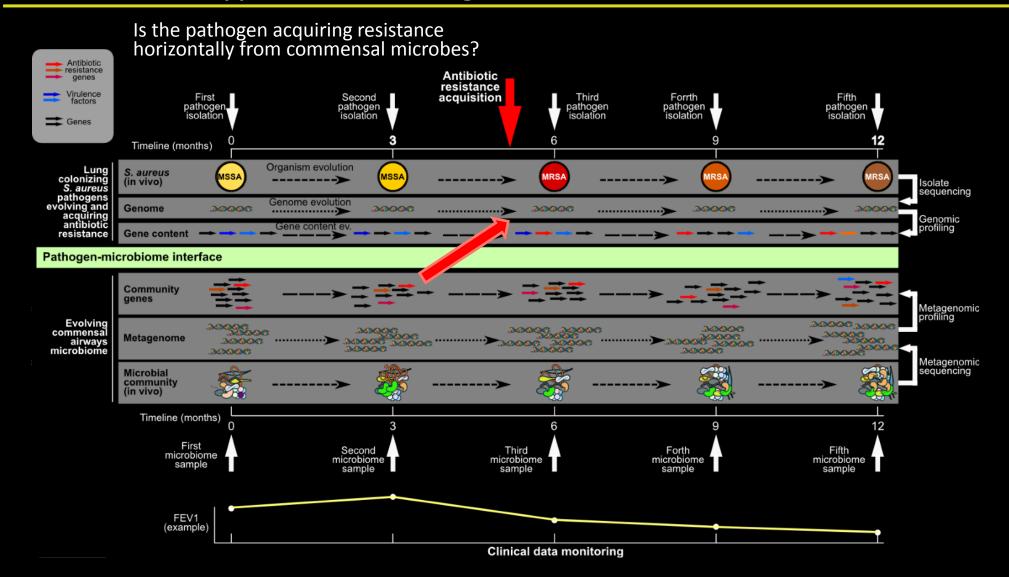
Metagenomes from [Loman et al., 2013]

E. coli population genomics with PanPhlAn


E. coli profiling from 1478 shotgun metagenomes

E. coli strains (human gut samples & ref. genomes)


E. coli population genomics with PanPhlAn



Clinical colleagues have collected sputum and saliva samples for many CF patients in Northern Italy

We have currently sequenced metagenomes for 25 patients (4-9 timepoints)

Microbiome-pathogen interaction in CF: hypothesis testing for antibiotic resistance

CF Strain stability? *S. aureus*

Р41 ТЗ Eubacterium infirmum P41 T1 Prevotella oris P41 T1Q Haemophilus parahaemolyticus P41 T2 Prevotella oulorum Actinomyces viscosus P8 T2 Scardovia wiggsiae P8 T3 Campylobacter gracilis P38 T2 Atopobium rimae P38 T3 Prevotella maculosa 🔘 Р1 Т2 Selenomonas flueggei 🔵 P1 T1 Dialister micraerophilus 🔵 Р1 ТЗ Peptostreptococcus stomatis Dialister invisus P17 T2 Mitsuokella sp P17 T1 Escherichia sp Р40 ТЗ Rhodopseudomonas palustris P38 T1 Atopobium vaginae 🕒 Р48 Т1 Haemophilus paraphrohaemolyticus P23 T1 Lachnoanaerobaculum saburreum Capnocytophaga ochracea 🔵 Р23 Т2 Selenomonas noxia P7 T2 Actinobacillus sp P7 T1 Gardnerella vaginalis P7 T4 Neisseria meningitidis P13 T2 Actinomyces naeslundii Granulicatella elegans P39 T2 Prevotella denticola Р48 ТЗ Kingella oralis P5 T1 Moraxella catarrhalis P39 T1 Staphylococcus aureus P5 T3 P65 T2 — Р6 Т1 Staphylococcus aureus 🔴 Р5 Т2 P5 T4 P13 T1

CIBIO

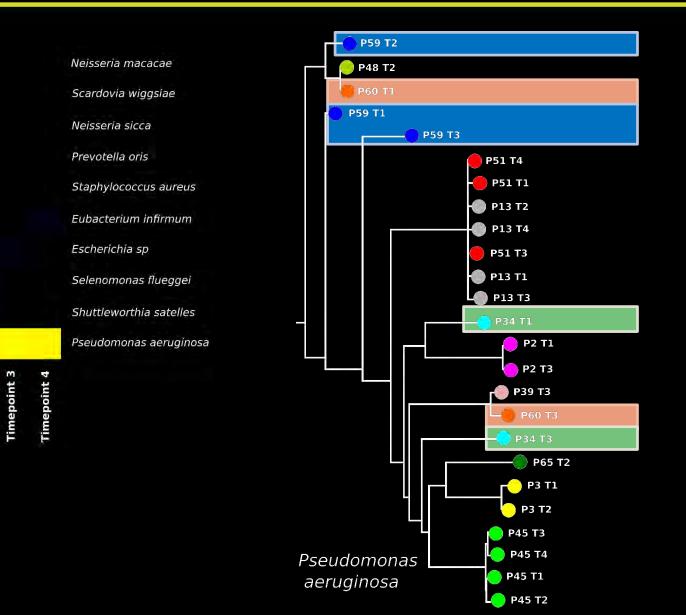
Fimepoint 2

Fimepoint 3

4

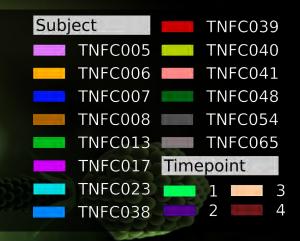
Timepoint

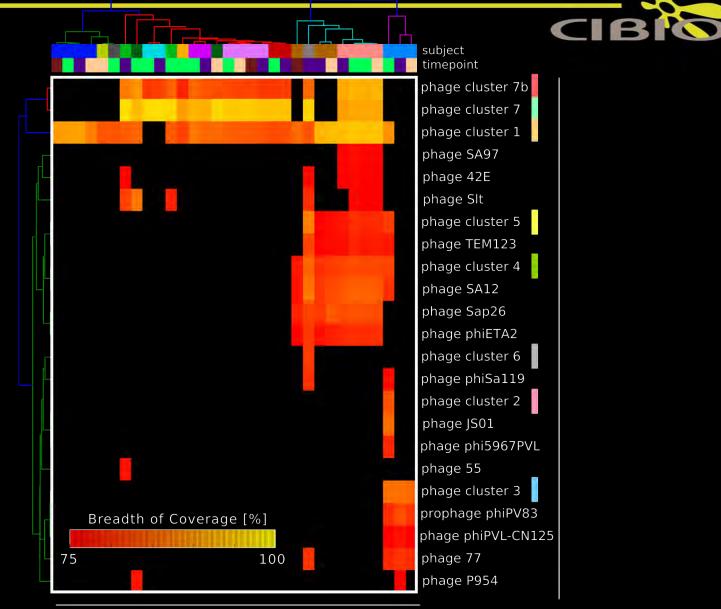
rimepoint 1



Timepoint 2

Timepoint 1

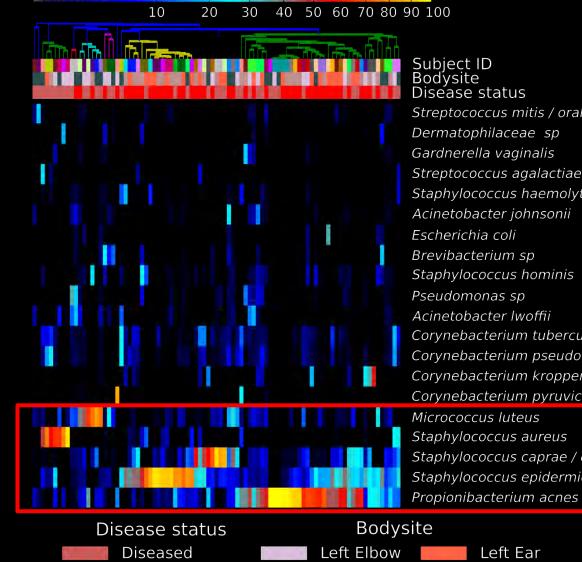

CF Strain stability? P. aeruginosa


Phages in cystic fibrosis

CLUSTERS PREVALENCE Phages in clusters 1 and 7 are shared by more patiens

SUBJECT SPECIFICITY

each patient has its own collection of phages



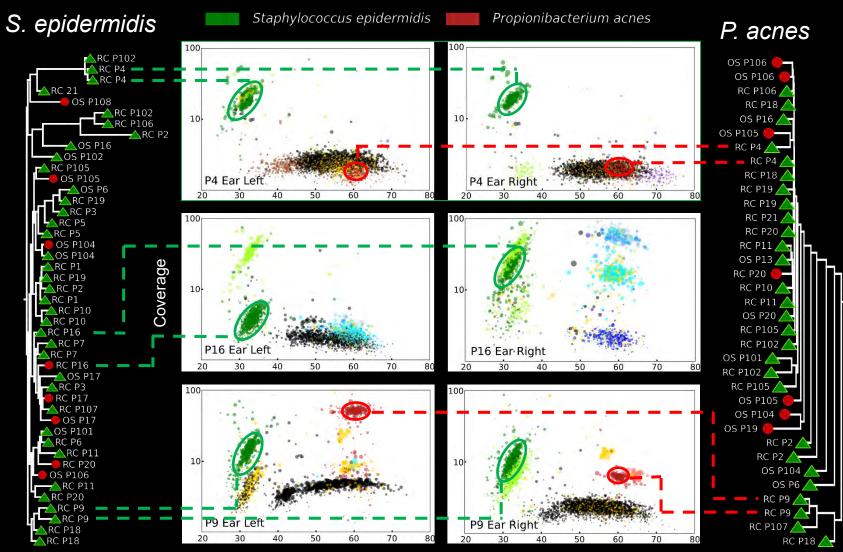
Samples

The skin Microbiome

Right Elbow |

Unaffected

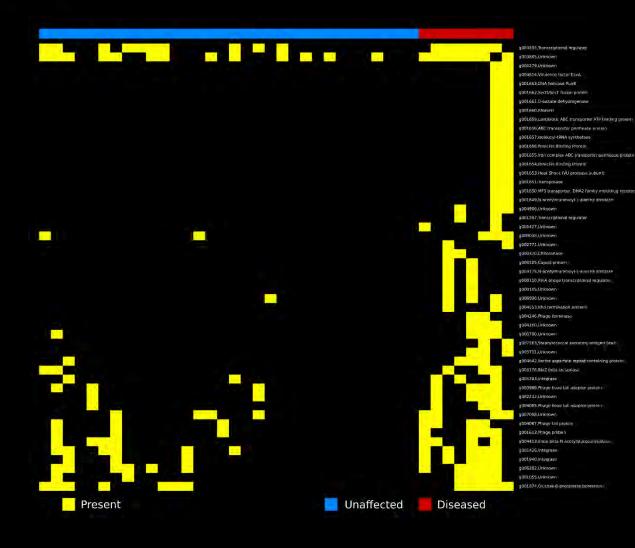
Streptococcus mitis / oralis / pneumoniae Dermatophilaceae sp Gardnerella vaginalis Streptococcus agalactiae Staphylococcus haemolyticus Acinetobacter johnsonii Staphylococcus hominis Acinetobacter lwoffii Corynebacterium tuberculostearicum Corynebacterium pseudogenitalium Corynebacterium kroppenstedtii *Corynebacterium pyruviciproducens* Staphylococcus aureus Staphylococcus caprae / capitis Staphylococcus epidermidis


Right Ear

Tett et al., 2017

CIB

Strain level differences


CIBIO

GC content

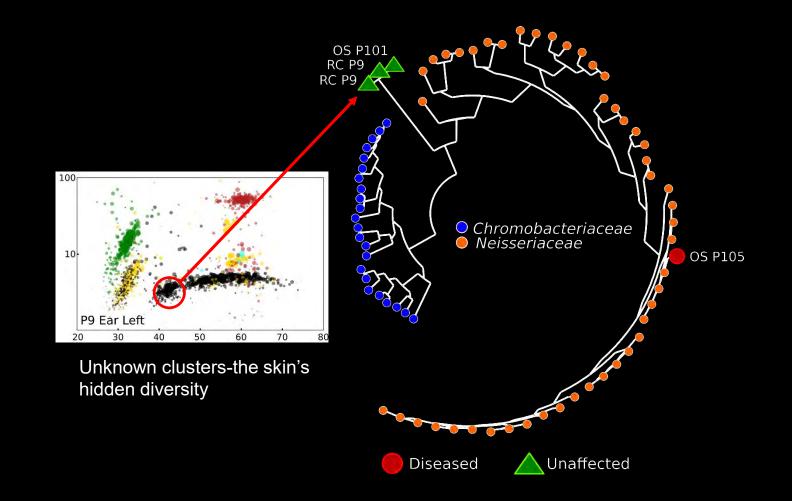
Analysing the strain specific functional repertoire *S. epidemidis*

In total 50 genes were significanly more prevalent in strains occupying Psoriatic skin

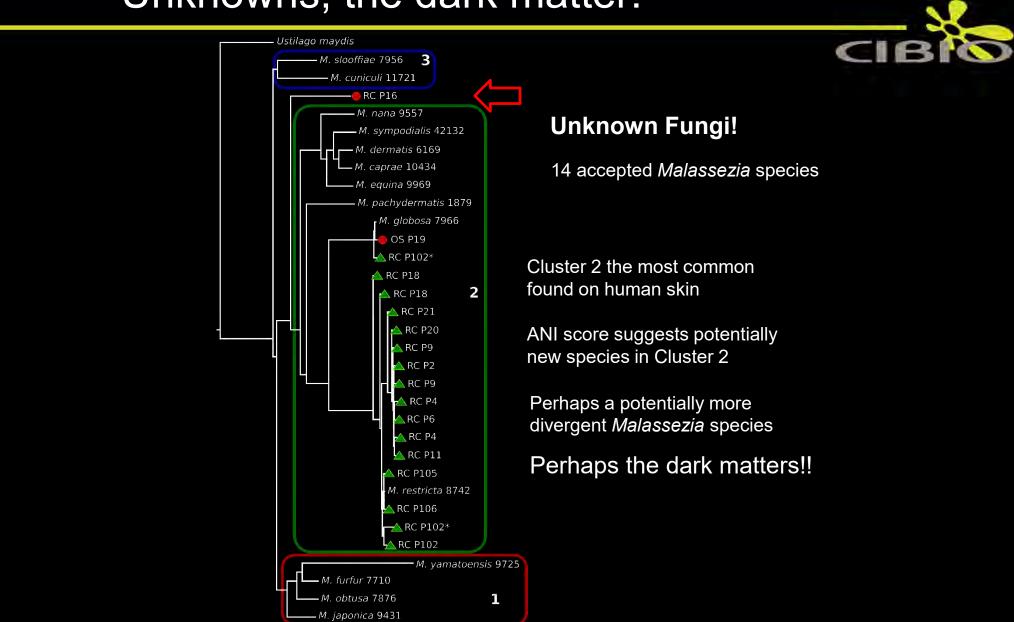
Staph. epidermidi

These include known pathogenic determinants (e.g. SsaA, EsxA)

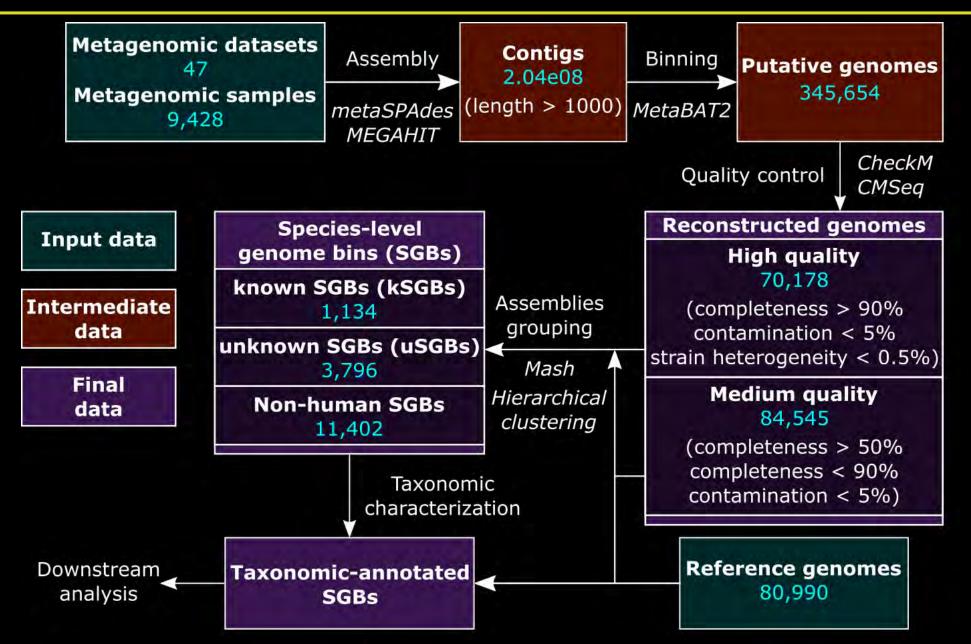
Markers of HGT events, integrases and transposases


Function commonly associated with mobile genetic elements Multidrug resistance transporters, penicillin binding proteins

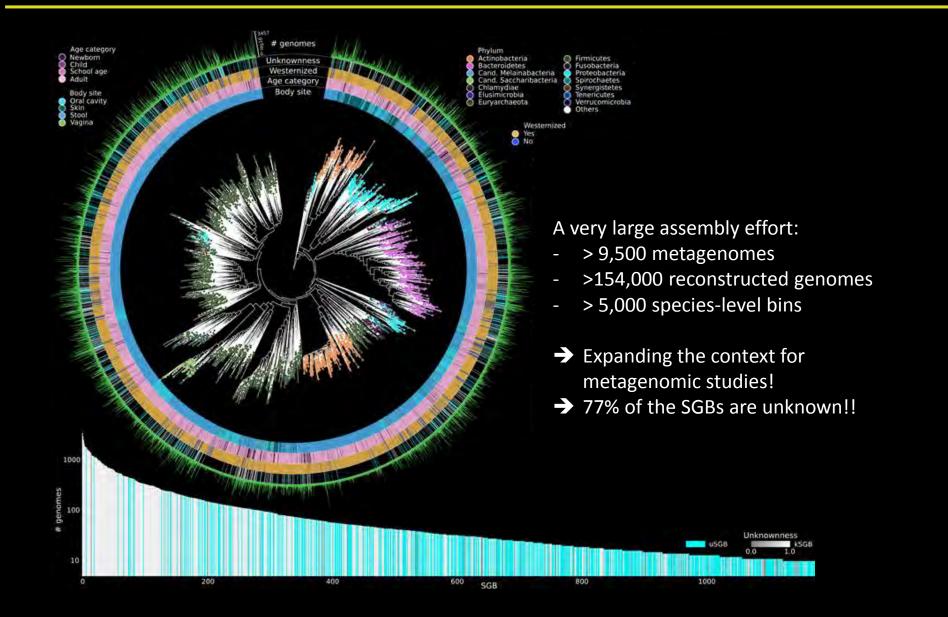
Many gene of unknown function that could be environmentally relevant



Unknowns, the dark matter!

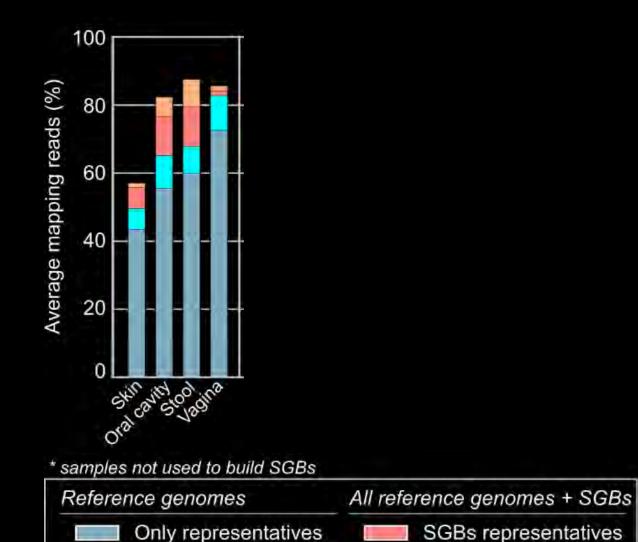


Unknowns, the dark matter!



Metagenomic assembly at a large scale

Pasolli et al., 2019



Reconstructing and cataloguing >150,000 human microbiome genomes

Toward fully mapping the human microbiome

All SGBs

All reference genomes

Increased mappability of the gut microbiome Avg 67.76% to 87.51%

Increased mappability of under-sampled categories and populations

Mappability increase due to new strains of known species and to novel species

Thanks!

Adrian Tett

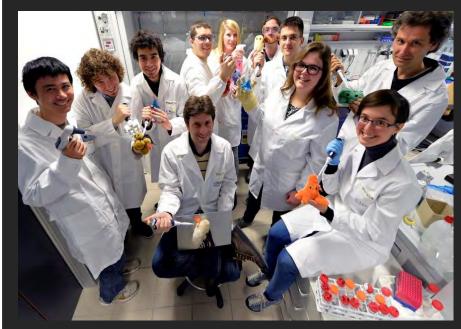
Tin Truong

Edoardo Pasolli

Federica Armanini Francesco Asnicar Serena Manara

Francesco Beghini

Nicolai Karcher Paolo Manghi


Andrew Thomas

Federica Pinto

Paolo Ghensi Moreno Zolfo

Kun Huang

The Laboratory of Computational Metagenomics

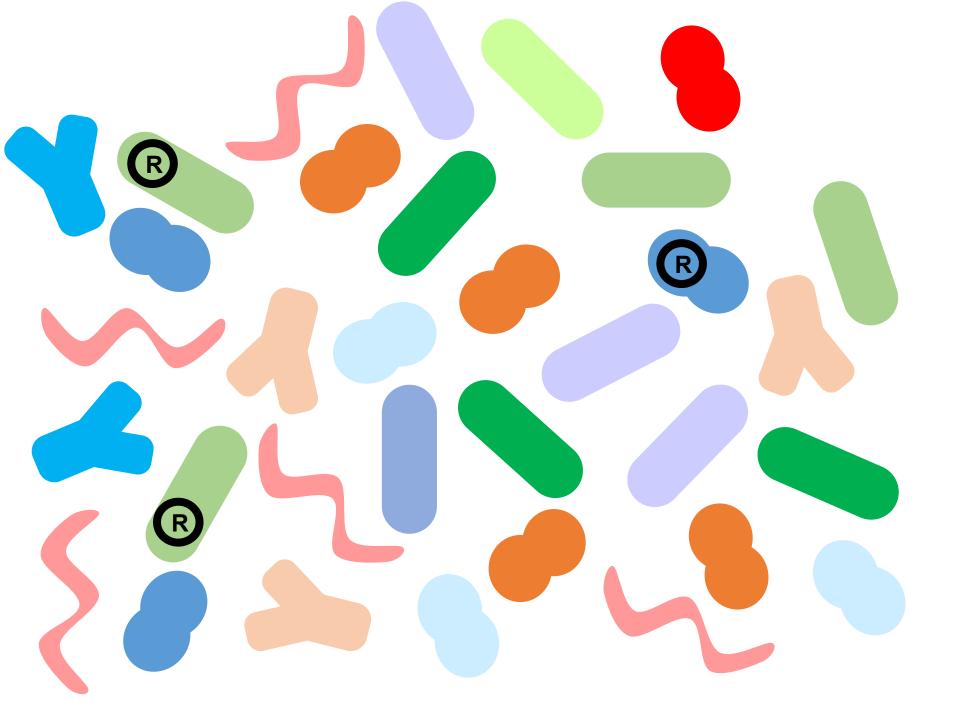
http://segatalab.cibio.unitn.it - nicola.segata@unitn.it

MARIE CURIE

SEVENTH FRAMEWORK PROGRAMME

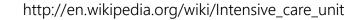
The complex dynamics of antimicrobial resistance and microbiomes


Willem van Schaik


Institute of Microbiology and Infection University of Birmingham, United Kingdom

UNIVERSITY^{OF} BIRMINGHAM

w.vanschaik@bham.ac.uk Twitter: @WvSchaik


Antibiotics and microbiomes

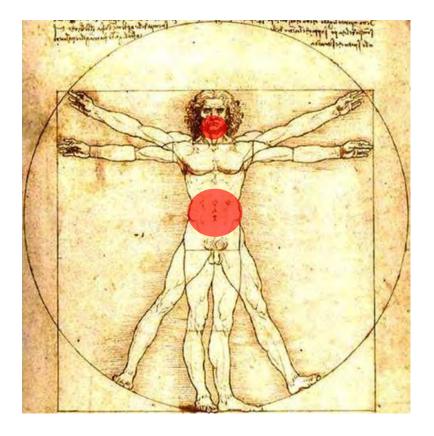
Intensive antibiotic therapy and the human gut microbiome

Sewage and antibiotic resistance

Antibiotic resistance in rural and urban environments

Dynamics of the microbiome and resistome of patients in Intensive Care Units (ICUs)

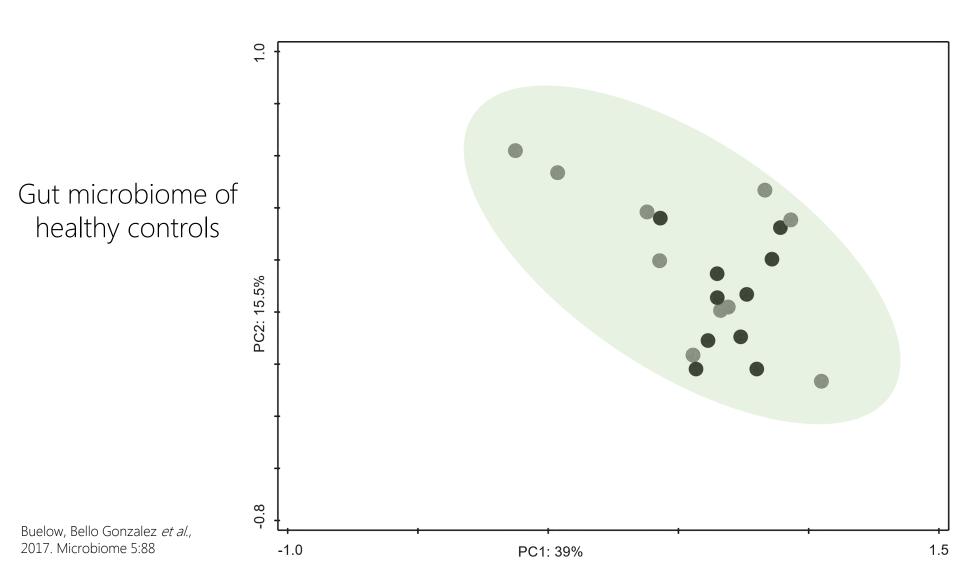
Selective digestive tract decontamination

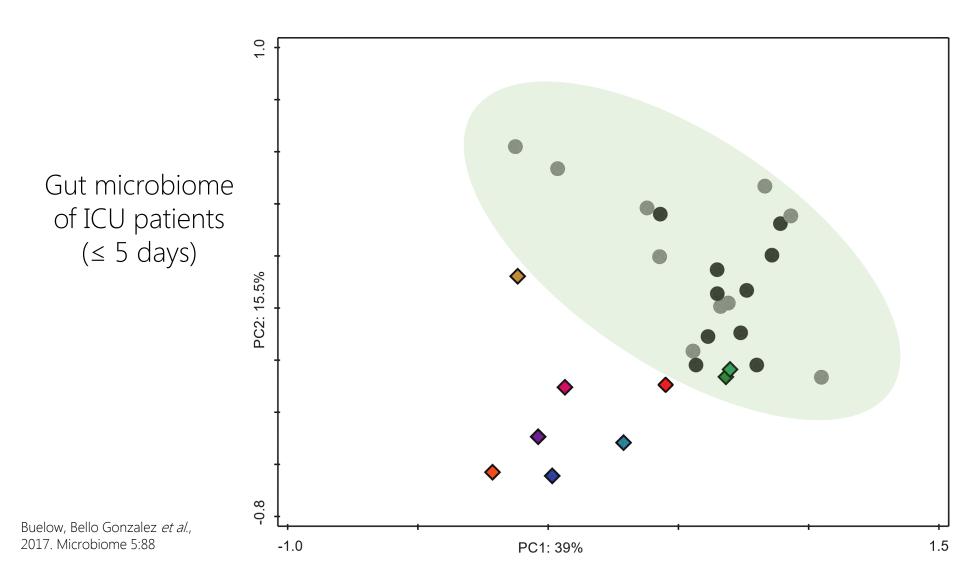

Decontamination of oropharynx and intestinal tract

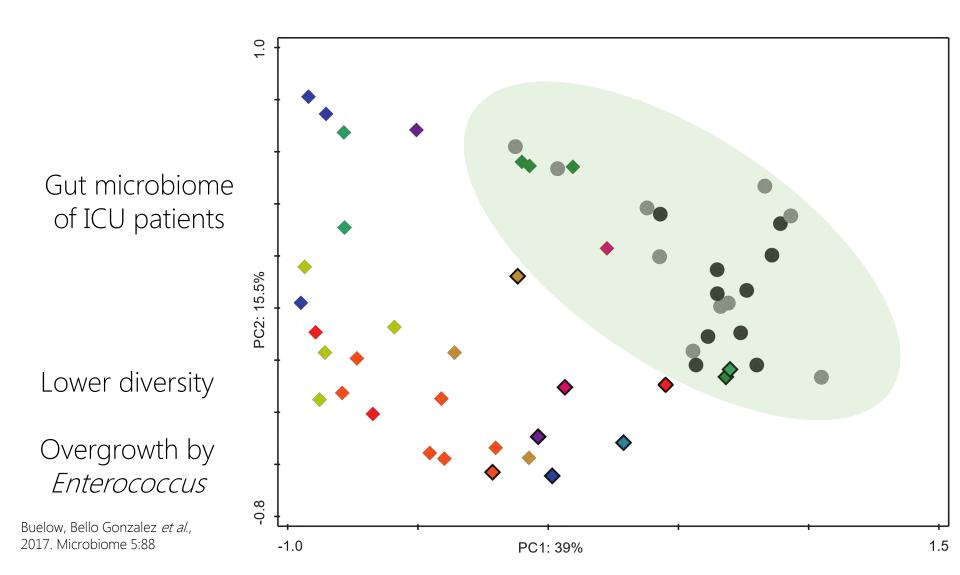
Mix of two antibiotics (colistin, tobramycin) and an antifungal (amphotericin) as a paste/suspension in throat and intestinal tract + intravenous cefotaxime for first 4 days at ICU

Widely used in ICUs

Lowers patient morbidity, mortality

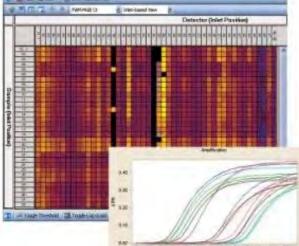

Minimal effect on resistance, based on diagnostic cultures

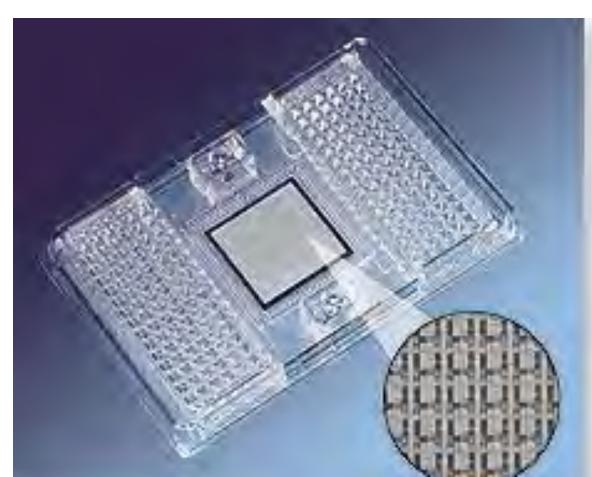



van der Waaij *et al.*, 1972. J Hyg (Lond) 70:605 De Smet *et al.*, 2009. N Engl J Med 360:20 Daneman *et al.*, 2013. Lancet Infect. Dis. 13:328 Oostdijk *et al.*, 2014. JAMA 312:1429

10 ICU-patients, acutely admitted no history of hospitalisation or antibiotic use stay ≥10 days, all treated with SDD sampled at different time points

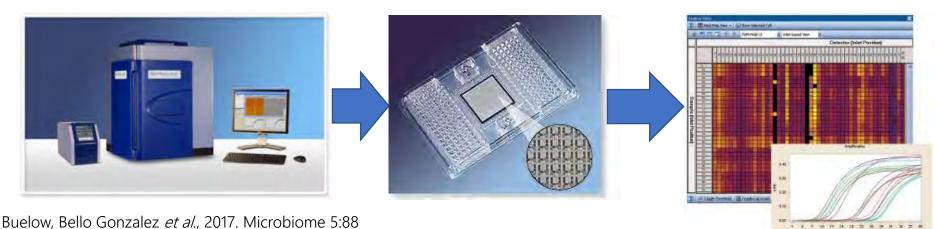
10 healthy volunteers, two samples, 1 year apart no antibiotic therapy

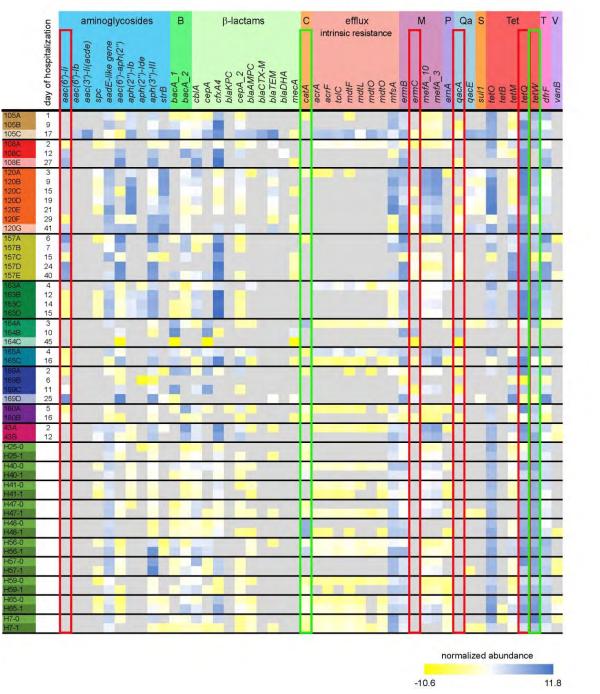




The gut resistome

nanolitre-scale qPCRs (Fluidigm Biomark) 88 samples x 96 targets higher dynamic range vs shotgun sequencing

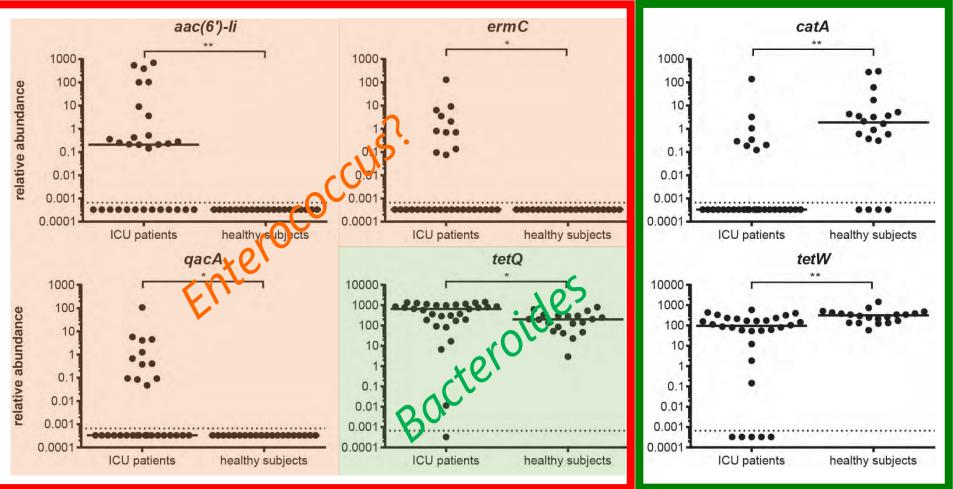

The gut resistome


16S rRNA for relative quantification of abundance

Primers for 81 resistance genes

Most common resistance genes in gut microbiota Forslund *et al.*, 2013. Genome Res. 23:1163; Hu *et al.*, 2014. Nat. Commun 4:2151

Clinically relevant resistance genes ESBLs, carbapenemases, *mecA*, vancomycin resistance genes

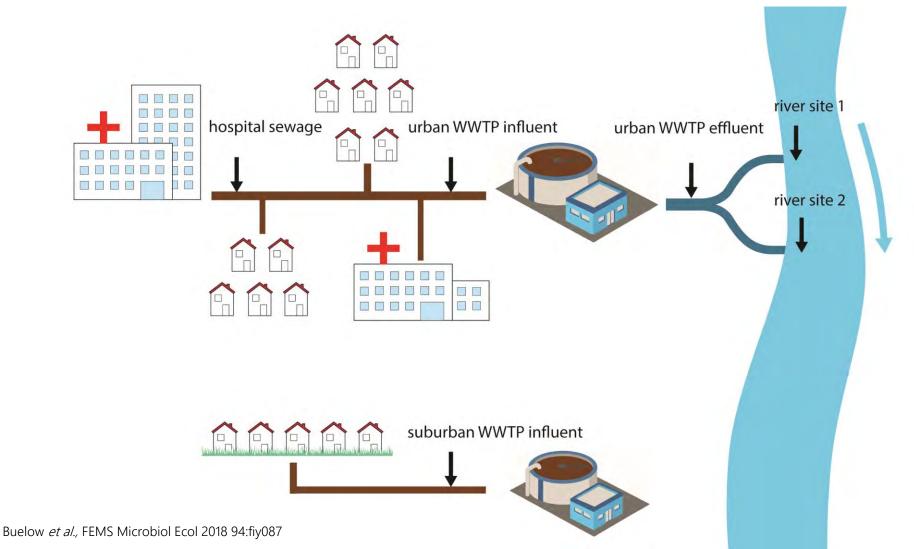


The gut resistome

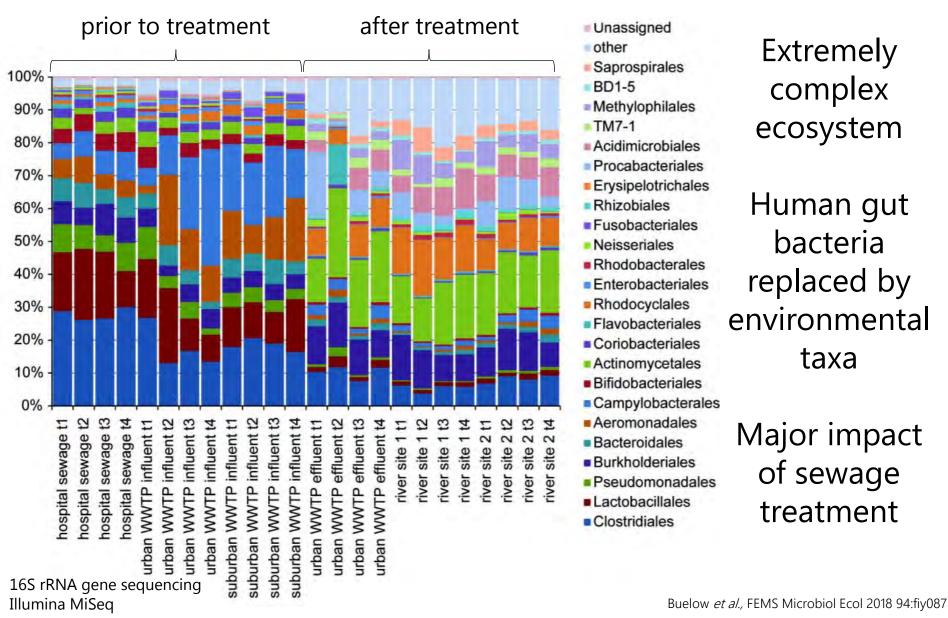
Large diversity of antibiotic resistance genes

Buelow, Bello Gonzalez et al., 2017. Microbiome 5:88

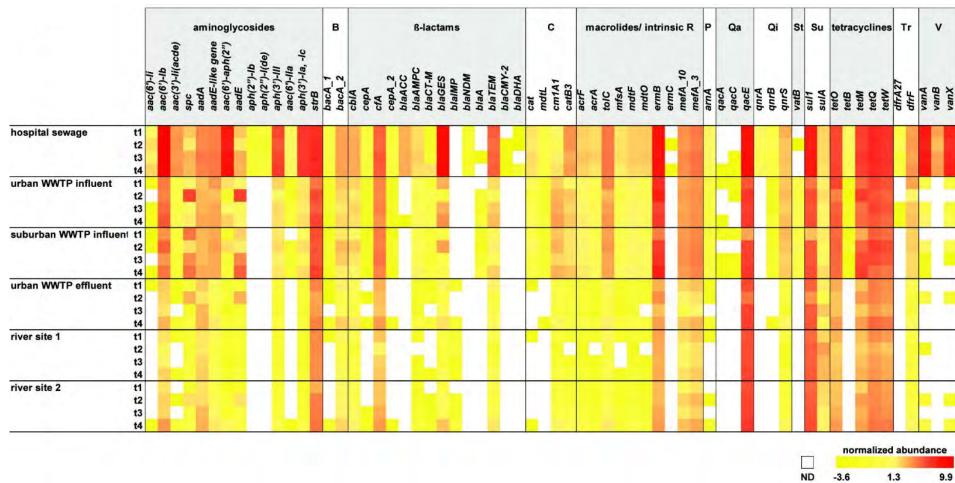
The gut resistome



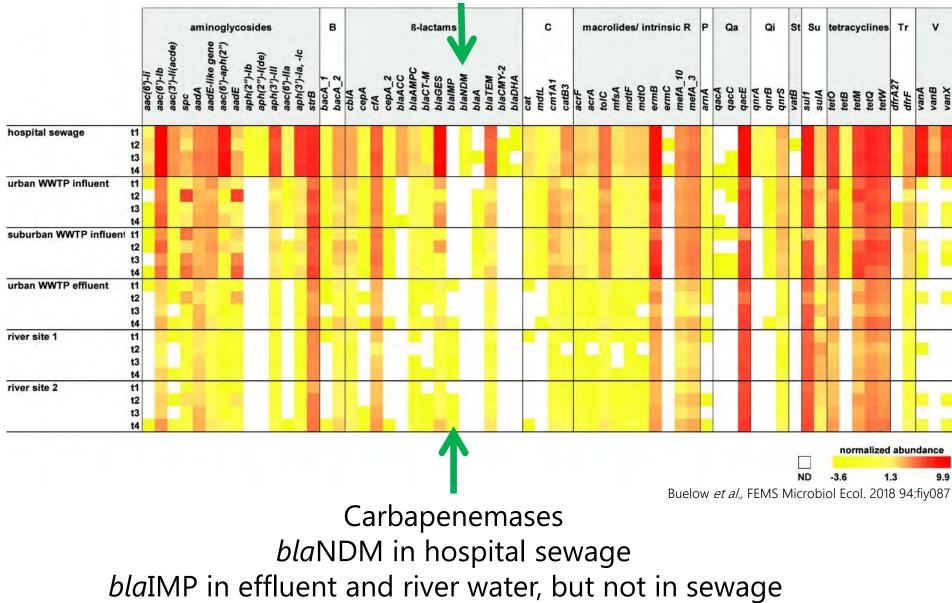
No selection for antibiotic resistance genes conferring resistance to antibiotics used in SDD; selection for resistance genes in bacteria that are (intrinsically) resistant Hospital sewage resistome?


Faeces of patients, employees, visitors Residues of antibiotics

Sewage microbiome and resistome


Samples collected in March – April 2014, 4 samples/site, 1 wk apart 16S rRNA gene sequencing on Illumina MiSeq; Resistome analysis by qPCR

Sewage microbiome



Sewage resistome

High levels of antibiotic resistance genes in hospital sewage Decrease upon passage through sewerage system and treatment

Sewage resistome

Microbiomes as reservoirs for antibiotic resistance genes

The human gut microbiome is a reservoir of antibiotic resistance genes

Selection for resistance is complex, particularly upon exposure to multiple antibiotics

Human-associated microbiomes provide opportunities for horizontal gene transfer of resistance determinants

Funding

Acknowledgements

UNIVERSITY OF BIRMINGHAM

ROYAL SOCIETY

Medical

University Medical Center Utrecht (The Netherlands)

Xinglin Zhang Ana Maria Guzman Prieto Mark de Been Malbert Rogers Jumamurat Bayjanov Elena Buelow Jery Baan Vincent de Maat Axel Janssen

University of Birmingham (United Kingdom)

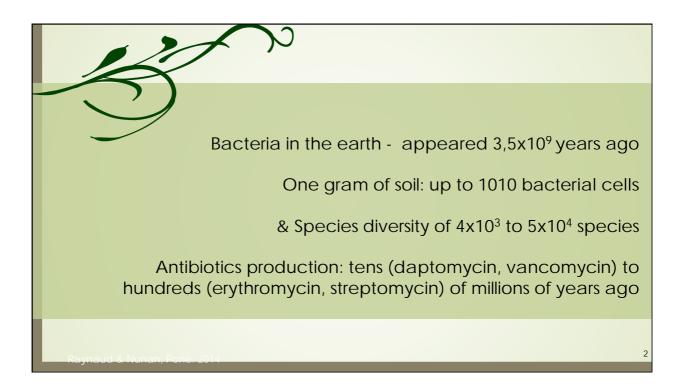
Lisa Lamberte Greg McCallum Ross McInnes Stanley Ho Matt Davies

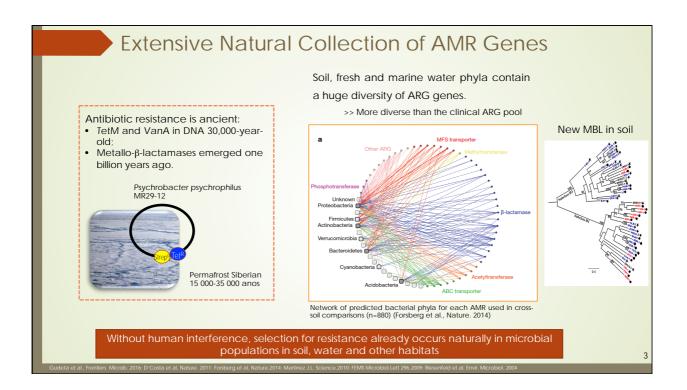
UNIVERSITYOF

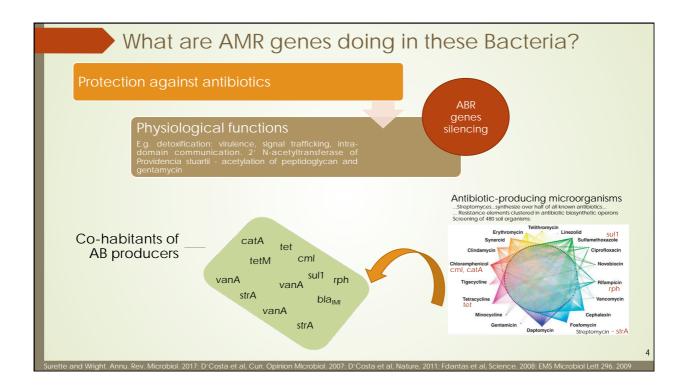
BIRMINGHAM

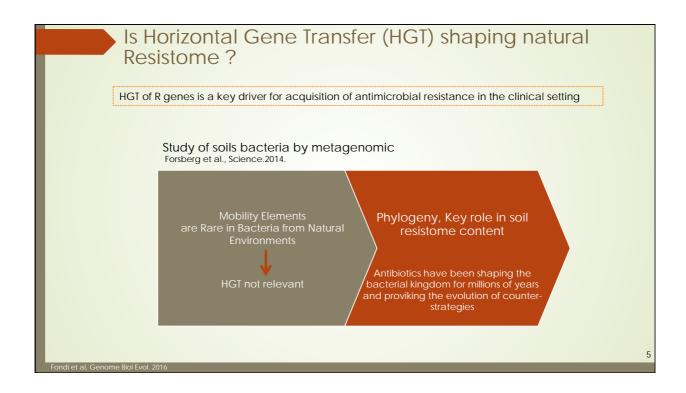
MRC

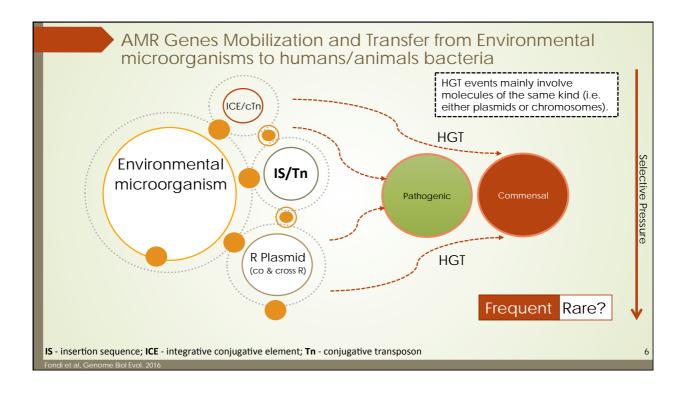
Collaborators

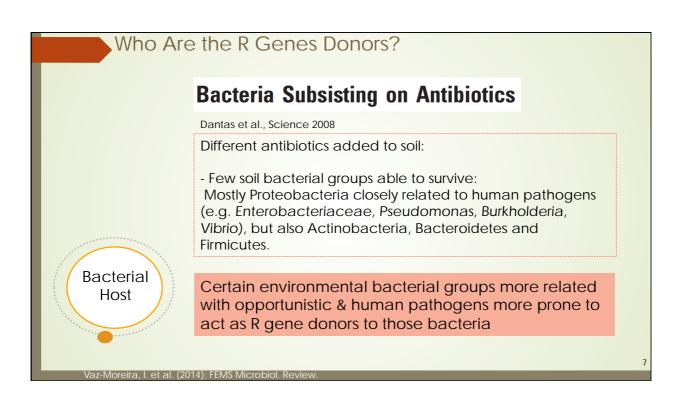

Wageningen University (The Netherlands)

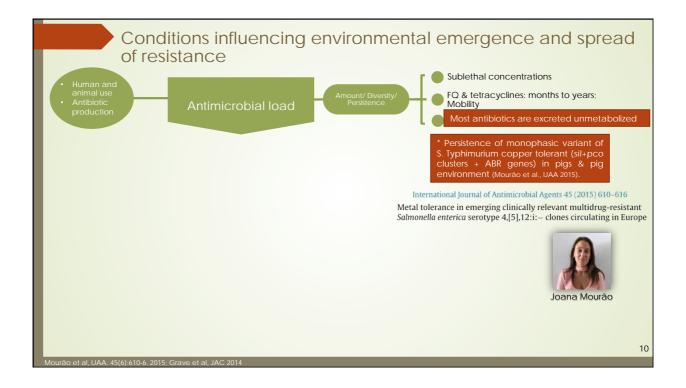

Teresita Bello Gonzalez Mark van Passel Hauke Smit University of Birmingham (United Kingdom)

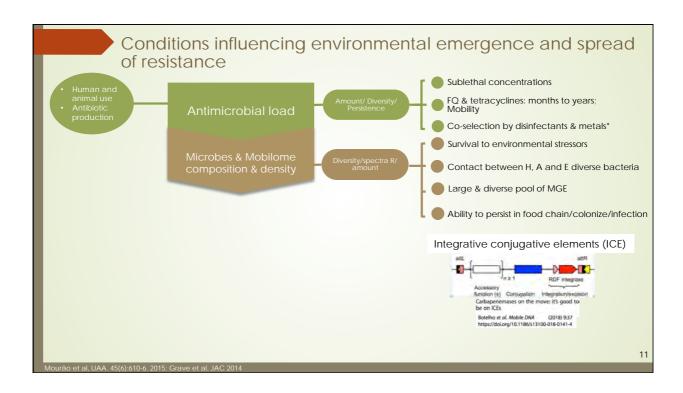

Sam Nicholls Josh Quick Nick Loman ICDDR,B (Bangladesh)

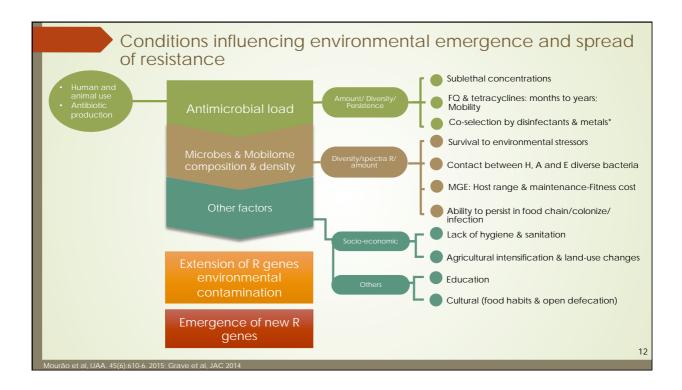

Hassan Zaman Imam Taksim Alam Sirajul Islam



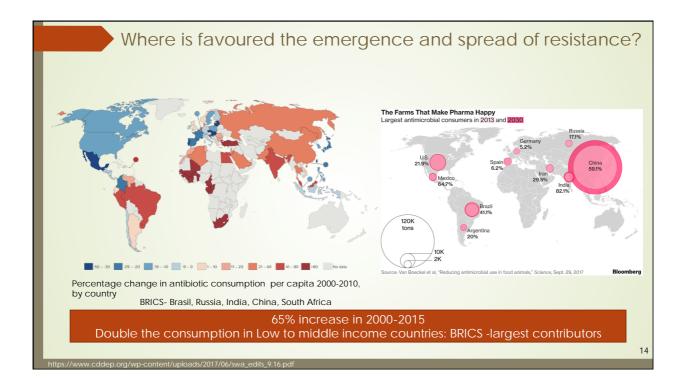


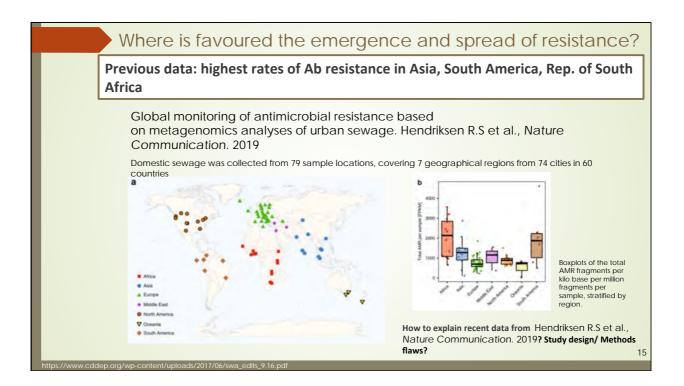


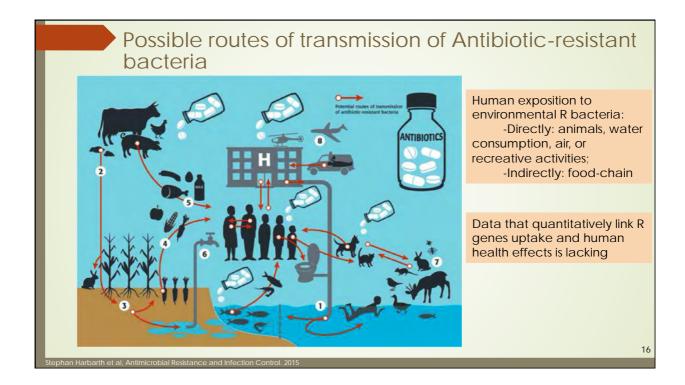


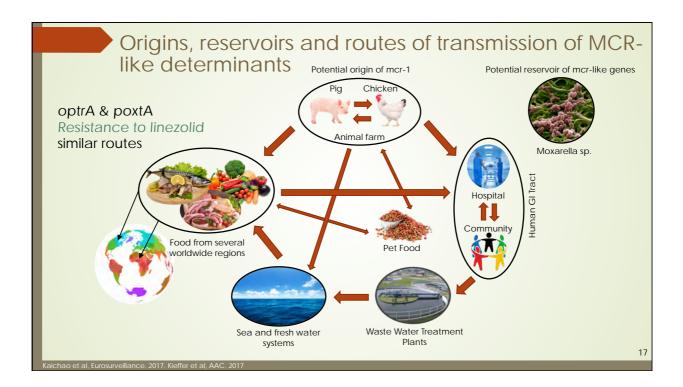


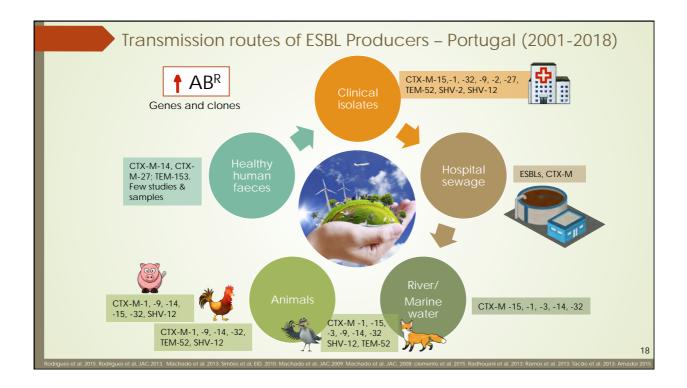
0	rigin of	relevant ho	rizontally transferred F	R genes
Bacterial	Gene	Antibiotic resistance	Bacterial species	MGEs*
	bla _{ctx-M}	3 rd generation Cephalosporins	Kluyvera spp.	ISEcp1, ISCR1
	qnrA	↓ susceptibility to Fluorquinolones	Shewanella algae	ISCR1, IS26
	qnrS	↓ susceptibility to Fluorquinolones	Vibrio splendidus	IS2, IS26, ISEcI2, Tn3-like, mic
	fosA3	Fosfomycin	Kluyvera georgiana (CTX-M-8 origin)	IS26
7.2.4	vanA	Glycopeptide	Paenibacillus thiaminolyticus	Tn1546
	bla _{sBM-1**}	Carbapenems	Gene from soil metagenome	ISCR1
Sector of	strA, strB	Streptomycin	Streptomyces spp.	Tn5393
* MGE = Mobile genetic GGRGEbassi L et al. AAC 200	,		: Cantón R et al. Front Micr 2012; Hooper DC. Ann N Y Acad Sci :	8 2015: Ito R et al. JAC 2018

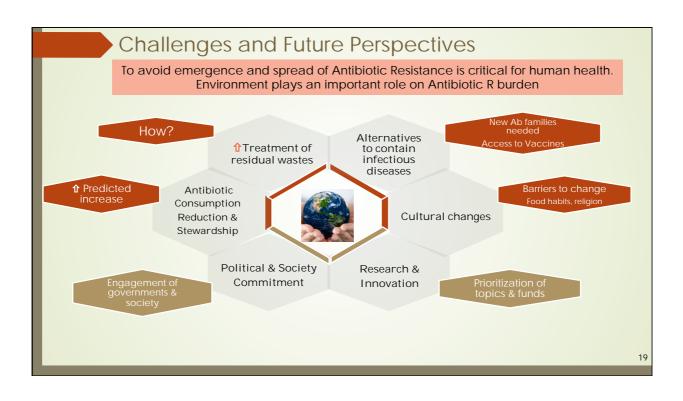

Origin of relevant horizontally transferred R genes								
		Dispersed host & MGE + A likely to occur in	ion					
	Gene	Antibiotic resistance	Bacterial species	MGEs				
	Cfr	Oxazolidinones, Phenicols, Lincosamides, Pleuromutilins, Streptogramin A	Bacillus spp.?/ Staphylococcus spp.	IS21–558, IS26, ISEnfa5, Tn558				
	optrA	Oxazolidinones, Phenicols	Staphylococcus sciuri	IS1216, Tn6261				
	oqxAB	↓ susceptibility to Fluorquinolones	Klebsiella pneumoniae	Tn3, IS26				
	mcr-1	Colistin	Moraxella novel	ISApI1, Tn6330				
	qnrB	Setting where mobilization Fluorquinolones	occurred is unknown	ISCR1, IS26, ISEcp1, ISEcp1C, IS3000, IS6100				
	bla _{CMY-2-like}	3 rd generation Cephalosporins	Citrobacter spp.	ISEcp1, IS26, IS5, ISkpn26				
Dai L et al. AAC 2010; Zhang 2016; Snesrud E et al., MBio,		ang Y et al. JAC 2015; Sun C et al, JAC 2018; Fan R e AC 2015	t al., Vet Microbiol 2017; Rodríguez-Martínez	9 JM et al., Drug Resist Updat				

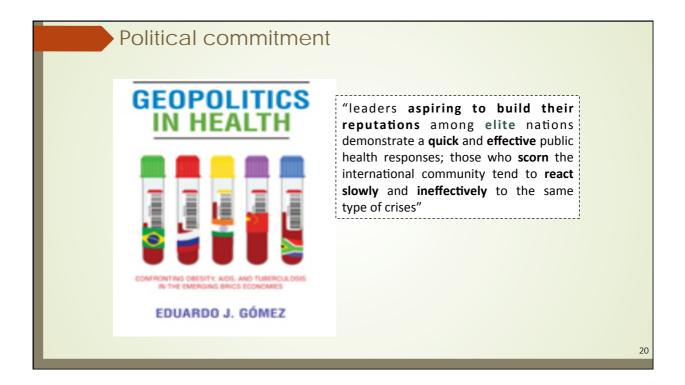


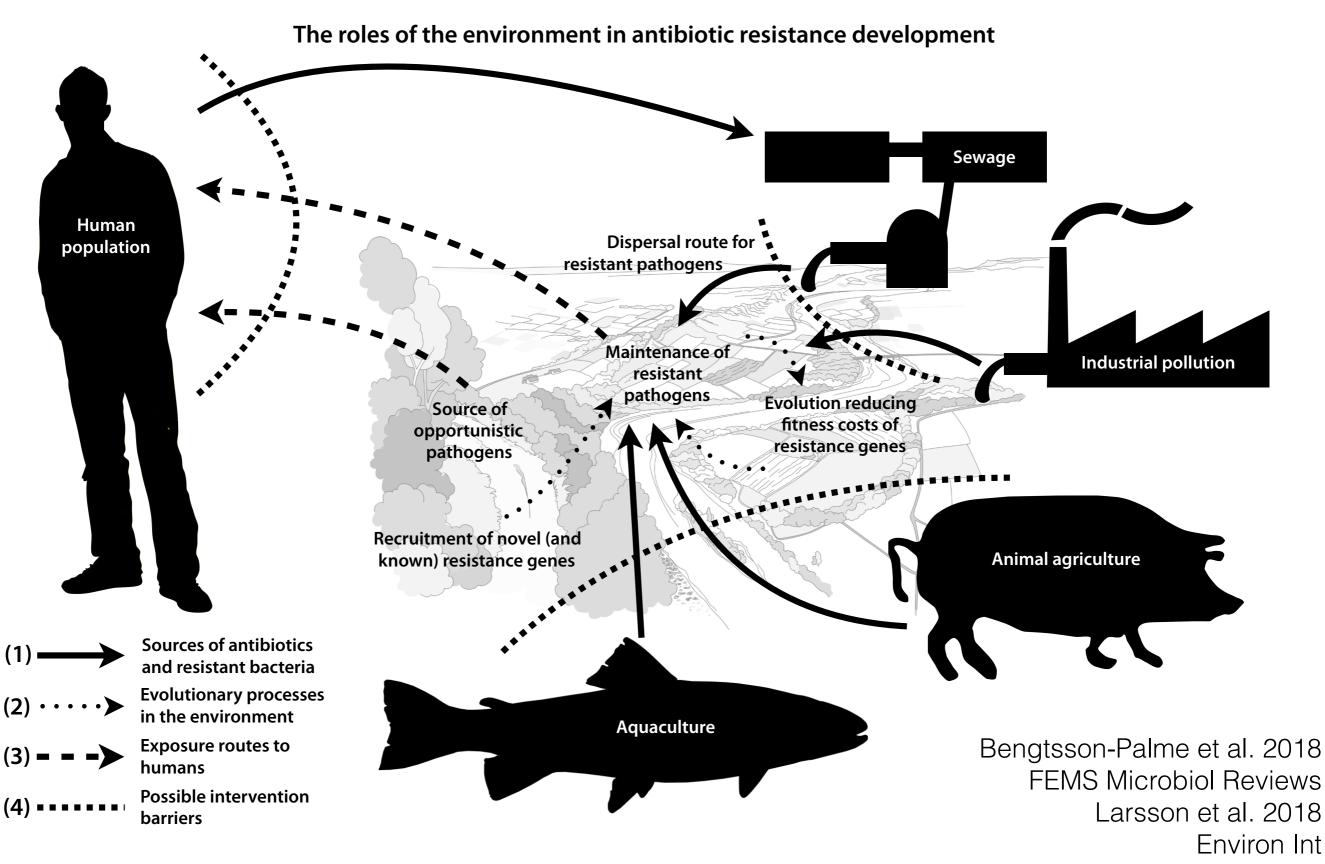








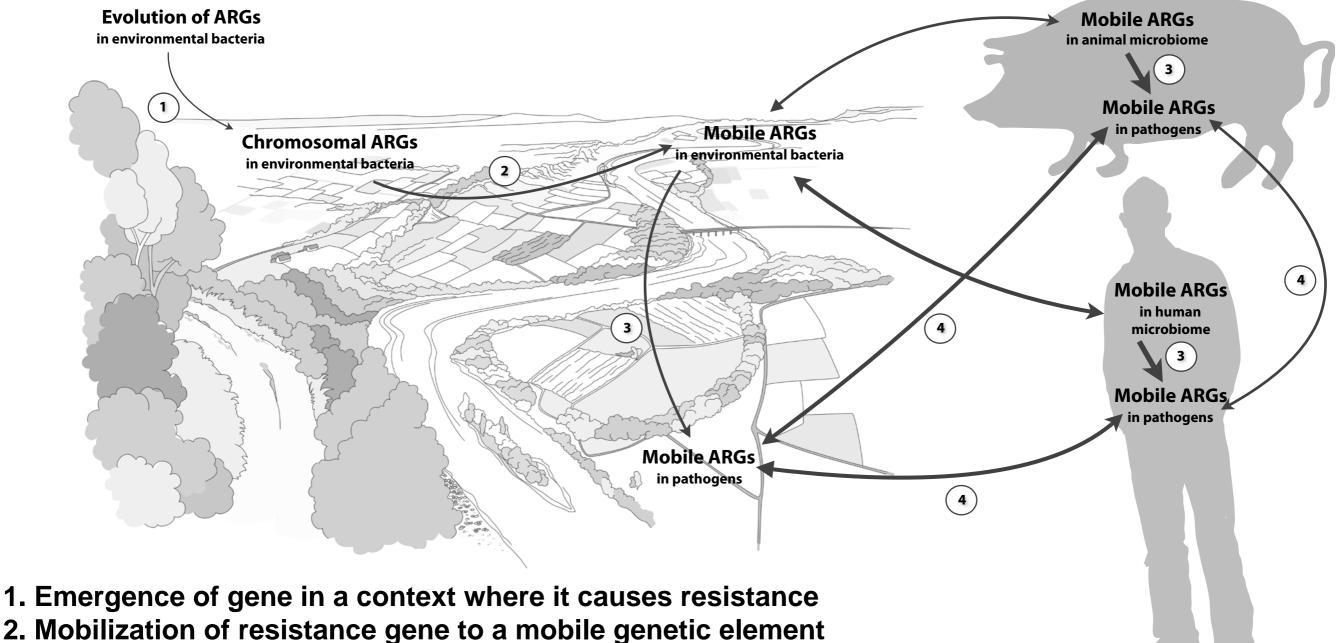




The environment and antibiotic resistance development – now and in the future

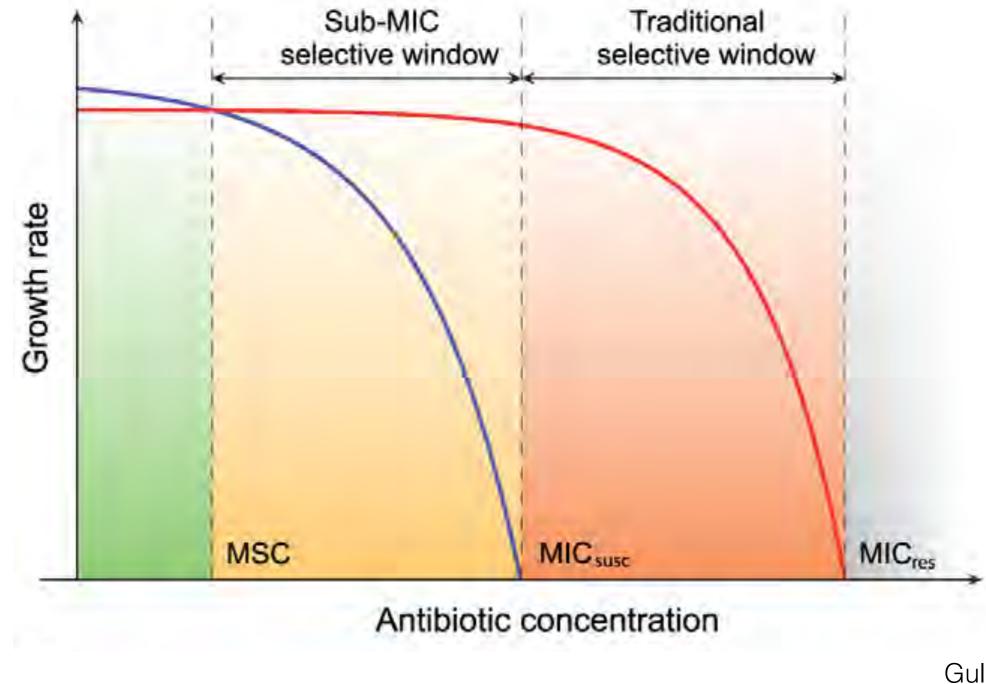
Johan Bengtsson-Palme

There are lots of potential sources


~ 1000000000000 $000\ 000\ 000\ 000$

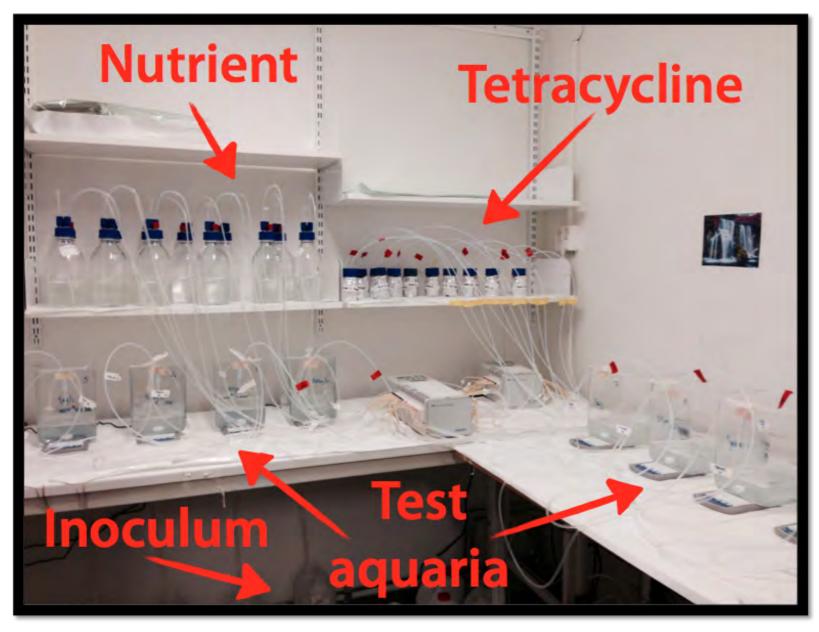
Bengtsson-Palme 2019 Management of Emerging Public Health Issues and Risks


From the environment to pathogens


- 3. Horizontal gene transfer of resistance gene to human (opportunistic) pathogen
- 4. Dissemination of resistant pathogen to human host

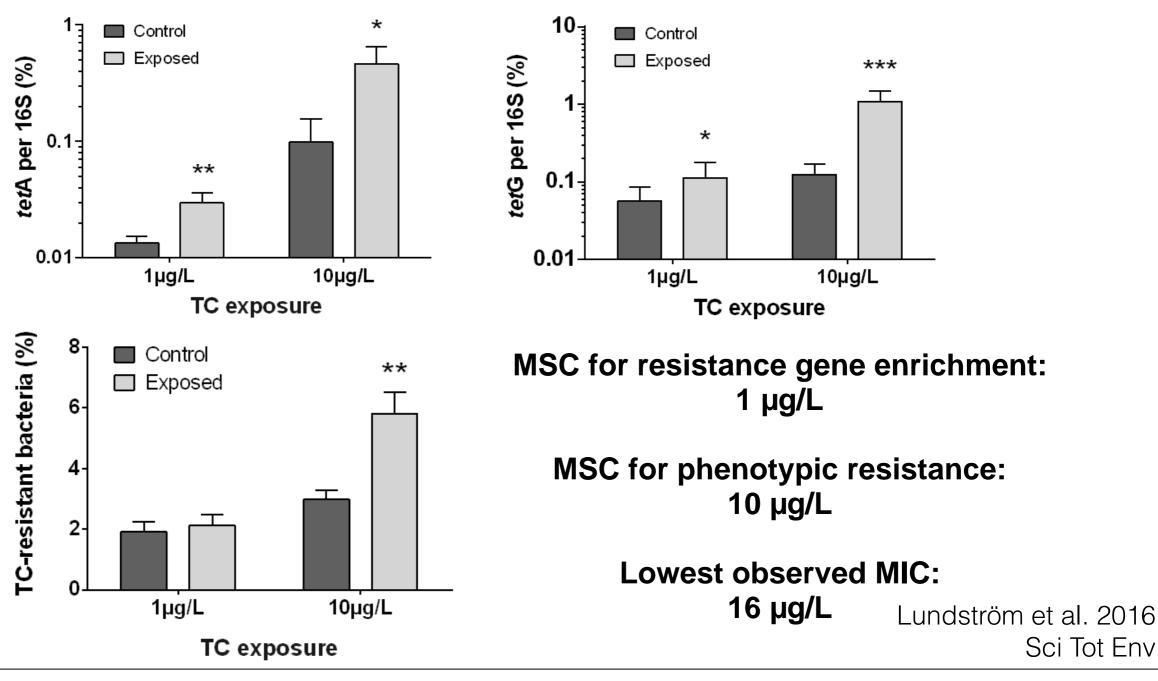
Bengtsson-Palme et al. 2018 FEMS Microbiol Reviews

Minimal Selective Concentrations



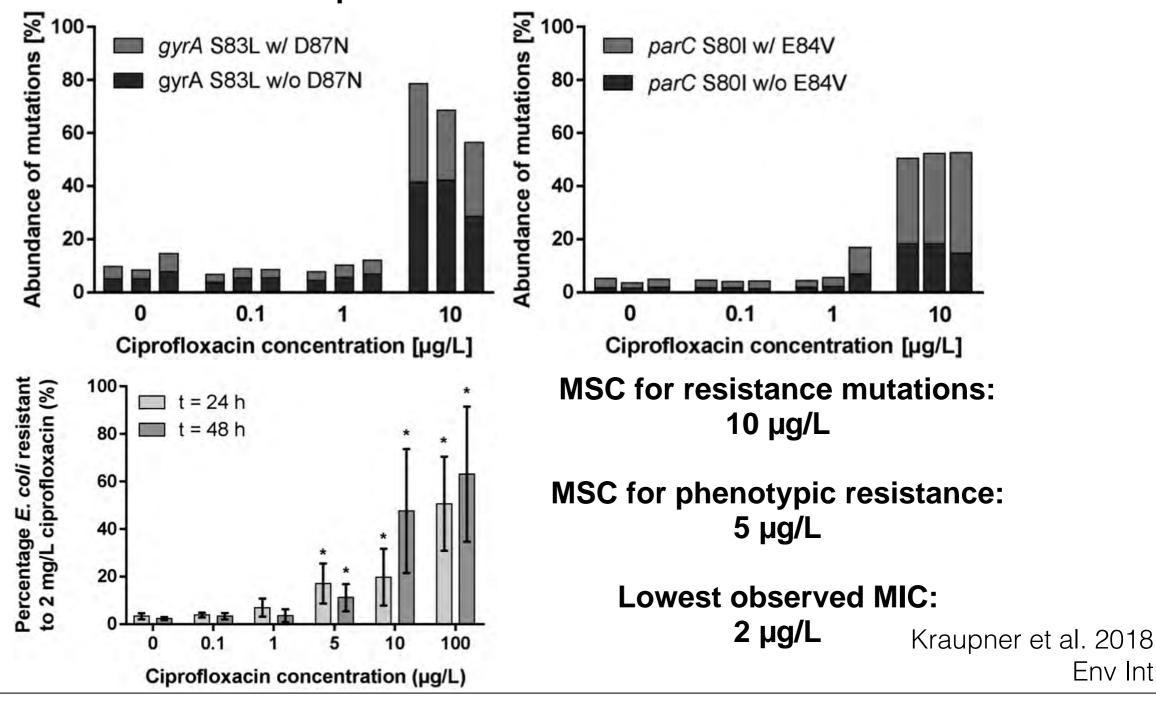
Gullberg et al. 2011 PLoS Pathogens

Minimal Selective Concentrations Tetracycline



Lundström et al. 2016 Sci Tot Env

Minimal Selective Concentrations Tetracycline





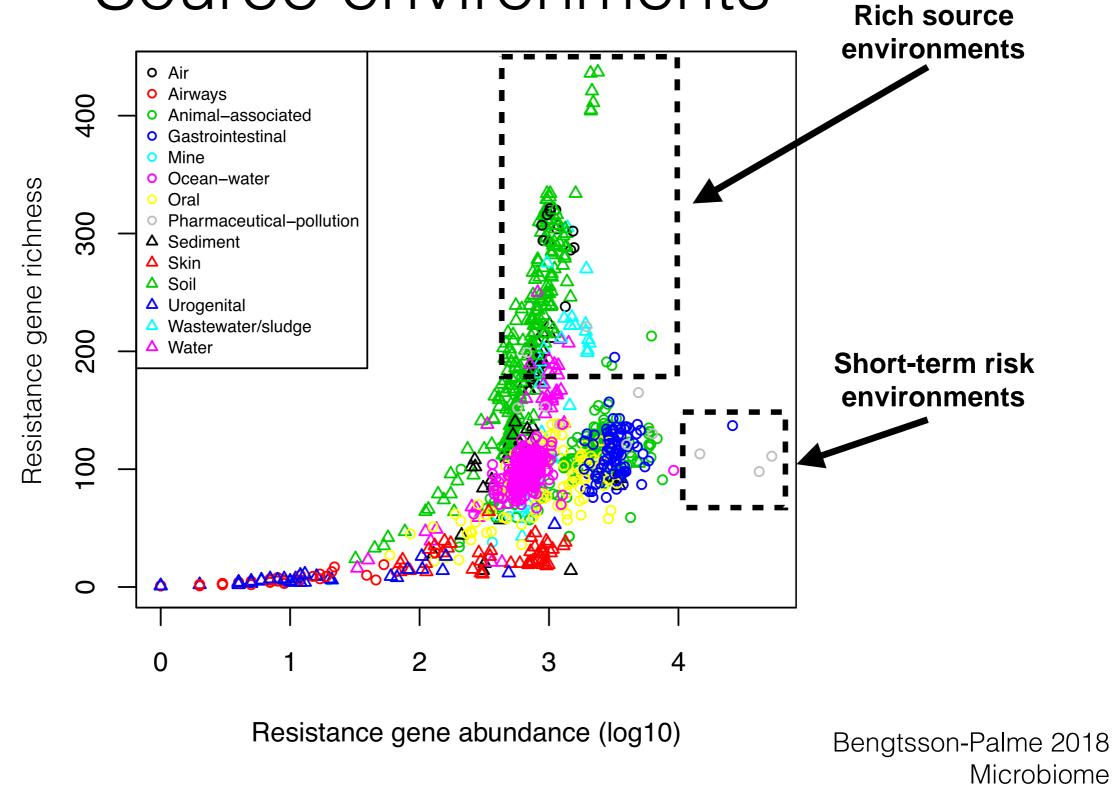
Env Int

Minimal Selective Concentrations Ciprofloxacin

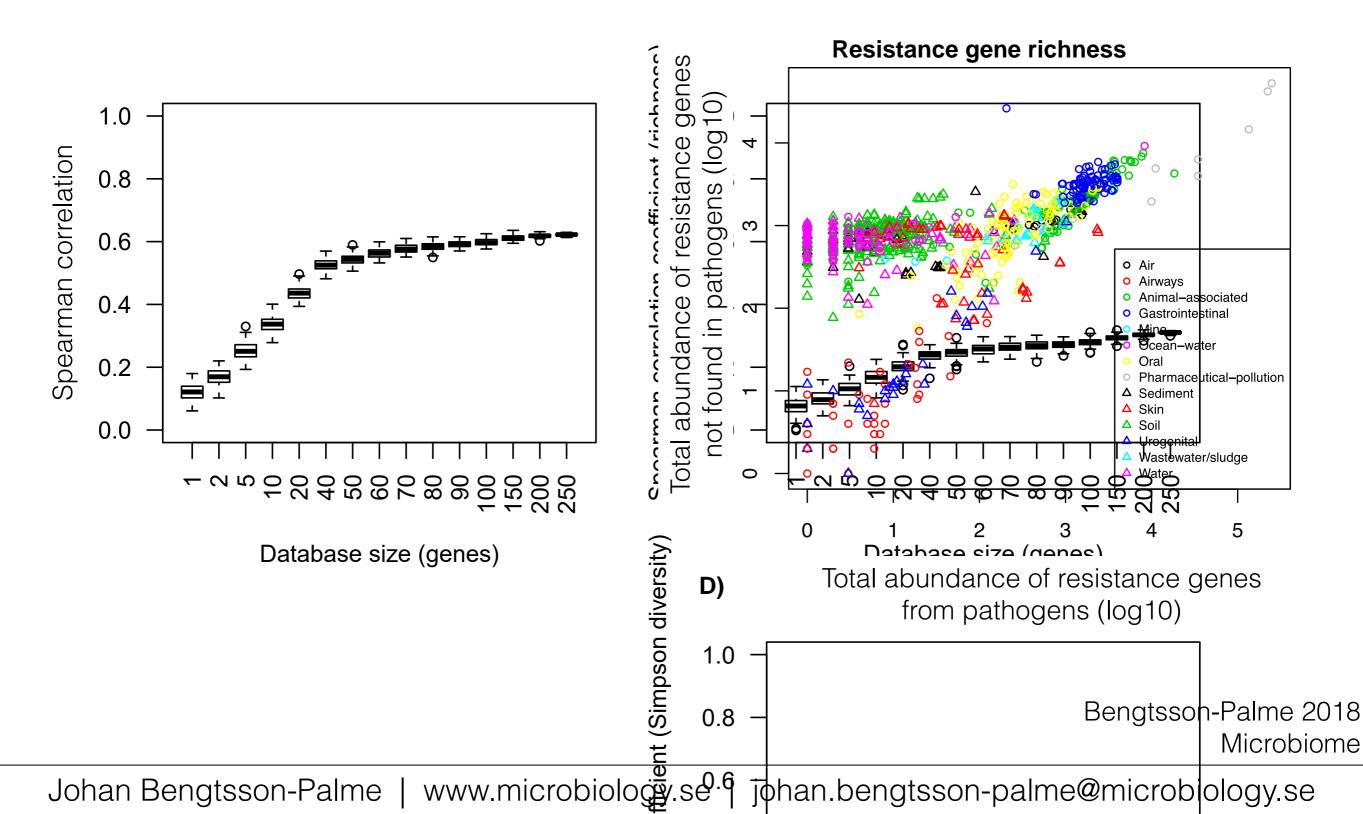
Minimal Selective Concentrations

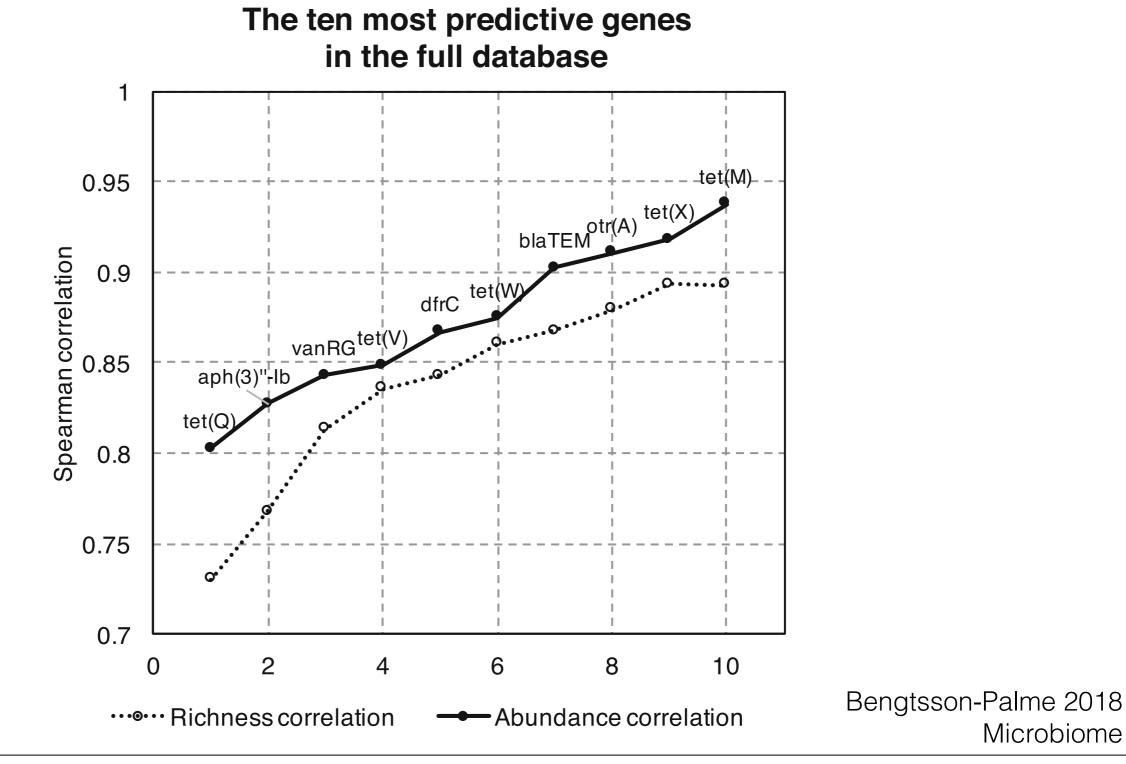
Estimated minimal selection concentration boundaries and predicted no-effect concentrations for 26 (of 111) commonly used antibiotics

Antibiotic	Antibiotic class	N1	Covered genera (famlies)	Observed lowest MIC (µg/L)	Size-adjusted predicted lowest MIC (µg/L) ²	PNEC (incl. assessment factor) (μg/L)	STP Effluent conc. (μg/L) ³
Gentamicin	Aminoglycosides		27 (14)	16	16	1	1.3
Tobramycin	Aminoglycosides	31	15 (8)	16	8	1	
Co-trimoxazole	Antifolate combinations	36	22 (13)	8	4	0.5	
Ertapenem	Carbapenems		20 (12)	2	1	0.125	
Cefalexin	Cephalosporins (1st gen.)		7 (5)	250	32	4	1.8
Cefaclor	Cephalosporins (2nd gen.)		7 (6)	32	8	0.5	1.8
Cefdinir	Cephalosporins (3rd gen.)	5	4 (4)	32	2	0.25	
Benzylpenicillin (G)	Narrow-spectrum penicillins	47	12 (11)	4	4	0.25	
Phenoxymethylpenicillin (V)	Narrow-spectrum penicillins	8	5 (5)	4	0.5	0.064	2
Amoxicillin	Extended spectrum penicillins	29	19 (12)	4	2	0.25	0.05
Ampicillin	Extended spectrum penicillins	64	25 (15)	4	4	0.25	0.126
Vancomycin	Glycopeptides	42	10 (9)	125	125	8	0.04
Daptomycin	Lipopeptide	16	6 (6)	32	8	1	
Azithromycin	Macrolides	12	6 (6)	16	4	0.25	0.38
Clarithromycin	Macrolides	15	10 (10)	8	2	0.25	0.61
Erythromycin	Macrolides	39	14 (13)	16	8	1	0.62
Linezolid	Oxazolidinones	29	9 (9)	125	64	8	
Chloramphenicol	Amphenicols	29	18 (11)	125	64	8	
Colistin	Polypeptides	16	10 (4)	64	16	2	
Ciprofloxacin	Fluoroquinolones (2nd gen.)	70	29 (18)	2	1	0.064	0.742
Levofloxacin	Fluoroquinolones (3rd gen.)	43	24 (16)	4	4	0.25	
Moxifloxacin	Fluoroquinolones (4th gen.)	53	21 (14)	2	2	0.125	0.017
Rifampicin	Rifamycins	19	12 (12)	2	0.5	0.064	
Tigecycline	Glycylcyclines	54	26 (16)	16	16	1	
Doxycycline	Tetracyclines	29	20 (11)	32	16	2	0.915
Tetracycline	Tetracyclines	66	30 (18)	16	16	1	0.62


Notes: ¹ These numbers correspond to the number of different species present in EUCAST that could be matched to a valid species name in SILVA. ² The size-adjusted predicted lowest MIC correspond to the estimated upper boundary for the minimal selective concentrations. ³ The highest concentration observed in effluents from conventional STPs

Bengtsson-Palme & Larsson 2016 Env Int


Source environments

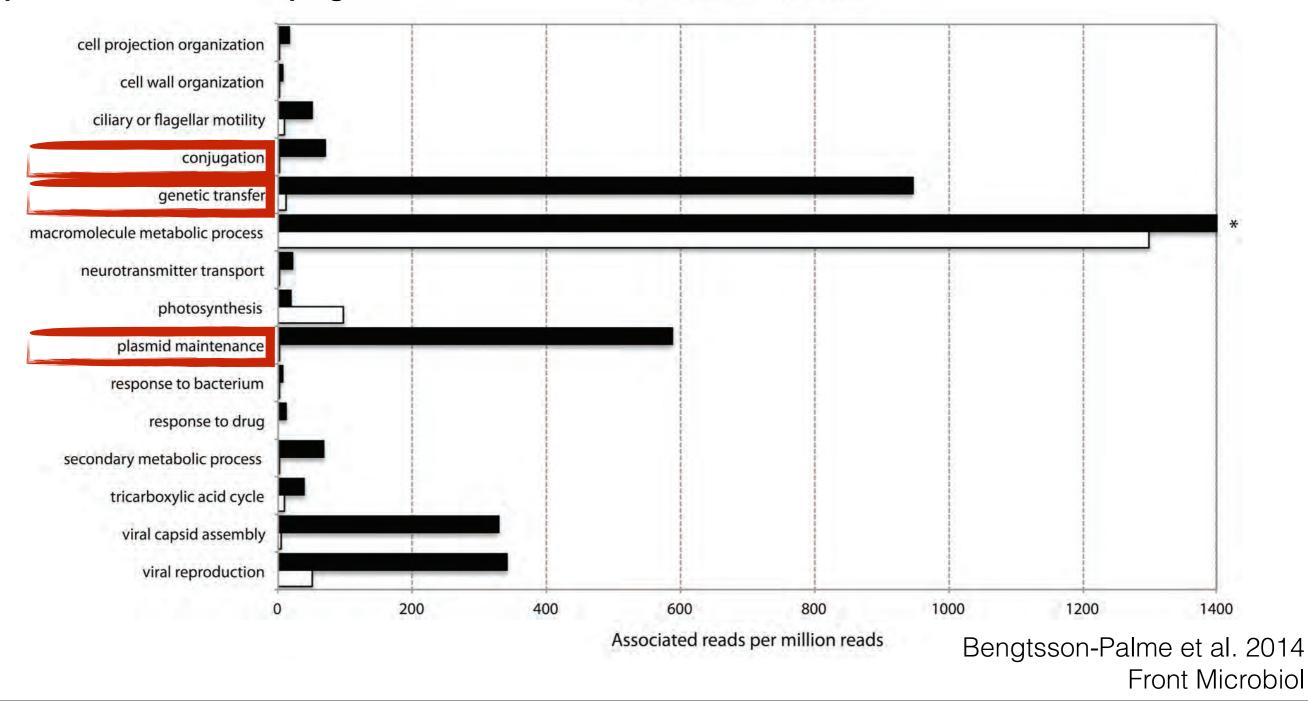

Figure & Risk environments are predictable

...especially with the right targets

The Future

"The ongoing release of selective agents into the biosphere is **likely to affect bacterial evolvability** on a global scale, and include environmental, commensal and pathogenic species"

– Gillings & Stokes Trends Ecol Evol 2012



Antibiotics select for mobile genes

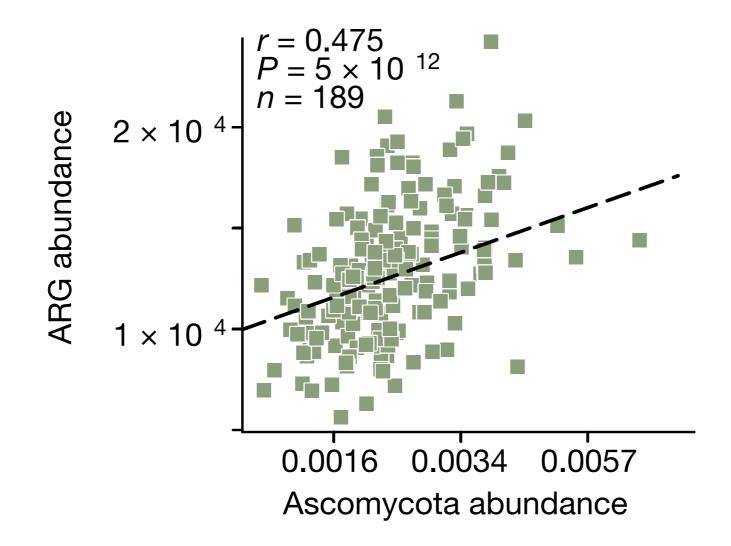
Indian lake subjected to pharmaceutical production waste dumping

□ Swedish Lake ■ Indian Lake

Secondary effects of antibiotics

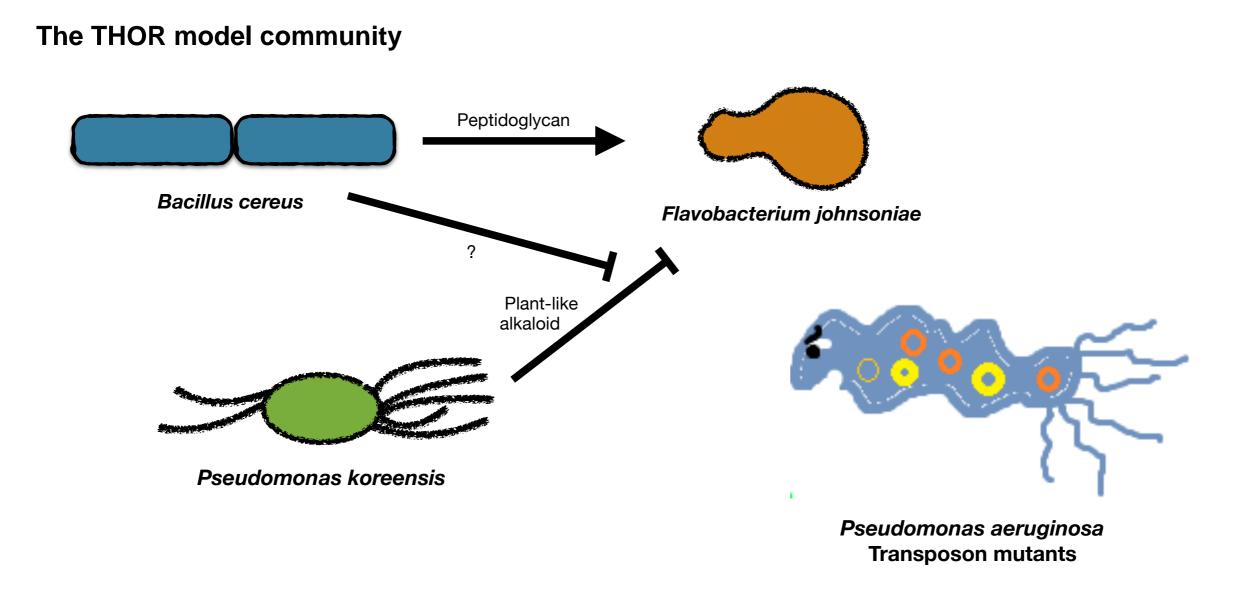
- What type of genes?
- At what concentrations?
- What are the timeframes?

Selective advantage of other genes


- Genes that provide a fitness advantage in changing environments
 - Detoxification
 - Utilize alternative carbon sources
 - Competition
 - Surface adhesion
 - Spore formation
 - Colonization and invasion
 - Virulence, transmission and pathogenicity

Bengtsson-Palme et al. 2018 FEMS Microbiol Reviews

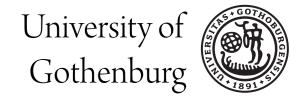
Antibiotic exposure is ancient



Bahram et al. 2018 Nature

Colonization and Invasion

Lozano et al. 2019 mBio



Summary

- Anthropogenic antibiotic exposure selects for resistance in the environment
- Antibiotics increases mobilization, but also genes involved in pathogenesis and invasion
- Are we breeding multiresistant, hypervirulent superbugs?

Acknowledgements

Joakim Larsson Lab

Joakim Larsson Chandan Pal Nadine Kraupner Sara Lundström Stefan Ebmeyer

Erik Kristiansson Lab

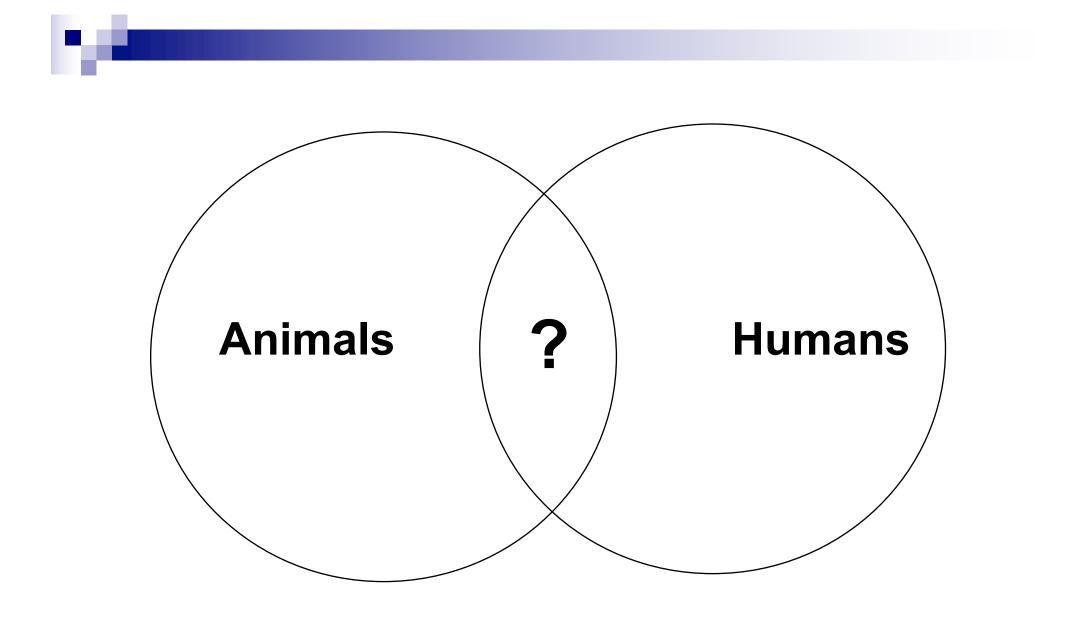
Erik Kristiansson Viktor Jonsson

Jo Handelsman Lab

Jo Handelsman Gabriel Lozano Manuel Garavito Amanda Hurley J Rajendhran Jennifer Heinritz

Nikolina Udikovic-Kolic Mohammad Bahram

Funding: FORMAS, SciLifeLab, Wallenberg Foundation


Emergence of acquired polymyxin resistance in Gram negatives; perfect example of a One-Health issue

Laurent Poirel

Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland

French INSERM European Unit, University of Fribourg (LEA-IAME), Switzerland

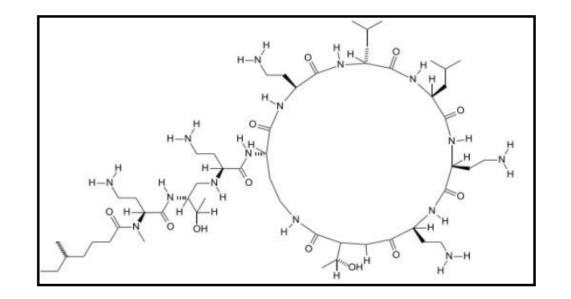
National Reference Center for Emerging Antibiotic Resistance (Switzerland)

J Antimicrob Chemother 2014 doi:10.1093/jac/dku054 Advance Access publication 26 February 2014

The carbapenemase threat in the animal world: the wrong culprit

Laurent Poirel^{1*}, Roger Stephan², Vincent Perreten³ and Patrice Nordmann¹

Human medicine is guilty

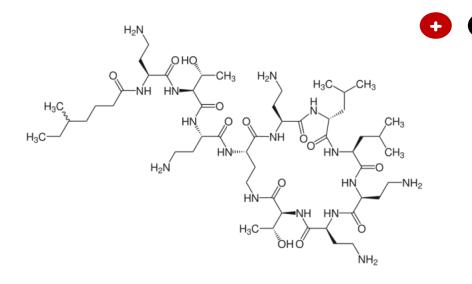

J Antimicrob Chemother doi:10.1093/jac/dkw074

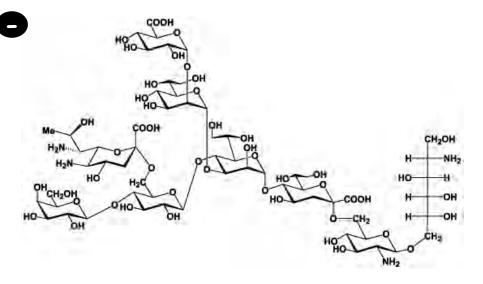
Emerging plasmid-encoded colistin resistance: the animal world as the culprit?

Laurent Poirel^{1*} and Patrice Nordmann^{1,2}

Veterinary medicine is (partially) guilty

Colistin (Polymyxin E)

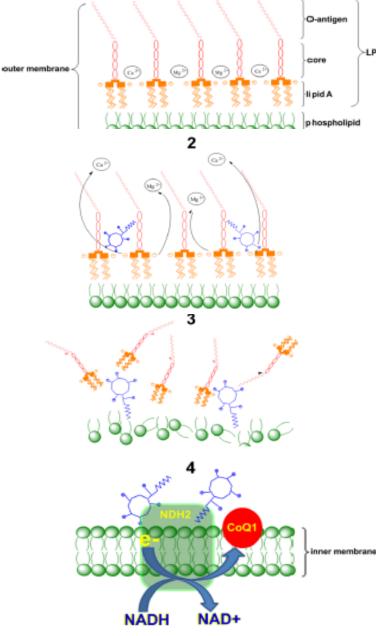



- Synthesis by *Bacillus polymyxa* spp colistinus
- Discovered in the 1940's
- High rates of toxicity (mainly nephrotoxicity) : replacement by newer antibiotics in 1980s
- Widely used in veterinary medicine for decades
- Renewed interest in human medicine in mid-1990s to treat MDR Gram-negative bacteria

Mechanism of action

Colistin

Lipid A



Colistin is a cationic antibiotic that is composed of a cyclic heptapeptide covalently attached to a fatty acyl chain Lipopolysacharide (LPS) of Gramnegative bacteria is composed by :

- Lipid A
- Core
- Oligosaccharide O

Mechanism of action (2)

1. Fixation

LPS

2. Displacement of divalent cation $(Ca^{2+} et Mq^{2+})$

3. Destabilisation of the outer membrane of Gram negatives

4. Penetration throughout the inner membrane and inhibition of the respiratory enzymes NDH2

> Falagas et al, Clin Infect Dis. 2005 Deris et al, J Antibiot. 2013

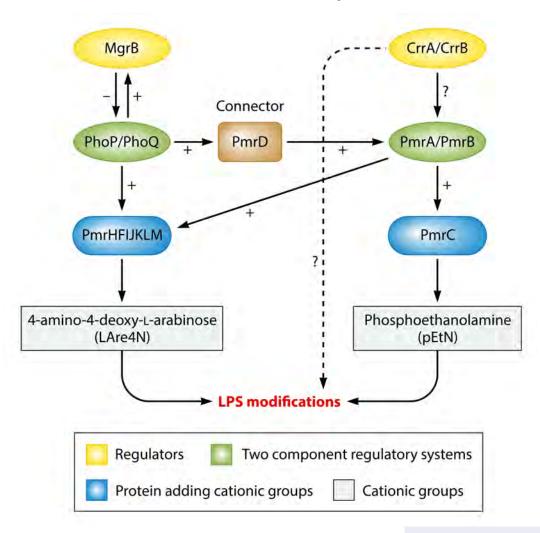
Spectrum of activity

Susceptible bacteria :

- Pseudomonas aeruginosa, A. baumannii, E. coli, <u>Klebsiella spp.</u>, Enterobacter spp.
- H. influenza, Bordetella pertussis
- Salmonella spp., Shigella spp.
- Legionella, Stenotrophomonas maltophilia
- Some Mycobacterium species, and in particular M. tuberculosis

Non-susceptible bacteria :

- All gram positives
- Gram neg cocci: N. gonorrhoeae, N. meningitidis
- Proteus group, Serratia spp., Burkholderia spp., Brucella spp.
- Anaerobes

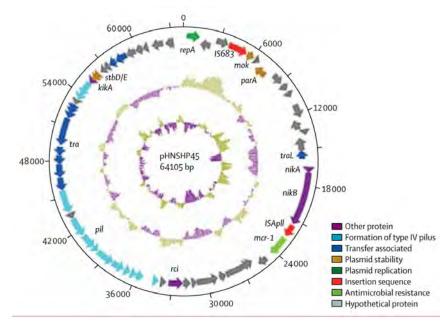

Role of LPS in polymyxin resistance

LPS modifications : the main mechanism of resistance to colistin :

Addition of 4-amino-4-deoxy-L-arabinose (LAra4N) and / or phosphoethanolamine (pEtN) to lipid $A \rightarrow Increase of positive charges \rightarrow decreased affinity for LPS$

Synthesis of L-Ara4N and pEtN mediated by PmrA / PmrB, PhoP / PhoQ, and *mgrB* gene

Interplay of resistance mechanisms in *Klebsiella pneumoniae*



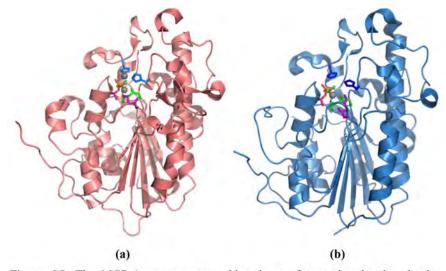
Poirel et al., Clin Microbiol Reviews 2017

Plasmid-mediated resistance

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Yi-Yun Liu*, Yang Wang*, Timothy R Walsh, Ling-Xian Yi, Rong Zhang, James Spencer, Yohei Doi, Guobao Tian, Baolei Dong, Xianhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xiaojie Chen, Luchao Lv, Dandan He, Hongwei Zhou, Zisen Liang, Jian-Hua Liu, Jianzhong Shen

	Year	Positive isolates (%)/number of isolates
Escherichia coli		- market and
Pigs at slaughter	All	166 (20-6%)/804
Pigs at slaughter	2012	31 (14-4%)/216
Pigs at slaughter	2013	68 (25.4%)/268
Pigs at slaughter	2014	67 (20-9%)/320
Retail meat	All	78 (14.9%)/523
Chicken	2011	10 (4.9%)/206
Pork	2011	3 (6.3%)/48
Chicken	2013	4 (25.0%)/16
Pork	2013	11 (22.9%)/48
Chicken	2014	21 (28.0%)/75
Pork	2014	29 (22.3%)/130
Inpatient	2014	13 (1.4%)/902
Klebsiella pneumor	niae	
Inpatient	2014	3 (0.7%)/420


- MCR : Mobilizable Colistin Resistance
 - \rightarrow Phosphoethanolamine transferase (permanent modification of the lipid A)

Countries where the *mcr-1* gene has been detected from Enterobacteriaceae in pigs and other farm animals

Country	Year of report	Animal production	Bacterial species
Laos	2015	Pigs	Escherichia coli
Denmark	2015	Chicken	E. coli
China	2016	Pigs, chicken	E. coli
Algeria	2016	Chicken	E. coli
Vietnam	2016	Pigs	E. coli
France	2016	Veal calves	E. coli
Germany	2016	Pigs	E. coli
Malaysia	2016	Pigs	E. coli
Japan	2016	Cattle, pigs	E. coli, Salmonella
UK	2016	Pigs	E. coli
Belgium	2016	Pigs, calves	E. coli

Rhouma M et al. Int J Antimicrob Agents 2016;48:119-26

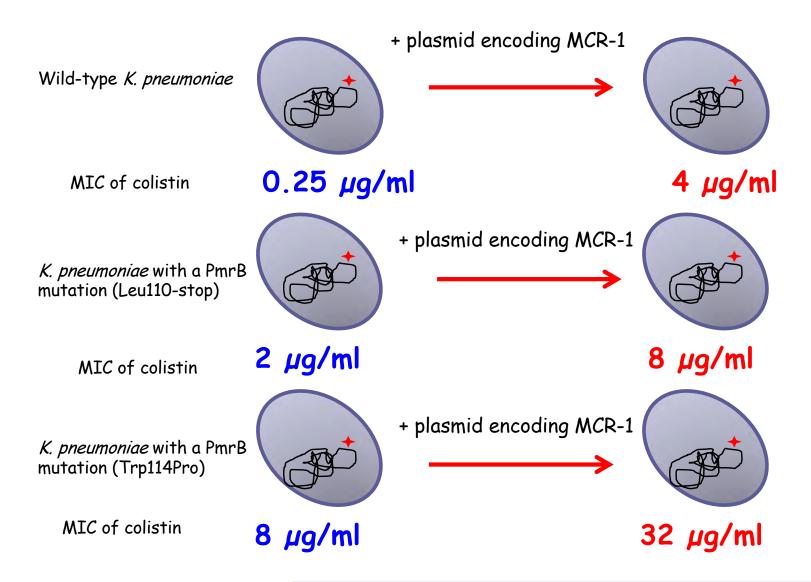
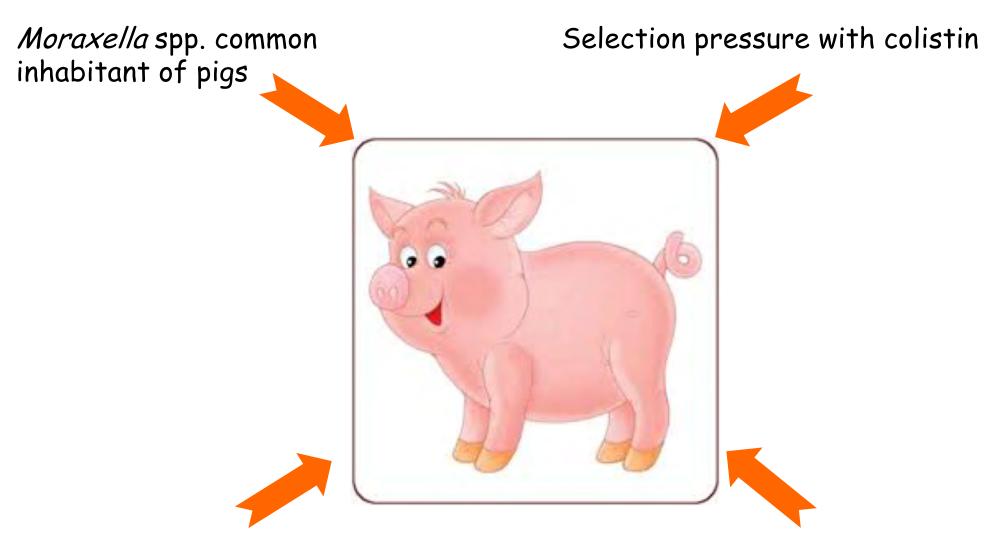
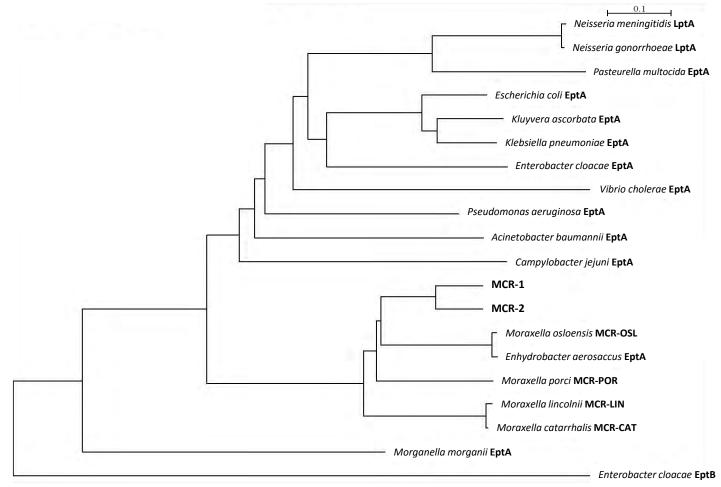

The MCR-1 protein; a phosphoethanolamine transferase

Figure S5. The MCR-1 sequence resembles those of two phosphoethanolamine transferases, **a)** LptA from *Neisseria meningitidis* (pdb ids 4KAY) and **b)** EptC from *Campylobacter jejuni* (pdb ids 4KAY and 4TNO).


- A 16-fold increase in MIC of polymyxins (colistin and polymyxin B)
- From 0.5 μg/ml (recipient *E. coli*) to 8 μg/ml (transconjugant)

Contribution of MCR-1 in resistance to colistin


Jayol, Nordmann, André, Dubois & Poirel, Int J Antimicrob Agents 2017

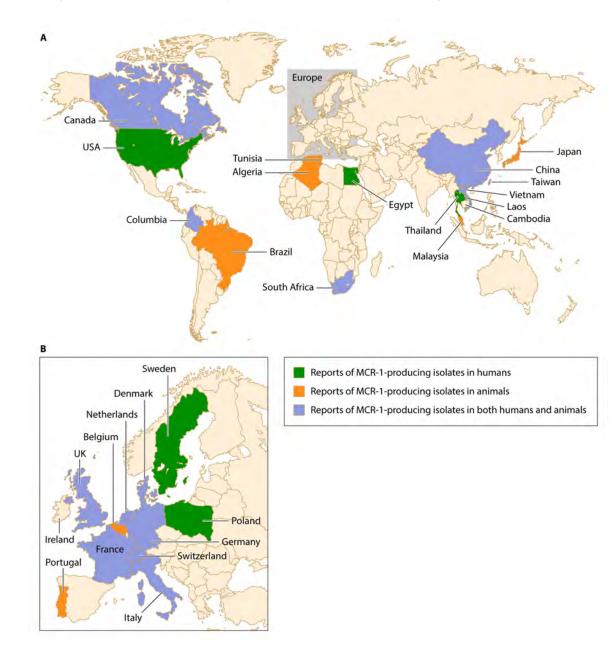
Where do MCR enzymes come from ?

IS*Apl1* originates from *Actinobacillus pleuropneumoniae* reponsible for porcine pleuropneumonia *E. coli* also a common inhabitant of pigs

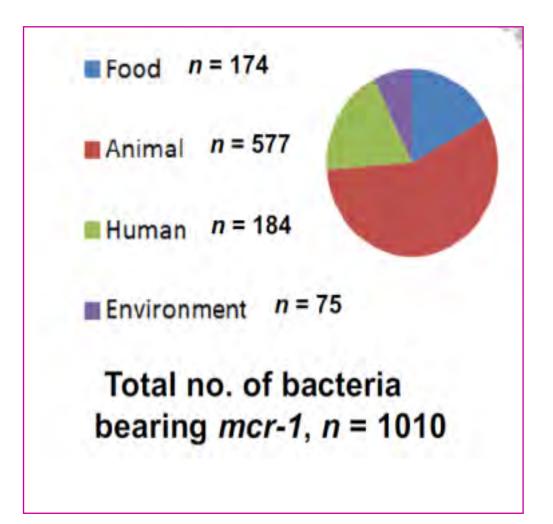
Moraxella species as sources of MCR-like determinants

Kieffer, Nordmann and Poirel, Antimicrob Agents Chemother; 2017

Moraxella pluranimalium is the progenitor of MCR-2


→ M. pluranimalium is an aerobic, catalase- and oxydase-positive Gram-negative cocci

 \rightarrow It harbors an intrinsic gene encoding an MCR-2-like enzyme (99% amino acid identity), with only 8 amino acids difference out of the 538 constituting the MCR-2 enzyme, and 82% amino acid identity with MCR-1


 \rightarrow Strains belonging to that species have been recovered from pigs being either healthy or suffering from pleuritis and polyserositis (nose, pleura, and peritoneal cavity fluids), and from the brain of a sheep presenting with meningitis

Poirel et al. 2017. J Antimicrob Chemother.

Epidemiology of MCR-1 producers

Global Distribution of plasmid-mediated *mcr-1* colistin-resistant strains from Environments, Foods, Animals and Humans (20 countries) (November 2015 to April 2016)- 1,010 Isolates

Courtesy Po-Ren Hsueh

Baron S et al. Int J Antimicrob Agents 2016;48:583-591

Need for a selective medium allowing selection of bacteria being resistant to polymyxins

Composition of the SuperPolymyxin medium

- □ EMB medium; 3.75%
- □ Colistin sulfate; 3.5 µg/ml
- Daptomycin; 10 µg/ml (cannot be substituted by vancomycin)
- □ Amphotericin B; $5 \mu g/ml$

- SuperPolymyxin medium = screening medium aimed to detect any polymyxin-resistant Gram negative bacteria regardless of its resistance mechanism and of its level.
- May be used in :
- human medicine for detecting carriers (stools, rectal swabs)
- in veterinary medicine for epidemiological surveys
- May be used for isolated bacteria, but also clinical samples including tools
- Is now commercialized (ELITech company, France)
- May help to contain outbreaks due to polymyxin-resistant isolates and thus at least in part preserve the efficacy of polymyxins as last resort antibiotics.

Nordmann P, Jayol, Poirel L. A universal culture medium for screening polymyxin-resistant gram negatives. J Clin Microbiol. 2016

Some applications

Prospective survey in pig farms in Portugal - design

- Two farms in Portugal; 50 pigs sampled in each farm; total 100 pigs
- Rectal swabs collected in 2016
- Pigs receiving colistin in feeding regimen
- Screening on SuperPolymyxin selective plates

- Isolates were confirmed to be resistant to colistin using the Rapid Polymyxin NP test

- Characterization of the resistance mechanisms

Prospective survey in pig farms in Portugal – results

- 108 colistin-resistant isolates recovered
- 98 mcr-1-positive enterobacterial isolates !! (94 E. coli, 4 K. pneumoniae)
- 92 different *E. coli* clones !
- Different plasmid types (IncP, IncX4, IncHI2,

- Different genetic contexts (heterogeneity of the associated transposon)

Extremely high rate of MCR-1-producing and clonally-unrelated E. coli

Kieffer, Aires de Sousa, Nordmann, and Poirel, Emerg Infect Dis 2017

Prevalence of colistin resistance in *Enterobacteriaceae*

Prevalence of colistin resistance among
 MDR Enterobacteriaceae / non Enterobacteriaceae
 Different collections of Enterobacteriaceae / non Enterobacteriaceae from different origins

- Clinical / carriage strains
- Patients / Animals

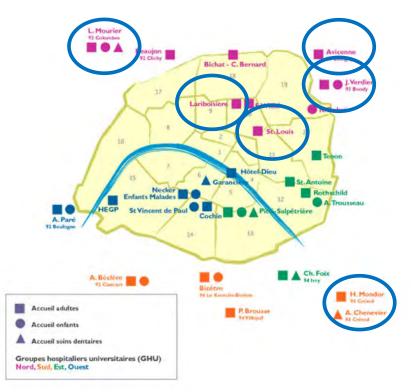
Always biased

But what is the prevalence of colistin resistant Enterobacteriaceae in the gut of asymptomatic carriers?

Aim of the study

Question: what is the prevalence of colistin resistant Enterobacteriaceae (and in particular Escherichia coli) in the gut of asymptomatic carriers?

Answer:


- a multicenter prospective study among hospitals of the Assistance Publique - Hôpitaux de Paris - bacteriology labs belonging to the IAME Resistance study group
- □ The use of a (pre)-marketed screening culture media
- The use of a marketed confirmation test

The COLI-RED study: population study

- 6 hospitals in the Paris area
- 3-month period (2016-2017)
- all patients screened systematically upon admission
 - \Box to an intensive care unit
 - anywhere in the hospital if the patient showed risk for carriage of emerging extensively drugresistant bacteria such as carbapenemaseproducing *Enterobacteriaceae* or vancomycinresistant enterococci (French regulalory action)

Rectal swab (Eswab®)

 Direct inoculation of one drop of transport medium on Superpolymyxin® plate

Results (1)

- 1,217 rectal swabs originating from a relevant snapshot of the colistin resistance prevalence mostly from the community setting
- 168 colistin-resistant E. coli isolates recovered
- ✓ 7 mcr-1 positive
- ✓ No other mcr gene detected
- 161 mcr-negative and colistin-resistant strains

Results (2): Analysis of genotypes

- 7 mcr-1 positive E. coli isolates identified, and submitted to whole genome sequencing
- The strain backgrounds corresponded to commensal phylogroups (A, B1, E, and Clade I)
- The ST types were all different and all but one corresponded to *E. coli* backgrounds always identified from animal sources
- The plasmid scaffolds bearing the mcr-1 gene were diverse, corresponding to the formerly identified mcr-1-positive plasmids (IncHI2, IncX3, IncP)

Results (3): Analysis of genotypes

Almost all colistin-resistant and non-MCR producing *E. coli*possess a background corresponding to human commensal strains
Most of those isolates possess mutations in chromosomal genes
involved in LPS modification

Origin of this high rate of colistin resistant *E. coli*?

□ Antimicrobial selective pressure? Unlikely owing to:

- The community origin for a large part of the patients (>80%)
- The low consumption of polymyxin in/out hospital setting

Co-selection of colistin resistance through another way /mechanism beyond the use of colistin?

- Clinical consequence?
 - So far limited owing to the low probability of colistin therapy

General conclusion

- Plasmid-mediated resistance to polymyxins seems to represent a minor threat for humans, but is very widespread in food-producing animals

- Monitoring the resistance rates to colistin is crucial
- This must be done for human but also animal isolates

- Selective pressures leading to co-selection of resistance to colistin must be identified

Infection Control in Veterinary Hospitals Why it matters....lessons from Liverpool

Dr Dorina Timofte

DVM PhD MRCVS DiplECVM

Sen Lecturer in Clinical Veterinary Microbiology

Human/Veterinary Hospital environment

Different hospitals - same nosocomial agents

- Methicillin-Resistant *Staphylcoccus aureus* (MRSA)
 - **Dog and cats** colonisation/infection: **MRSA E15**
 - Equine and farm animals: infections are associated with MRSA isolates <u>uncommon in humans</u>
- Methicillin Resistant *Staphylococcus pseudintermedius* (MRSP)
 - *S. pseudintermedius* (dog-adapted)
 - Thought to be involved in 95% of all canine pyoderma cases

CTX-M-15-PRODUCING E. COLI IN UK COMPANION ANIMALS

613

PT

ESBL-producing *E. coli:* Hospital dissemination in Small Animals (dogs)

MICROBIAL DRUG RESISTANCE Volume 22, Number 7, 2016 Mary Ann Liebert, Inc. DOI: 10.1089/mdr.2016.0036

> Veterinary Hospital Dissemination of CTX-M-15 Extended-Spectrum Beta-Lactamase–Producing Escherichia coli ST410 in the United Kingdom

Dorina Timofte,1-3 Iuliana Elena Maciuca,1 Nicola J. Williams,4 Andrew Wattret,1 and Vanessa Schmidt1.2

	Isolate ID	ST	PG	beta-lactamases and PMC	R genes			
D.D.LILL	10L-1340	4184	A	blaCTX-M-15				
интинг	11L-2596	617	A	blaCTX-M-14 blaTEM-1				
minit	10L-0652	617	A	blaCTX-M-14 blaTEM-1				
III IIIII	10L-0784 A	617	A	blaCTX-M-14 blaTEM-1				
	10L-0405	1.1	A	blaCTX-M-14 blaTEM-1				
MAR (1973)	11L-260 12L-065	linic	al is	olates	M-1 blaCM [™] -2 aac(6')-ib-cr M-1 blaCM [™] -2 aac(6')-ib-cr			
	12L-0671		A	blaCTX-M-15 blaOXA-1 blaTEM	A-1 blaCM" -2 aac(6')-ib-cr			
	EMB1 do	EMB1 door handle and fridge handle, the ward computer EMB1 keyboard						
10.03 1 10 1	EMB116			BIOCTY M 15 BIOCYA 1 BIOTEN				
	10L-3690		A	blaCTX-M-15 blaOXA-1 blaTEM blaCTX-M-15 blaOXA-1 aac(6')	and the state of t			
ini i	10L-3852		A	blaCTX-M-15 blaOXA-1 aac(6')	-ib-cr			
THE HEALE	10L-2646	131	B2	blaCTX-M-15 blaOXA-1 aac(6')	-ib-cr			
ETT HUUUT T	11L-1298	1L-1298 131 B2 blaCTX-M-15 blaOXA-1 aac(6)-b-cr						
	10L-4543	131	B2 blaCTX-M-15 blaOXA-1 aac(6')-lb-cr					
	10L-0827	131	B2	blaCTX-M-27				
	11L-1050 A	2348	D	blaCTX-M-15 blaOXA-1 blaTEM	-1 blaCMY-2 aac(6')-ib-cr			
	11L-0348		D	blaCTX-M-15 blaOXA-1 aac(6')	ib-cr			

blaCTX-M-15 blaOXA-1 aac(6')-ib-cr

Acinetobacter baumannii in companion animals

RESEARCH ARTICLE

Extended-spectrum beta-lactamase (ESBL)producing *Escherichia coli* and *Acinetobacter baumannii* among horses entering a veterinary teaching hospital: The contemporary "Trojan Horse"

Birgit Walther^{1,2}*, Katja-Sophia Klein³, Ann-Kristin Barton³, Torsten Semmler⁴, Charlotte Huber², Silver Anthony Wolf⁴, Karsten Tedin¹, Roswitha Merle⁵, Franziska Mitrach⁶, Sebastian Guenther^{7,8}, Antina Lübke-Becker¹, Heidrun Gehlen³

- Opportunistic pathogen associated with HAIs
- Little data available on *A. baumannii* as a nosocomial pathogen in veterinary hospitals

MDR Acinetobacter spp isolate study:

- Clinical: small animals, equine and exotic species (n=98)
- Veterinary hospital environments (Env; n=51)

A. baumannii: molecular typing

PCR-based group typing and cgMLST

- 44% of A. baumannii isolates were typed to IC-I (ST1)
- *Few (6%) of A. baumannii* isolates typed to **IC-II** (ST2, ST427, ST739)

All **IC-I** isolates were Equine (Clinical or Env) Minimum Spanning Network of animal and human A. baumannii SNP profiles IC-I Equine Canine Bovine Feline **Unknown Animal** Human (from SNPTAb DB) IC-II In collaboration with M. Edelstein IAC, Smolensk State Medical University

Infection Control at UoL - What we do

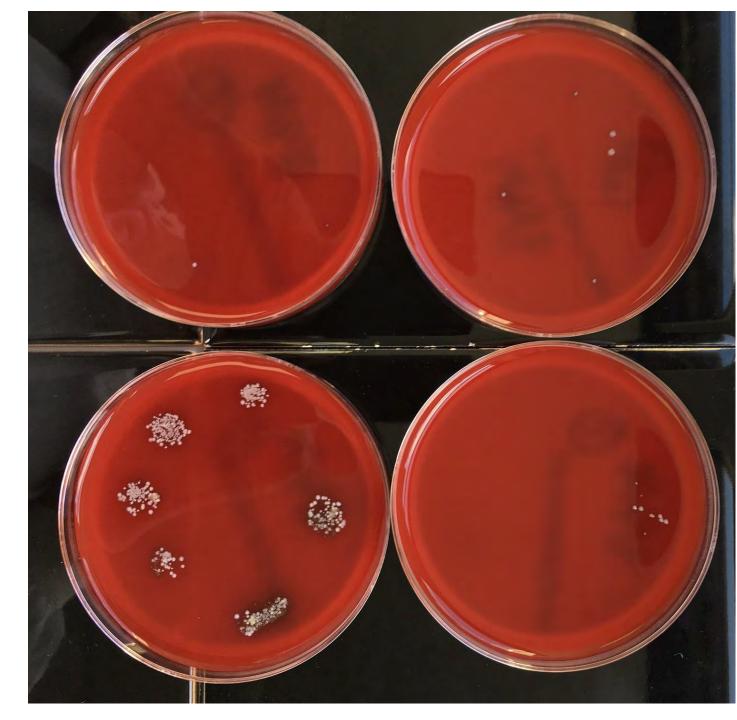
Active surveillance

Screening patient

Environmental surveillance

Hand-plates

• Monitor microbiology diagnostic results


• Infection control working group involving clinicians, nurses and microbiologists

Active surveillance:

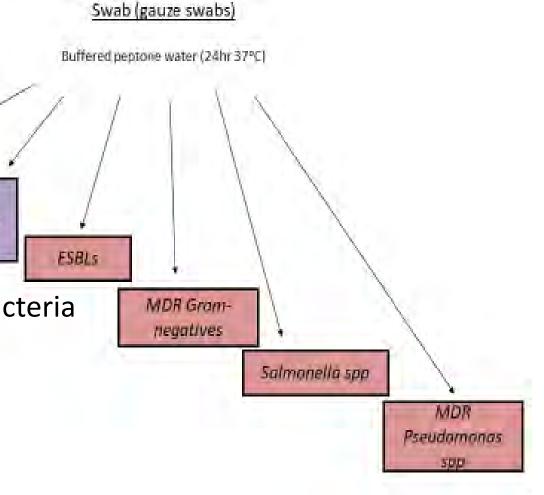
Hand-plate sampling

- Provides an effective visual way of disseminating results
- Results fed back to staff as CFU/plate and images
 - Weekly emails
 - Departmental seminars

Active surveillance:

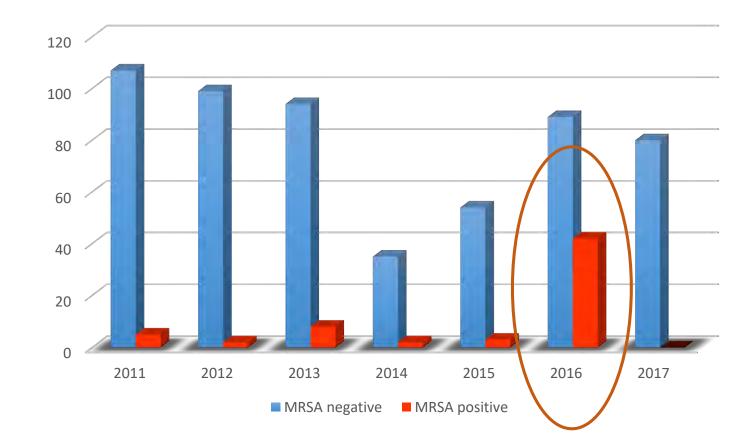
MRSA/MRSP

MDR/HLGR Enterococcus


spp

- Screening MRSA/MRSP, MDR Gram-negative bacteria (*E. coli, Acinetobacter* spp, *Pseudomonas* spp)
- Action when found: *cleaning-disinfection-*

re-swabbing



Environmental MRSA screening and the...

....Equine Hospital Liverpool outbreak: 2016



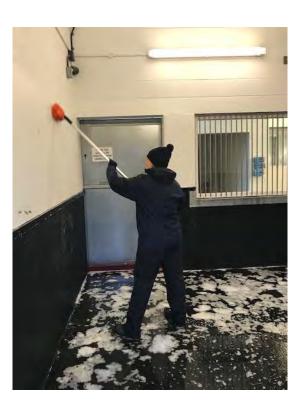
Equine Hospital MRSA outbreak: 2016

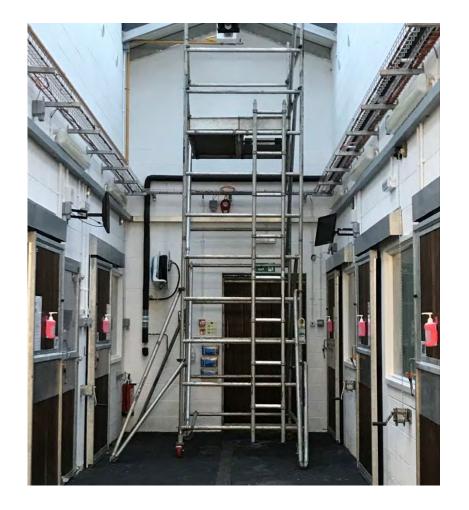
- Previous history of intermittent cases
- Feb April 2016 6 individual MRSA SSI (surgical site infection) in ICU cases

Timeline of MRSA isolation from PLEH environment and clinical isolates (Feb-April 2016)

Arrows indicate point of isolation

MRSA outbreak:		Strain	Year	Site (Location)	CC398	SCC <i>mec</i> type	<i>spa-</i> type	spa CC	Resistance phenotype*		
		M 1	2011	SSI	+	IVa	t011	spa CC011/3423	Gen, Tet		
		M 2	2011	ENV-(Stable floor)	+	IVa IV	t011	<i>spa</i> CC011/3423	Gen, Tet		
Mala	ecular characterisation	M 3 M 4	2011 2013	ENV- (Stable floor) ENV- (Stable floor)	++++++	IVa IVa	t011 t073	<i>spa</i> CC011/3423 Singleton	Gen, Tet Enr, Tet		
wolecular characterisation		M 5	2013	ENV (Stable floor)	+						
		M 6	2013	ENV- (Stable floor)	+		80%	MRSA is	solates		
		M 7 M 8	2014	SSI	+						
		M 8 M 9	2014 2015	ENV- (Staff Keyboard) ENV (Y-piece no 1)	+++	0	obtained in the past 5				
			2015	ENV (Stable floor)	+				•		
Identified: Livestock-associated MRSA (LA-MRSA) CC398		M 11	2015	SSI	+	vea	years belonged to CC3				
		M 12	2015	SSI	+	,		, ,	Tet		
		M 13	2015	SSI	+	IVa	t011	spa CC011/3423	Gen, Enr, Tet, Neo		
		M 14	2016	SSI	+	IVa	t588	spa CC011/3423	Gen, Enr,		
		M 15	2016	SSI	+	IVa	t3423	spa CC011/3423	Tet Gen, Tet		
		M 16	2016	SSI	+	IVa	t011	<i>spa</i> CC011/3423	Gen, Tet		
Scientific Reports		M 17	2016	SSI	+	IVa	t011	spa CC011/3423	Gen, Tet		
		M 18 M 19	2016 2016	SSI SSI	+++	IVa IVa	t011 t011	<i>spa</i> CC011/3423 <i>spa</i> CC011/3423	Gen, Tet Gen, Tet		
		M 20	2016	ENV (Stable floor)	+	IVa	t588	spa CC011/3423	Gen, Ery, Tet		
		M 21	2016	ENV (Stable floor)	+	IVa	t011	spa CC011/3423	Gen, Tet		
	·	M 22	2016	ENV (Stable floor)	+	IVa	t011	spa CC011/3423	Gen, Tet		
ODEN		M 23	2016	ENV (Stable floor)	+	IVa	t3423	spa CC011/3423	Gen, Tet Gen, Enr,		
OPEN	Environmental surveillance	M 24	2016	ENV (Stable floor)	+	IVa	t588	spa CC011/3423	Tet		
	identifican multiple introductions	M 25	2016	ENV (Stable drain)	+	IVa	t011	spa CC011/3423	Gen, Tet		
	identifies multiple introductions	M 26 M 27	2016 2016	ENV (Stable floor) ENV (Stable wall)	+++	IVa IVa	t011 t011	<i>spa</i> CC011/3423 <i>spa</i> CC011/3423	Gen, Tet Gen, Tet		
	of MRSA CC398 in an Equine	M 27 M 28	2016	ENV (Stable wall) ENV (Stable brush)	+	IVa IVa	t011	<i>spa</i> CC011/3423 <i>spa</i> CC011/3423	Gen, Tet		
	OF WIRSA CC390 III all Equille	M 29	2016	ENV (Stable floor)	+	IVa	t011	spa CC011/3423	Gen, Tet		
d: 24 January 2017	Veterinary Hospital in the UK,	M 30	2016	ENV- (Stable floor)	+	IVa	t011	spa CC011/3423	Gen, Tet		
:d: 31 May 2017 ed online: 14 July 2017	vecennally hospital in the OK,	M 31 M 32	2016 2016	ENV (ICU Keyboard)	+	IVa IVa	t011	<i>spa</i> CC011/3423 <i>spa</i> CC011/3423	Gen, Tet		
	2011–2016	M 32 M 33	2010	ENV (Y-piece) ENV (Recep keyboard)	+	IVa IVa	t011 t1985	<i>spa</i> CC011/3423	Gen, Tet Gen, Tet		
	2011-2010	M 34	2016	ENV (Student keyboard		UT	t011	spa CC011/3423	Gen, Tet		
	Alessio Bortolami ¹ , Nicola J. Williams ² , Catherine M. McGowan ^{1,3} , Padraig G. Kelly ¹ , Debra C. Archer ^{1,2} , Michela Corrò ⁴ , Gina Pinchbeck ² , Christine J. Saunders ¹ & Dorina Timofte ^{1,2}	M 35	2016	ENV (Hand plate)	+	IVa	t1985	spa CC011/3423	Gen, Tet		
	Actice - Finicica cono - Sina Enclocek - Cinstines, Saonders a Donna Ennote	M 36	2016	ENV (Hand plate)	+	IVa	t011	spa CC011/3423	Gen, Tet		
		M 37	2016	ENV (Hand plate)	+	IVa	t011	spa CC011/3423	Gen, Tet		
		M 38	2010	ENV (Hand plate)	+	IVa	t011	spa CC011/3423	Gen, Tet		





MRSA persistence within the hospital stables

- Routine cleaning and disinfection protocols were not effective
- MRSA was identified in dust samples from higher levels

Lessons learnt

Study highlighted weaknesses

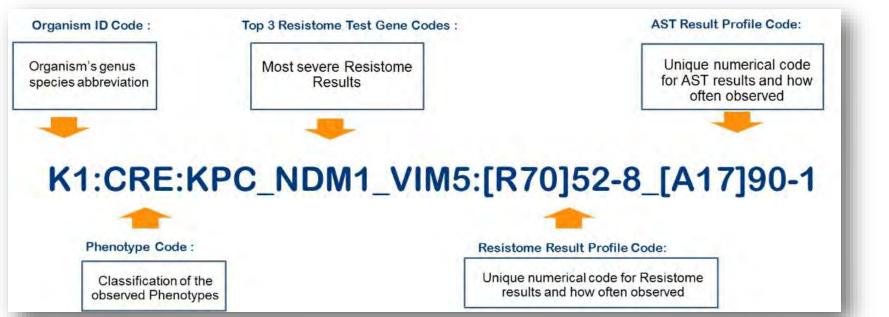
- Cross contamination between patients
 - Poor hand hygiene
 - Poor glove use

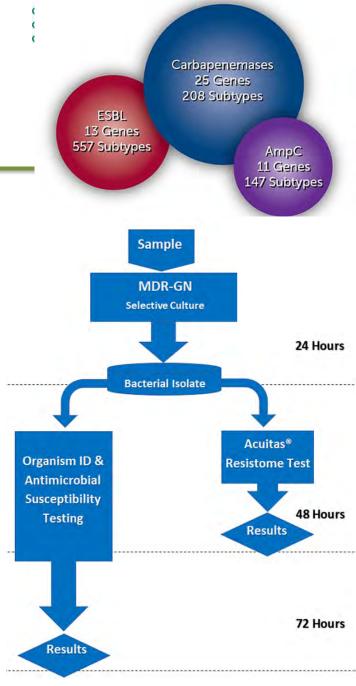
• Training and re-training, especially new people

Infection Control Research:

Trialing new MDR typing technologies for Infection control

- Current surveillance program: not providing immediate molecular typing information.....
- New MDR typing technologies are available for strain identification

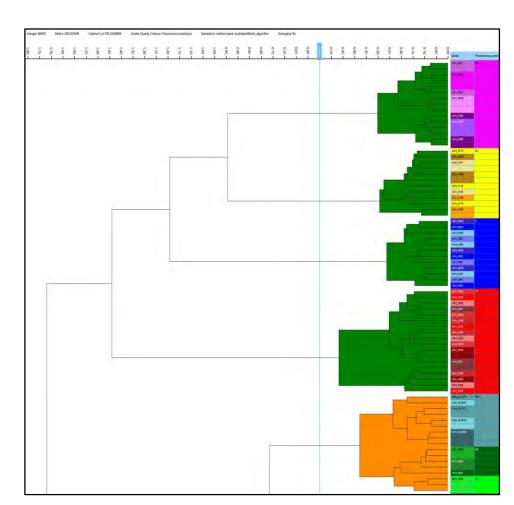




Molecular typing tools - 1:

Acuitas Resistome (OpGen, US) for typing MDR-GN isolates

- Combines detection of AMR genes/ID/susceptibility to give a unique isolate profile in real-time
- Results provided 48 hours from isolate submission



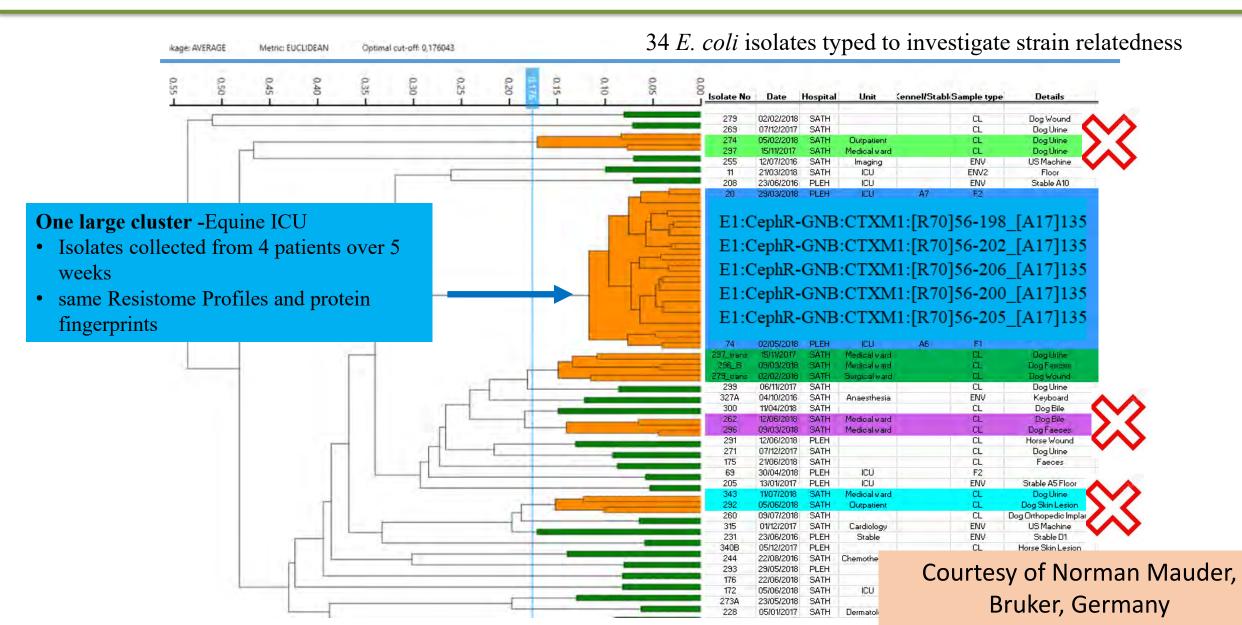
Molecular typing tools - 2:

- Bench-top system based on Fourier transform infrared (FT-IR) spectroscopy technology
- Provides unique protein fingerprint
- High discriminatory power to recognize the clonal relationship of isolates
- Fast turnaround times and low costs per sample

MVVJJJ

MDR Screening in Veterinary Hospital ICUs: Equine and Small Animal

All samples – screened for MDR Gram-negative bacteria and isolates posted to OpGen (US) for Resistome Testing



Major Acuitas Resistome profiles identified

		Equine Hospital				Small Animal Hospital				
Pattern types	Lighthouse Profile Organism Gene-pattern	F1	Envl	F2	Env2	F1	Envl	F2	Env2	
I	A. baumannii A4:CephR-GNB:OXA51:[R70]136_[A17]221									
п	E. cloacae E10:S-GNB:TEM7_TEM3_TEM1:[R70]286_[A17]457									
Ш	E. coli E1:CephR-GNB:CTXM1:[R70]56_[A17]135					\geq				
IV	K. pneumoniae K1:CephR-GNB:SHV1_SHV5_DHA1:[R70]147_[A17]180									
v	P. aeruginosa P1:CephR-GNB:OXA50:[R70]96_[A17]181							\geq		

E. coli isolates analysed by Bruker IR Biotyper

Infection control in Veterinary Hospitals Conclusions

- Improves biosecurity by minimizing the risk of infectious disease transmission within the veterinary facilities
- Reduces potential financial loss
- Targeted environmental monitoring can be a useful tool for detecting reservoirs and enabling early interventions
- Important to feedback and inform staff
- Hand plates are cost effective tool for monitoring and reinforcing hand hygiene and are simple to use
- IC programmes are critical to protect patients, veterinary staff, students and animal owners

Infection prevention takes a load off

Thank you!

If germs looked like this, we'd all be cleaner

Colleagues, PhD students , residents, oversees collaborators: Flavia Zendri Alessio Bortolami Nicola Williams Vanessa Schmidt Cajsa Isgren Gina Pinchbeck Padraig Kelly Cathy McGowan Andreea Cozma Veronica Vitiello Mikhail Edelstein (Laboratory of Antimicrobial Resistance, Smolensk, Russia) Dale Shelton, OpGen, US Norman Mauder, Bruker, Germany

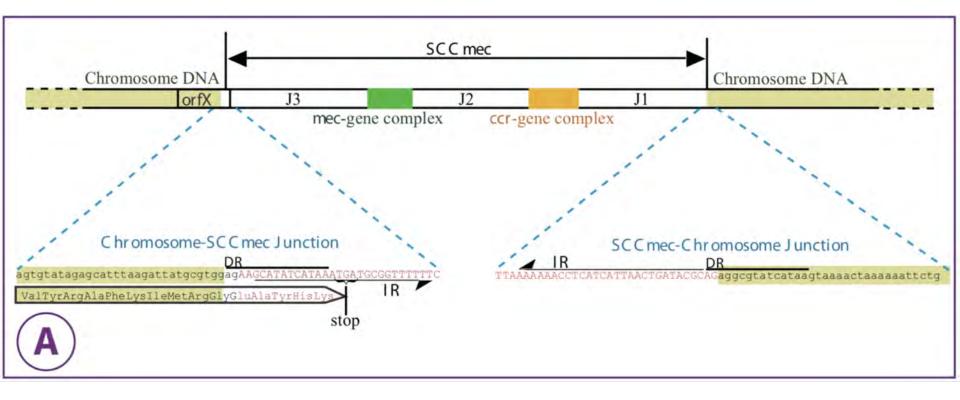
Demographic fluctuation of communityacquired antibiotic-resistant Staphylococcus aureus lineages: potential role of a low level antibiotic and heavy metal exposures

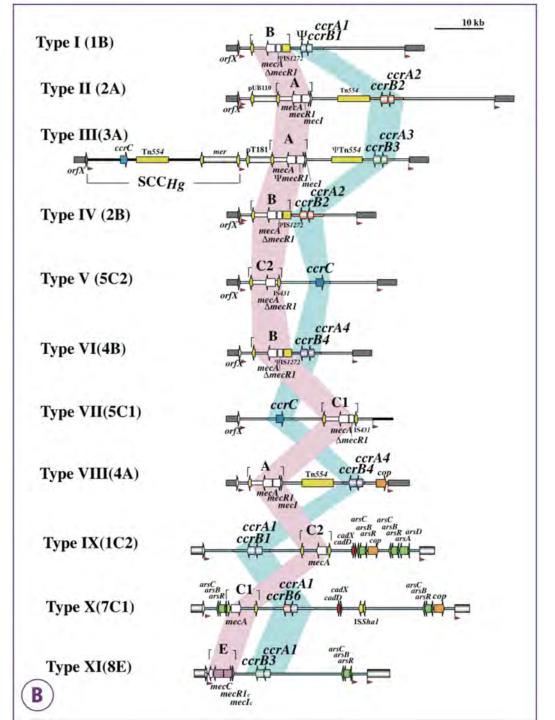
F. Vandenesch, MD, PhD

INSERM U1111, University of Lyon, National Reference Center for Staphylococci

Centre International de Recherche en Infectiologie

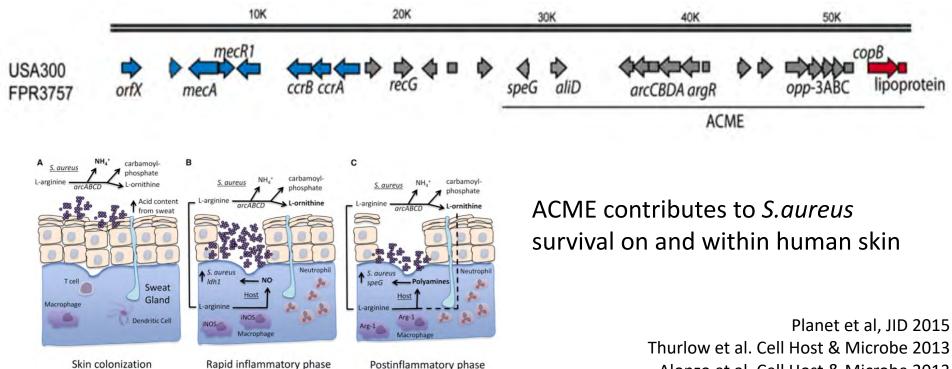
> Institut national de la santé et de la recherche médicale





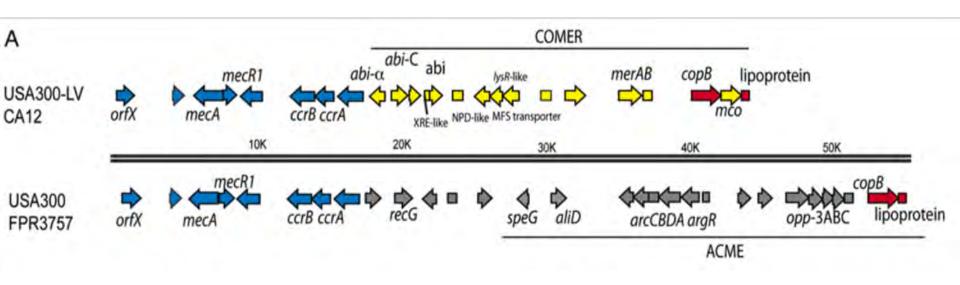
MRSA = MSSA + SCC*mec* element

Hiramatsu, Infect & Chemother. 2013



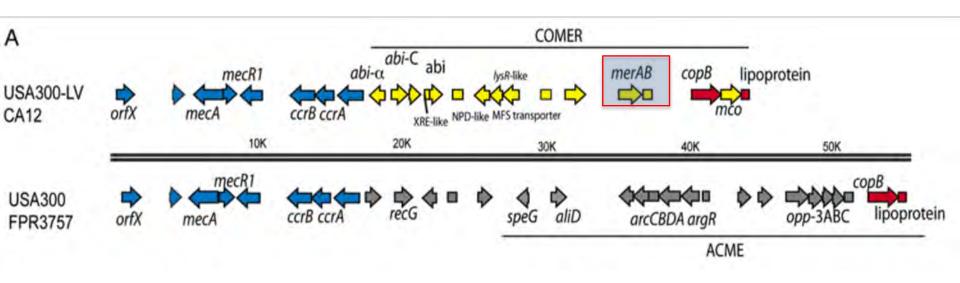
SCC*mec* classification

(old fashioned)


Hiramatsu, Infect & Chemother. 2013

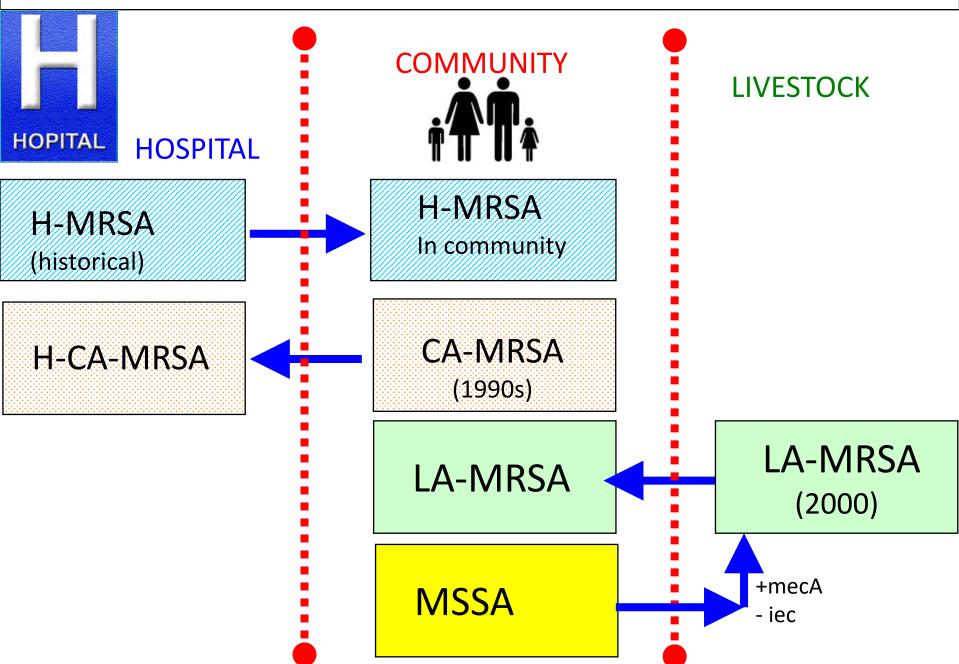
SCC*mec:* a convenient vehicle for virulence genes

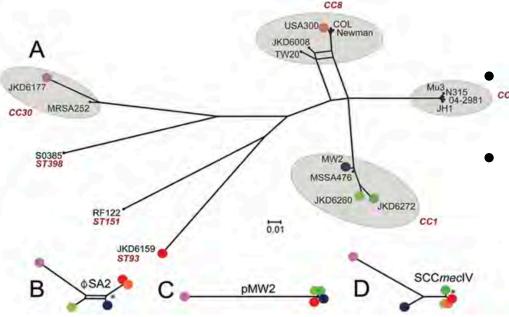
Alonzo et al, Cell Host & Microbe 2013


SCC*mec:* a convenient vehicle for other resistance genes

USA300 NA and LV SCCmec share an hyperesistance locus to copper

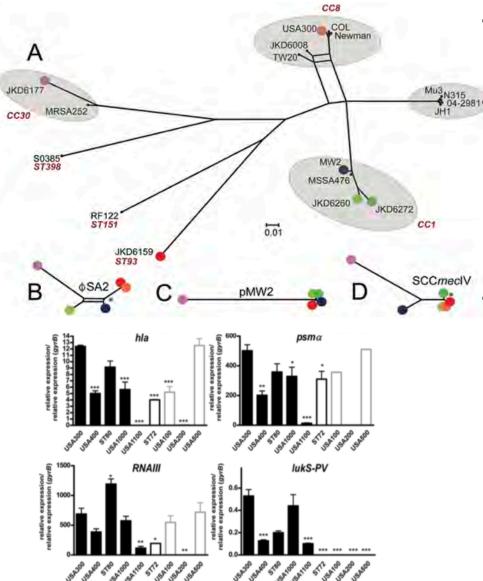
Planet et al, JID (2015) Purves J, Environ Microbiol (2018)


SCC*mec:* a convenient vehicle for other resistance genes


USA300 NA and LV SCCmec share an hyperesistance locus to copper USA300 LV SCCmec encodes a mercury resistance gene

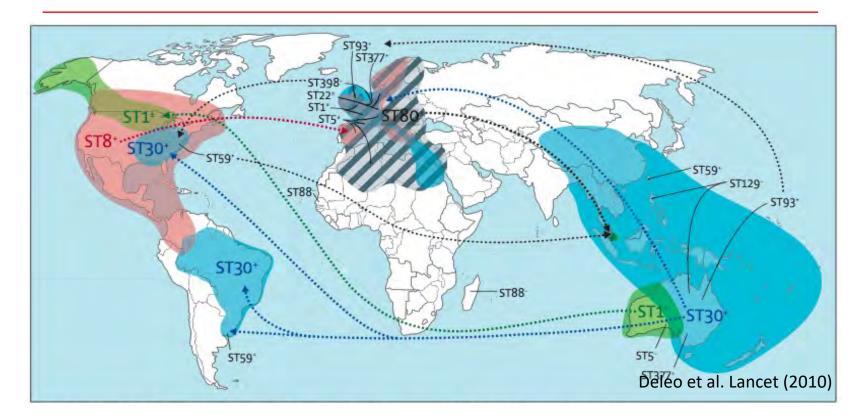
> Planet et al, JID (2015) Purves J, Environ Microbiol (2018)

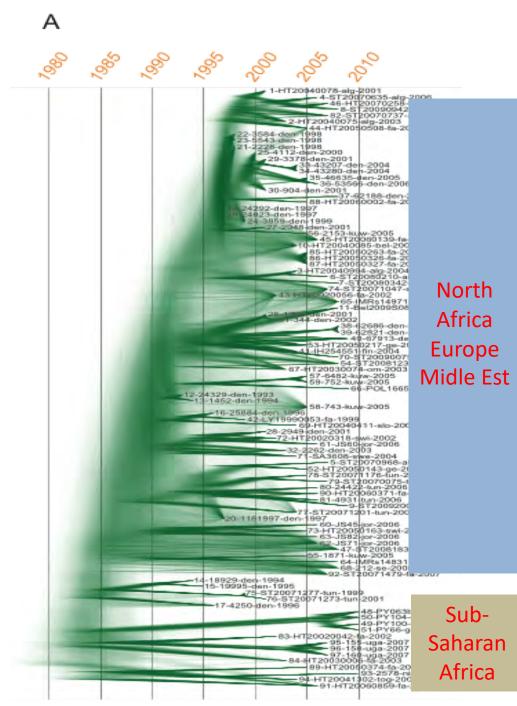
The categories of MRSA


(historical) CA MRSA build up at genomic level

- Genetically distinct lineages
- conserved repertoire of accessory elements
 - PVL harbouring phage
 - SCCmec type IV or V
 - pMW2

Vandenesch et al. Emerging Infect Dis (2003) Li et al. J Infect Dis (2010) Chua KYL et al. PLOS ONE (2011) Carpaij et al. PLOS One (2011)

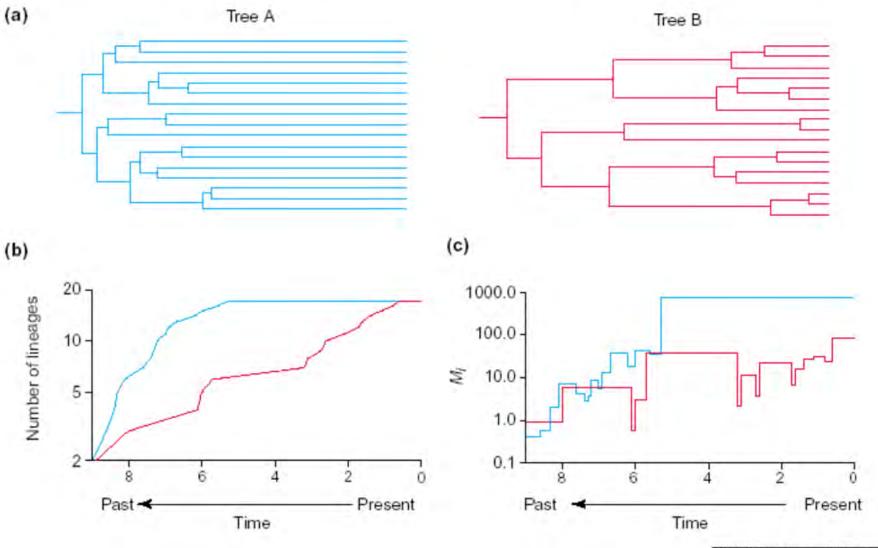

(historical) CA MRSA build up at genomic level


- Genetically distinct lineages
- conserved repertoire of accessory elements
 - PVL harbouring phage
 - SCCmec type IV or V
 - pMW2
- Increased expression of core-genome-encoded virulence factors

Li et al. J Infect Dis (2010)

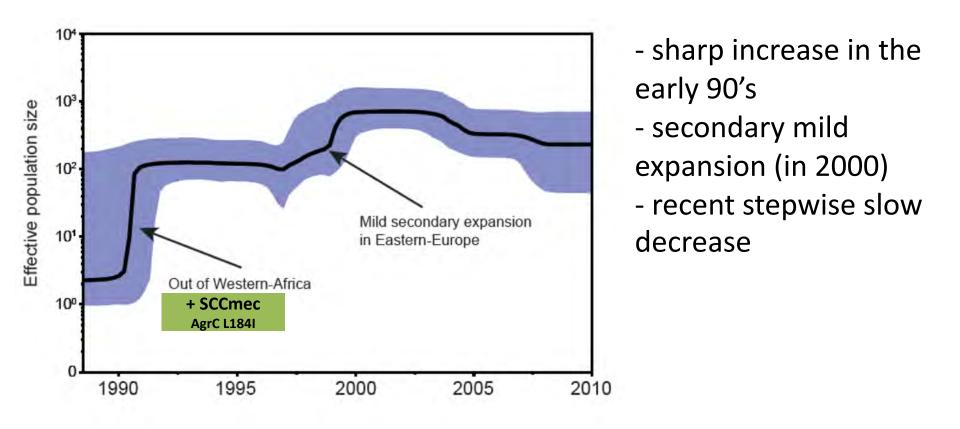
Community-acquired MRSA: independent emergence

• Lessons from phylogeographic studies ?

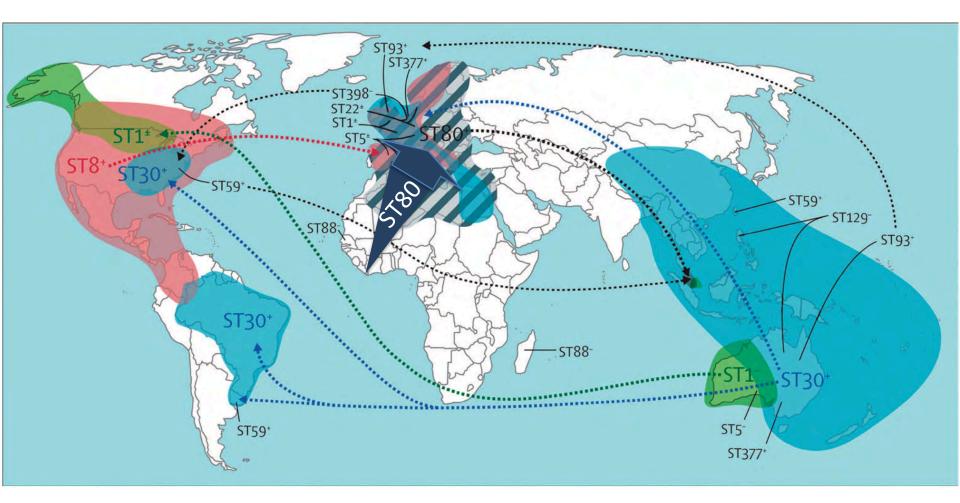


ST 80 lineage

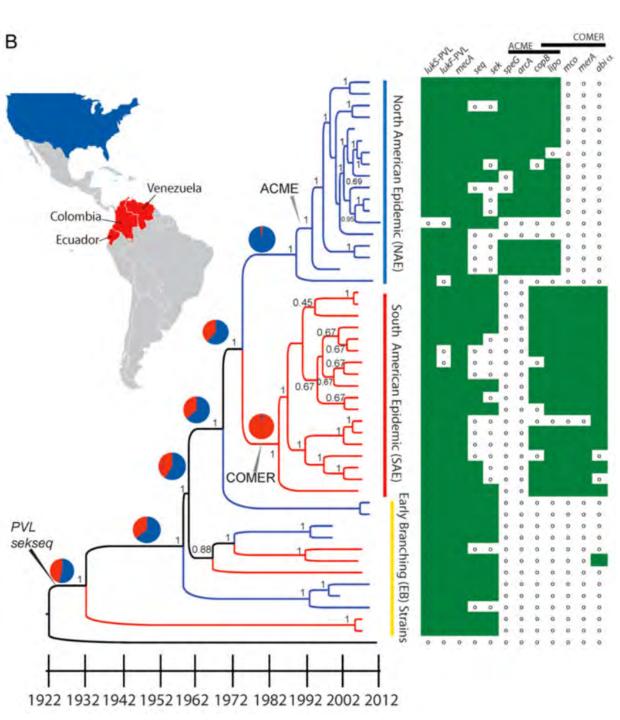
97 genomes, 27 countries,Bayesian coalescent methods -> Time-trees orientatedphylogenies


- Ancestral strains (TMRCA 1982) = sub-Saharan
- Derived (TMRCA 1985)
 (SCCmecIV, AgrcL184I) =
 North Africa, Europe and
 middle Est

Lineage through time (LTT) and skyline

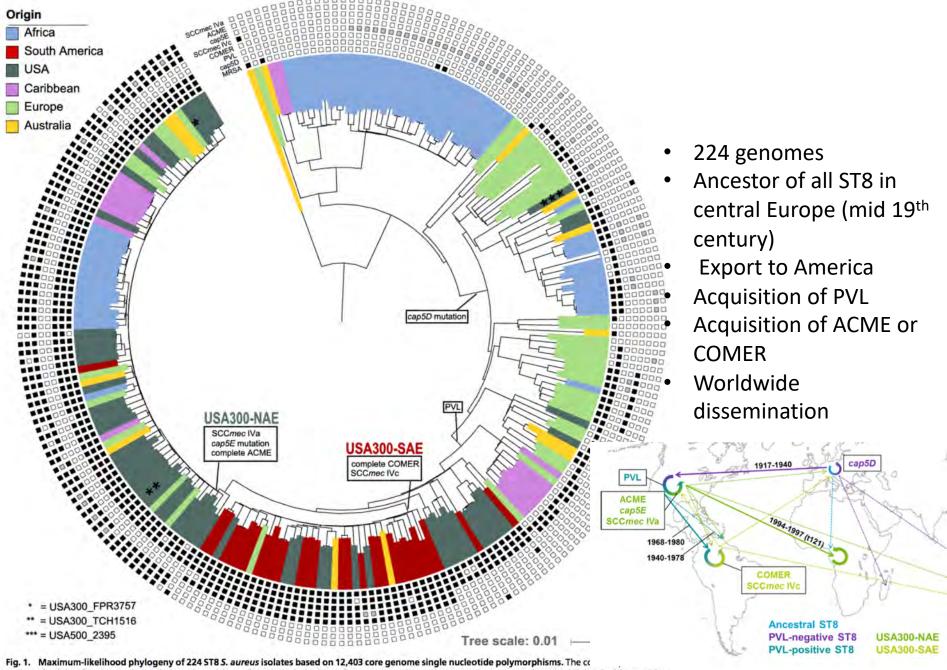

TRENDS in Ecology & Evolution

Bayesian skyline plot: effective population size



 \rightarrow in agreement with the first reports of CC80 Isolates around Europe and the later observed increase and spread

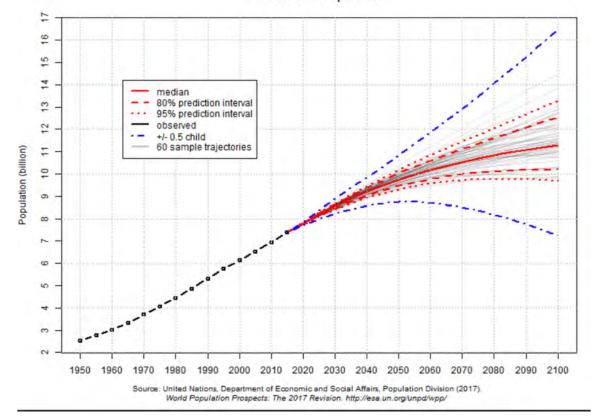
ST80 lineage

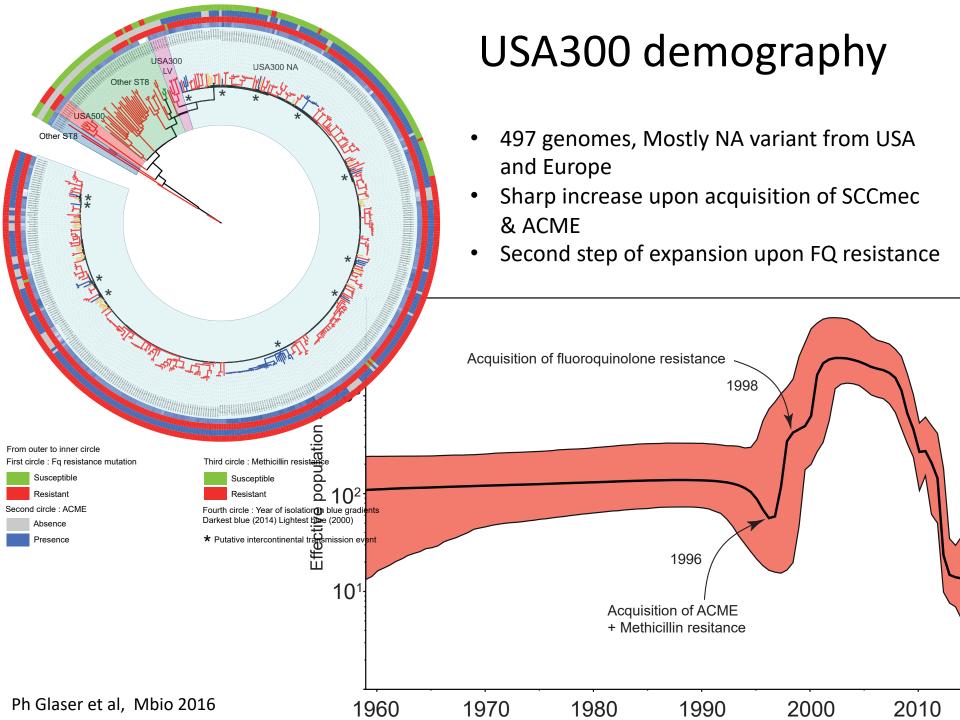

Deleo et al., Lancet, 2010, Stegger et al. M bio 2014

USA300

2 distinct clades North America and South America that segregate by geographical region

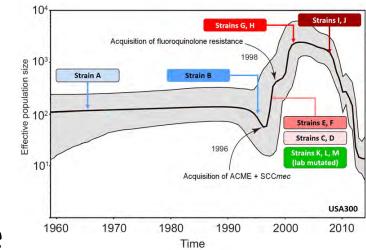
ACME in NA clade COMER in SA clade

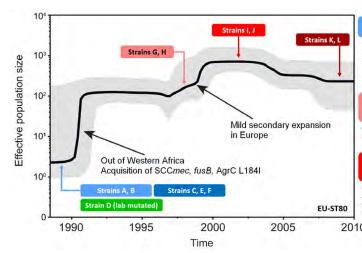



region of origin of each sample. Phylogenetic positions of the included NCBI RefSeq genomes (two USA300 and one USA500) are highlighted with asterisks. Information about the complete presence (black squares), partial presence (grey squares), or absence (white squares) of USA300-specific genetic features is given for each sample. Major genetic introduction events are indicated on the respective phylogenetic branches. Scale bar indicates substitution per site.

Strauß L et al PNAS 2017

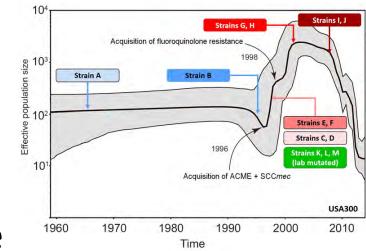
Demography ?

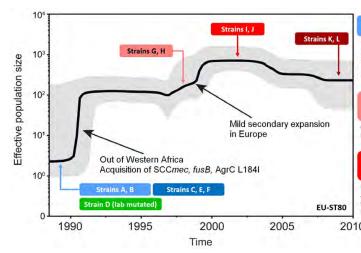

World: Total Population



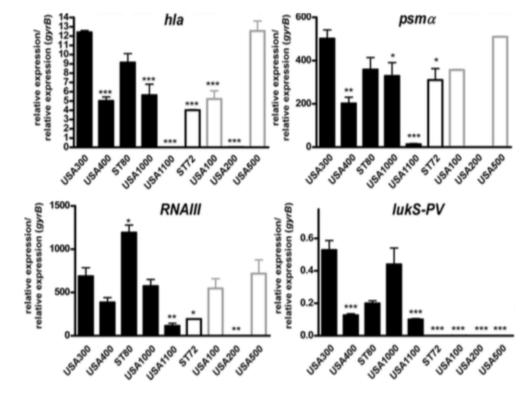
Population dynamic ?

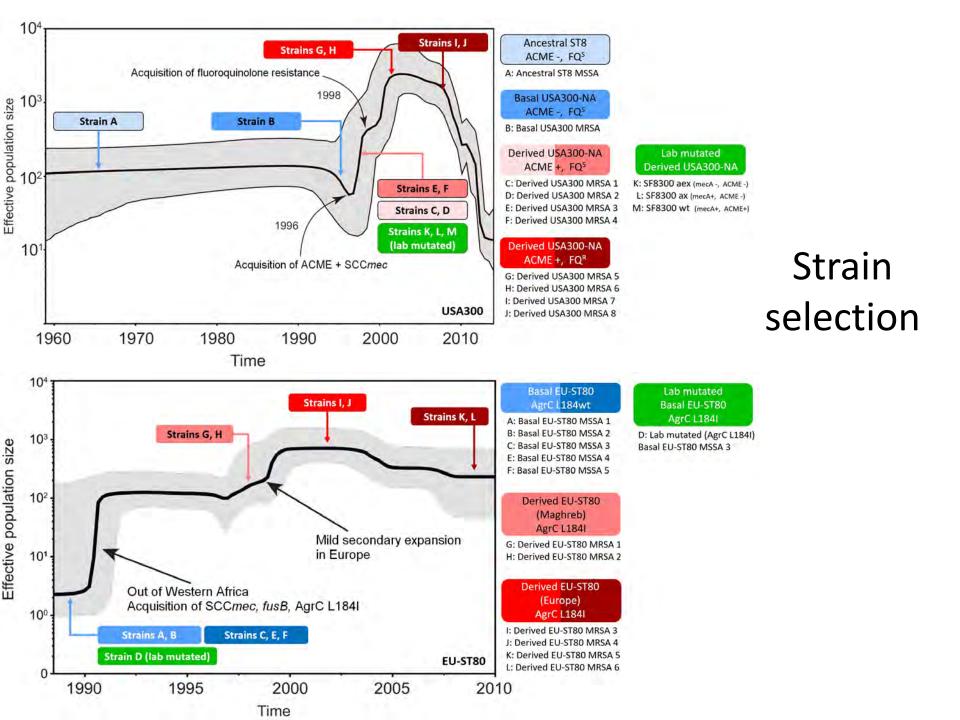
- Which factors govern the expansion of ST80 and USA300?
- What is the link between the identified genetic events and population variation?

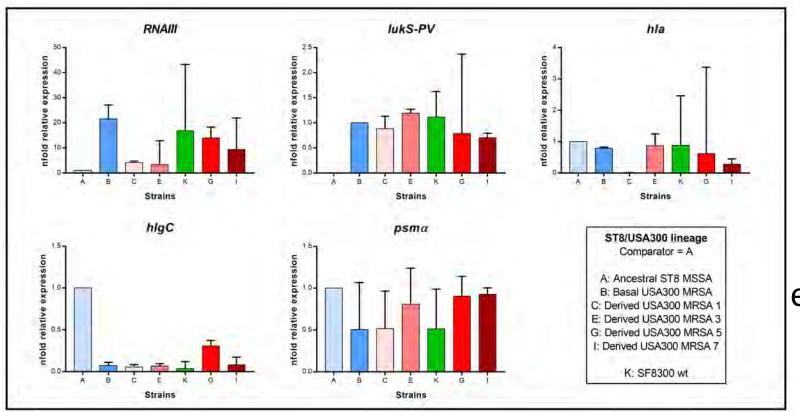



Population dynamic ?

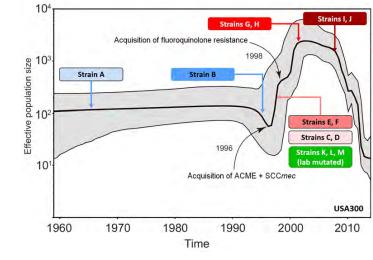
- Which factors govern the expansion of ST80 and USA300?
- What is the link between the identified genetic events and population variation?

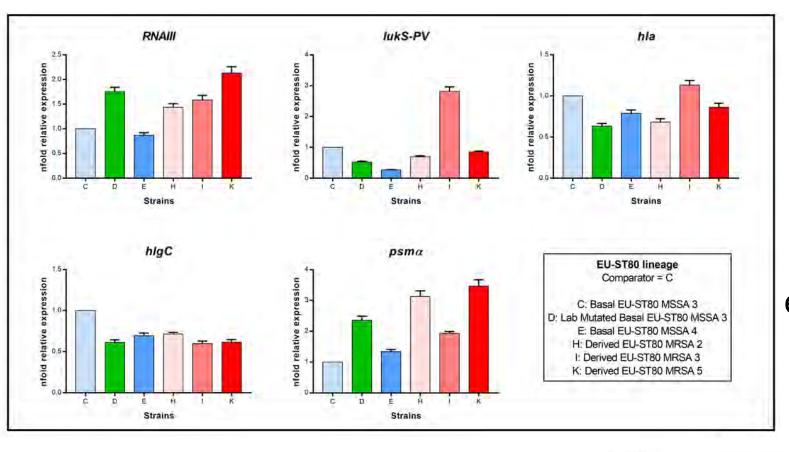




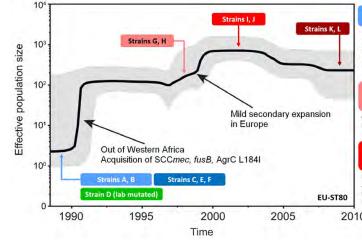

Expansion and virulence

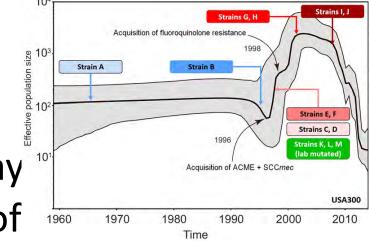
- Do the expanding phases correlate with increased expression of virulence factors?
- -> assessment
 - By qRT-PCR
 - Hla, RNAIII, PSM alpha...

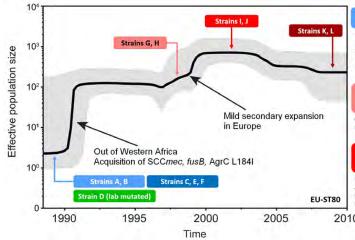

Li et al. J INFECT DIS 2010



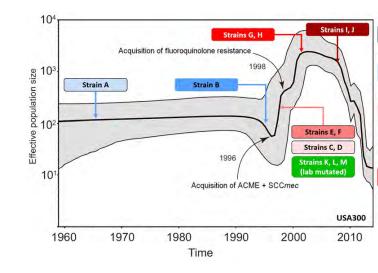
USA300-Virulence factor expression

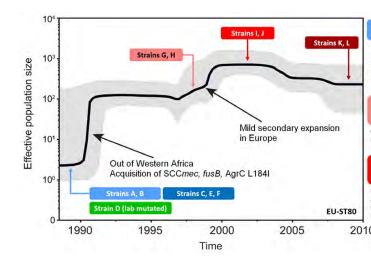

- One outlier with no Hla
- All variations < 2-fold level

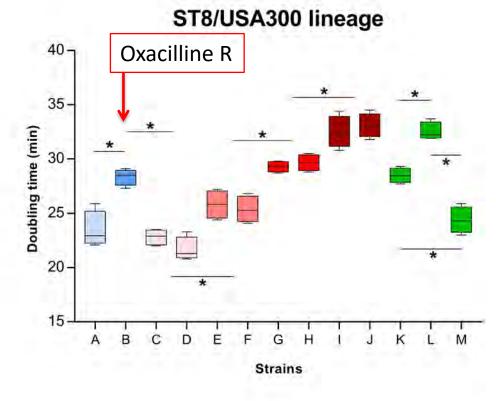

EU-ST80-Virulence factor expression


- RNAIII, reaching a 2.1-fold increase for one strain
- *luk*SF-PV increasing by a factor of 2.8fold in one strain
- *psmα* increasing by 3 3.5-fold in 2 strains
- AgrC mutation had only a 2.2-fold increase in *psm*α expression

Expansion and virulence

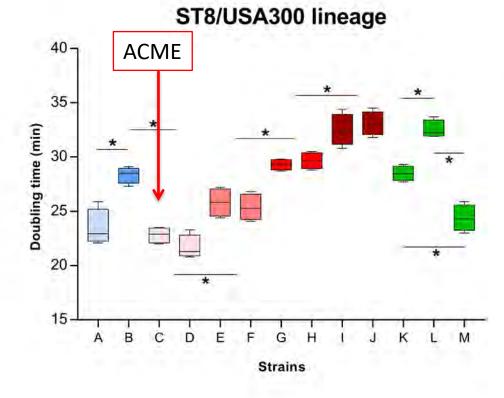

- only slight variation of expression along time
- -> at the population level may have enhanced the success of the lineages by increasing cutaneous infection rate and thus human-to-human transmission by skin contact





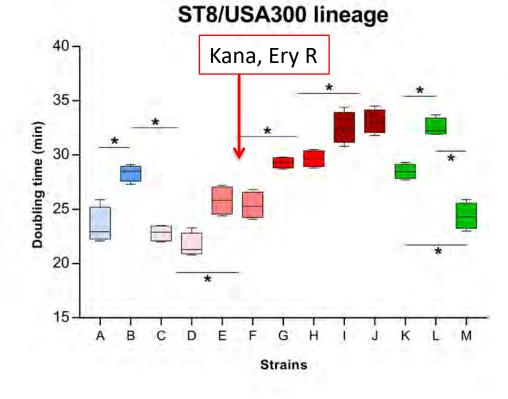
Expansion and fitness

- Do the expanding phases correlate with increased fitness ?
- -> assessment of
 - doubling time
 - competitive fitness in vitro



Strain ID	SCCmec	ACME	Antibiotic resistance	Clade
A	Neg	Neg	P, F	Ancestral ST8
в	POS	Neg	P, Oxa	Basal USA300
с	POS	POS	P, Oxa	Derived USA300
D	POS	POS	P, Oxa	Derived USA300
E	POS	POS	P, Oxa, K, E	Derived USA300
F	POS	POS	P, Oxa, K, E	Derived USA300
G	POS	POS	P, Oxa, K, E, O	Derived USA300
н	POS	POS	P, Oxa, K, E, O	Derived USA300
1	POS	POS	P, Oxa, K, E, O, T	Derived USA300
1	POS	POS	P, Oxa, K, E, O, T	Derived USA300
к	Neg	Neg	P, E, C, T, Cip, Mup	Ref. strain mutant
L	POS	Neg	P, Oxa, E, C, T, Cip , Mup	Ref. strain mutant
M	POS	POS	P, Oxa, E, C, T, Cip, Mup	USA300 ref. strain

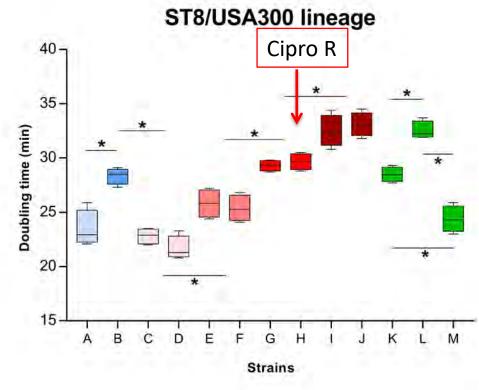
-> ATB resistance Oxacilline increased doubling time



Strain ID	SCCmec	ACME	Antibiotic resistance	Clade
A	Neg	Neg	P, F	Ancestral ST8
в	POS	Neg	P, Oxa	Basal USA300
c	POS	POS	P, Oxa	Derived USA300
D	POS	POS	P, Oxa	Derived USA300
E	POS	POS	P, Oxa, K, E	Derived USA300
F	POS	POS	P, Oxa, K, E	Derived USA300
G	POS	POS	P, Oxa, K, E, O	Derived USA300
н	POS	POS	P, Oxa, K, E, O	Derived USA300
1	POS	POS	P, Oxa, K, E, O, T	Derived USA300
1	POS	POS	P, Oxa, K, E, O, T	Derived USA300
к	Neg	Neg	P, E, C, T, Cip, Mup	Ref. strain mutant
L	POS	Neg	P, Oxa, E, C, T, Cip , Mup	Ref. strain mutant
м	POS	POS	P, Oxa, E, C, T, Cip, Mup	USA300 ref. strain

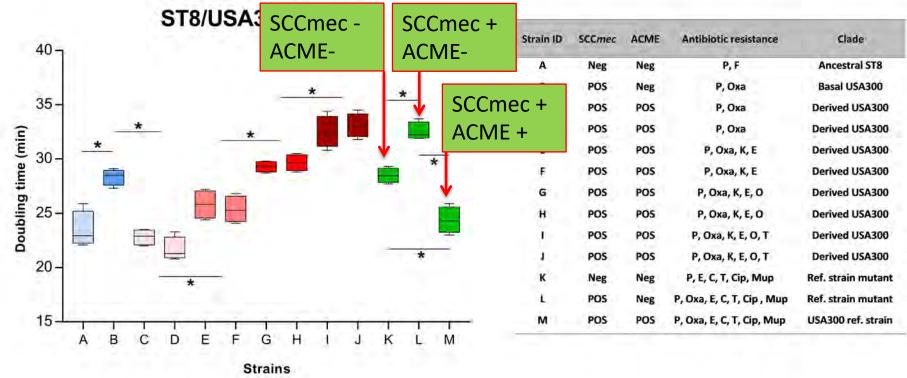
-> ATB resistance Oxacilline increased doubling time

-> ACME is associated with reduced doubling time

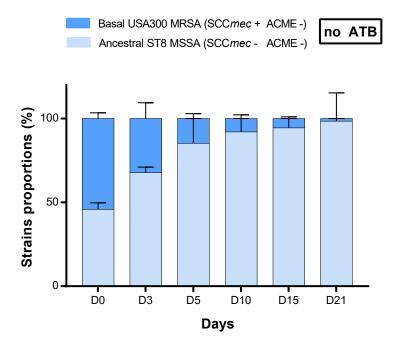

C.A. Gustave et al, ISME J 2018

Strain ID	SCCmec	ACME	Antibiotic resistance	Clade
A	Neg	Neg	P, F	Ancestral ST8
в	POS	Neg	P, Oxa	Basal USA300
c	POS	POS	P, Oxa	Derived USA300
D	POS	POS	P, Oxa	Derived USA300
E	POS	POS	P, Oxa, K, E	Derived USA300
F	POS	POS	P, Oxa, K, E	Derived USA300
G	POS	POS	P, Oxa, K, E, O	Derived USA300
н	POS	POS	P, Oxa, K, E, O	Derived USA300
1	POS	POS	P, Oxa, K, E, O, T	Derived USA300
1	POS	POS	P, Oxa, K, E, O, T	Derived USA300
к	Neg	Neg	P, E, C, T, Cip, Mup	Ref. strain mutant
٤.	POS	Neg	P, Oxa, E, C, T, Cip , Mup	Ref. strain mutant
м	POS	POS	P, Oxa, E, C, T, Cip, Mup	USA300 ref. strain

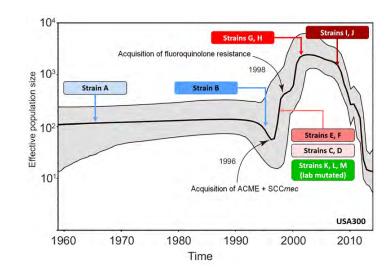
-> ATB resistances (Oxacilline, aminoglycosides, macrolides, fluroquinolones, tetraccylcine) increased doubling time


-> ACME is associated with reduced doubling time

Strain ID	SCCmec	ACME	Antibiotic resistance	Clade
A	Neg	Neg	P, F	Ancestral ST8
в	POS	Neg	P, Oxa	Basal USA300
с	POS	POS	P, Oxa	Derived USA300
D	POS	POS	P, Oxa	Derived USA300
E	POS	POS	P, Oxa, K, E	Derived USA300
F	POS	POS	P, Oxa, K, E	Derived USA300
G	POS	POS	P, Oxa, K, E, O	Derived USA300
н	POS	POS	P, Oxa, K, E, O	Derived USA300
1	POS	POS	P, Oxa, K, E, O, T	Derived USA300
1	POS	POS	P, Oxa, K, E, O, T	Derived USA300
к	Neg	Neg	P, E, C, T, Cip, Mup	Ref. strain mutant
L	POS	Neg	P, Oxa, E, C, T, Cip , Mup	Ref. strain mutant
м	POS	POS	P, Oxa, E, C, T, Cip, Mup	USA300 ref. strain

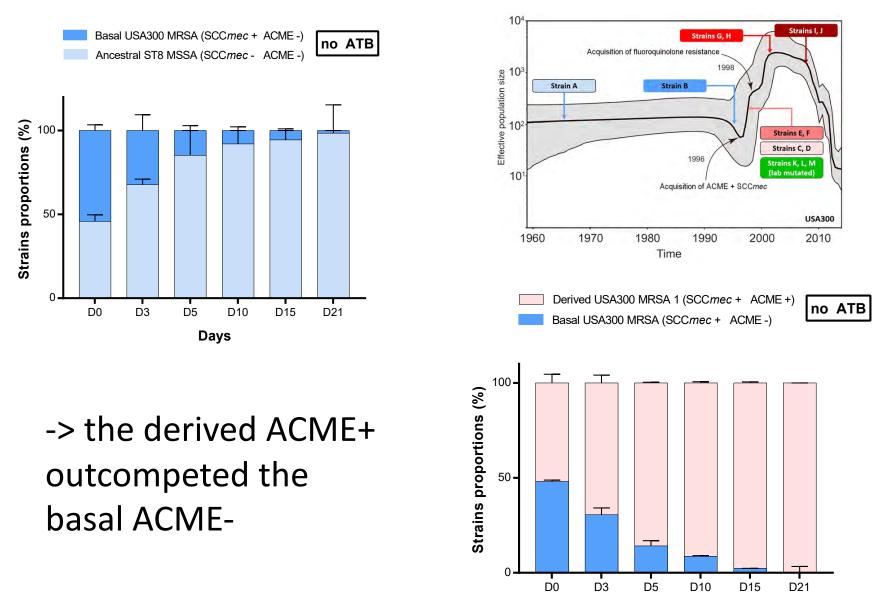

-> ATB resistances (Oxacilline, aminoglycosides, macrolides, fluroquinolones, tetraccylcine) increased doubling time

-> ACME is associated with reduced doubling time



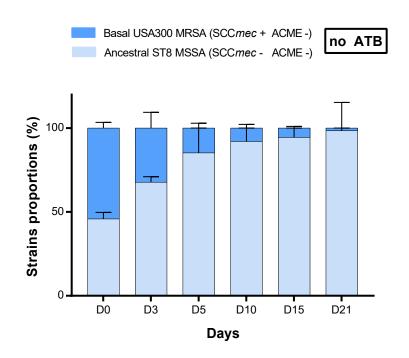
-> Isogenic strains confirm the opposite effect of ACME and SCC*mec* on doubling time

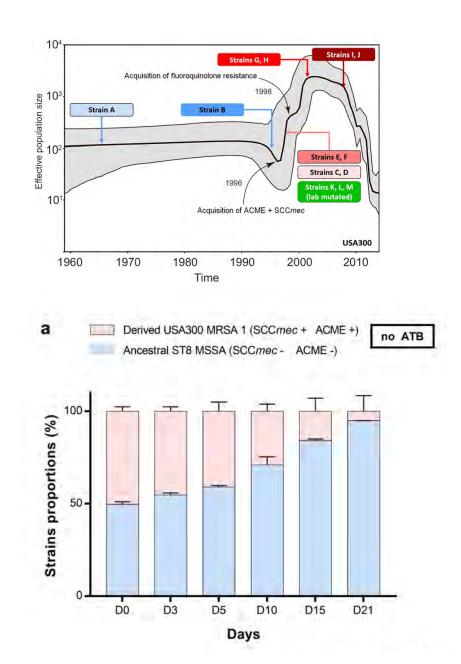
Impact of ACME and SCCmec in competitive fitness



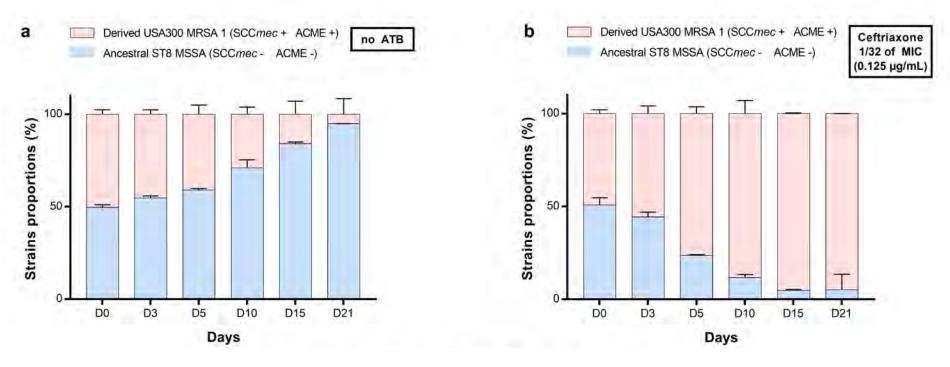
-> the basal SCCmec+ is outcompeted by the ancestral SCCmec-

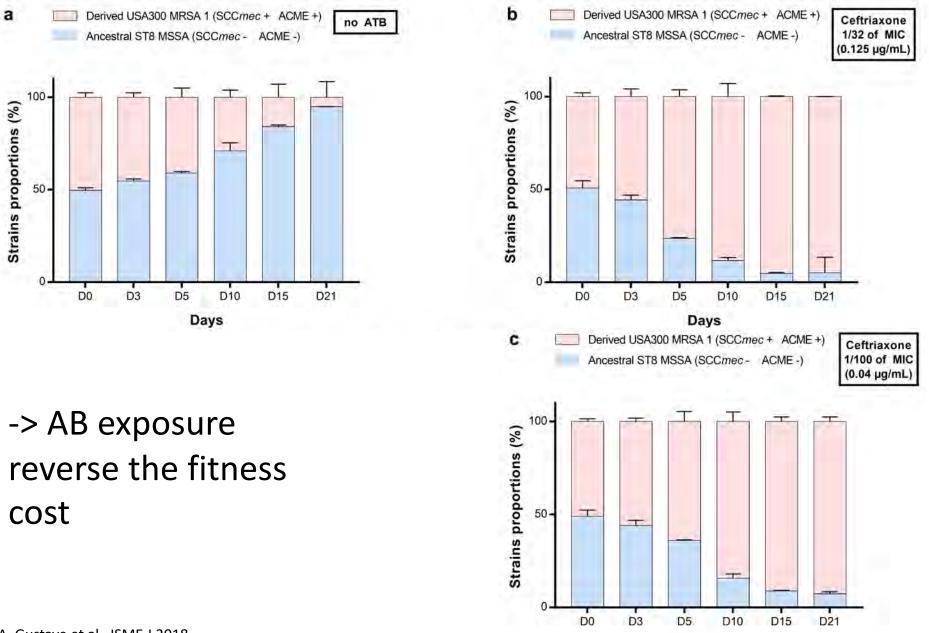
C.A. Gustave et al, ISME J 2018


Impact of ACME and SCCmec in competitive fitness

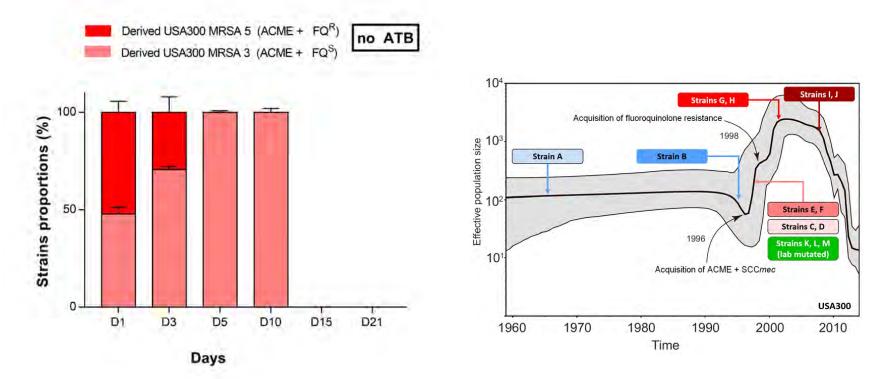

C.A. Gustave et al, ISME J 2018

Days


Impact of ACME and SCCmec in competitive fitness

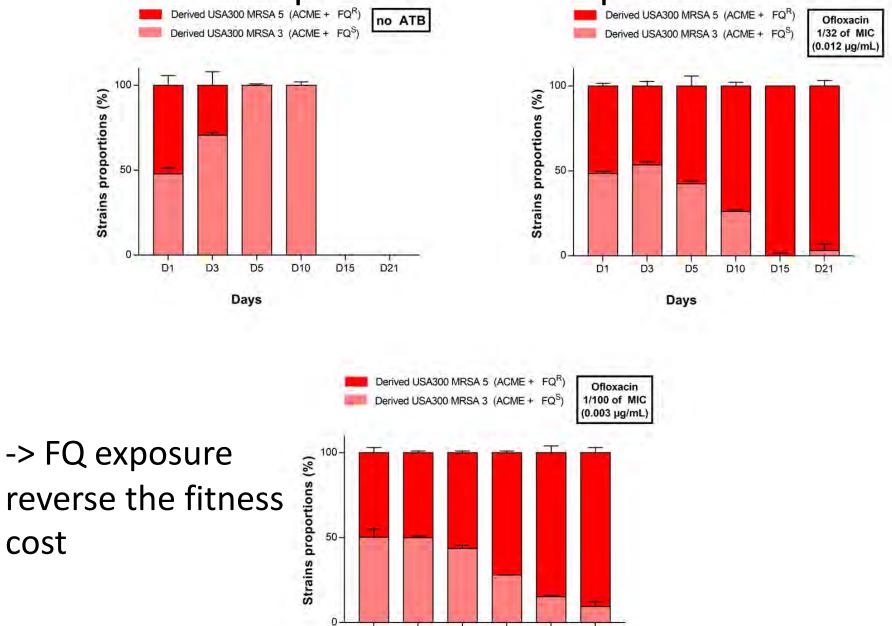

 -> ACME is not sufficient to restore the competitive fitness of the ancestral ST8 MSSA
 -> ACME + SCCmec do not explain the expansion

Effect of beta-lactams in competitive fitness


Effect of beta-lactams in competitive fitness

Davs

C.A. Gustave et al, ISME J 2018


Effect of fluroquinolones in competitive fitness

-> FQ resistance impairs the fitness cost

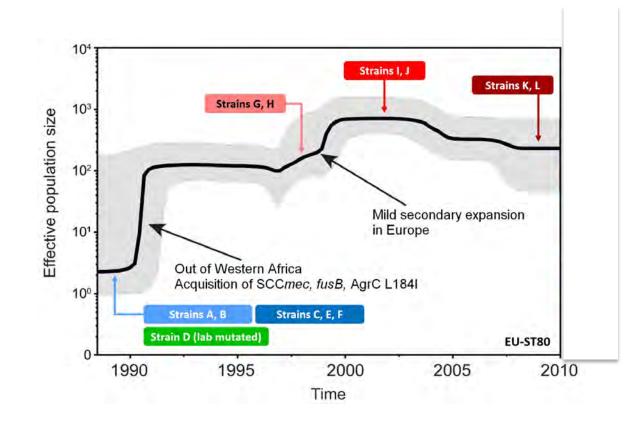
C.A. Gustave et al, bioRxiv 2017

Effect of fluroquinolones in competitive fitness

C.A. Gustave et al, bioRxiv 2017

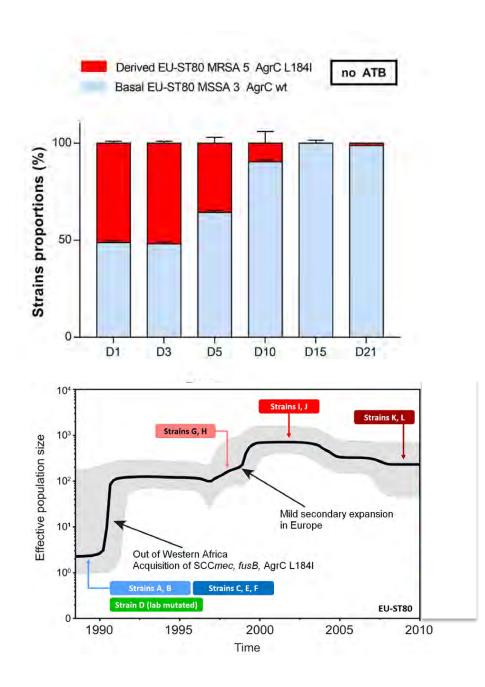
D5

D10

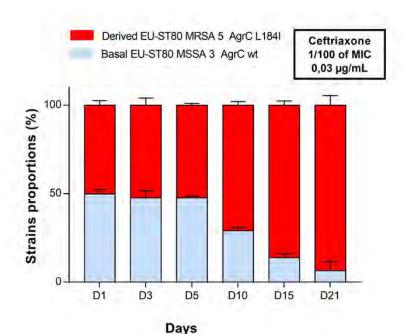

D15

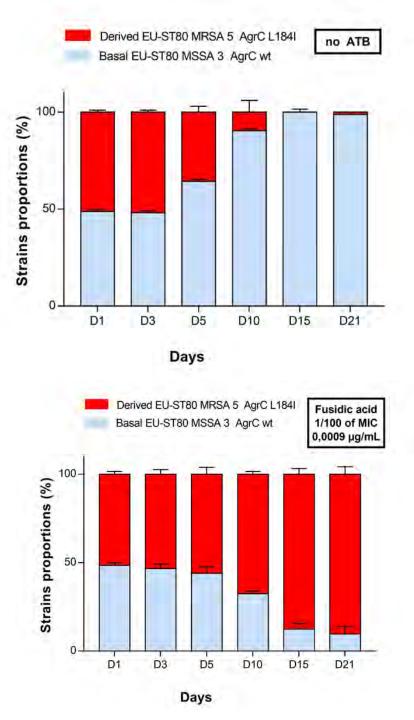
D21

D3


D1

ST80


Competitive fitness of ST80 strains


 Impact of SCCmec, fusB and AgrC L184I

Competitive fitness of ST80 strains

 sub-MIC beta-lactams or fusidic acid reverse the fitness cost

Link with emergence of CA-MRSA outside hospital setting ?

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review

Fluoroquinolone antibiotics: An emerging class of environmental micropollutants

CrossMark

Xander Van Doorslaer, Jo Dewulf, Herman Van Langenhove, Kristof Demeestere *

Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

CLEAN Soil Air Water

Ritu Gothwal Thhatikkonda Shashidhar

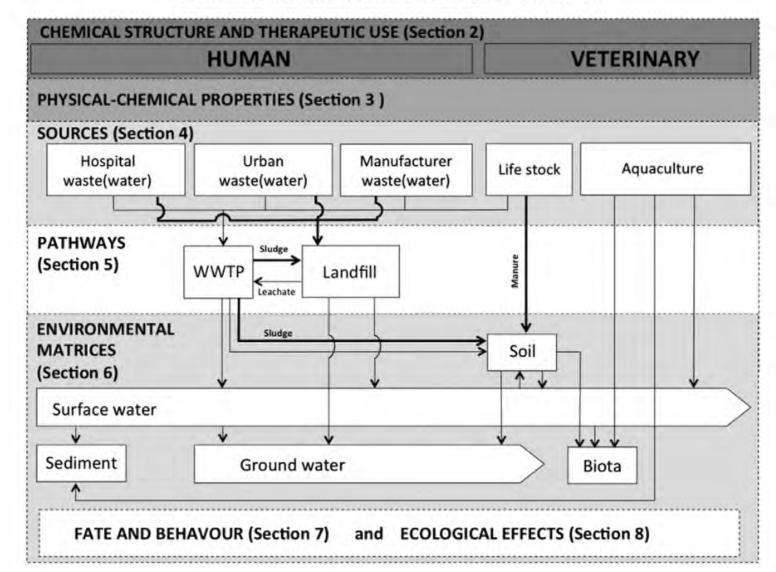
Review

Department of Civil Engineering, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, Andhra Pradesh, India

Antibiotic Pollution in the Environment: A Review

Antibiotics have been extensively and effectively used in human and veterinary medicines. Their benefits have been recognized in agriculture, aquaculture, beekeeping, and livestock as growth promoters. This paper collects information from

Proc. R. Soc. B (2009) 276, 2521–2530 doi:10.1098/rspb.2009.0320 Published online 8 April 2009

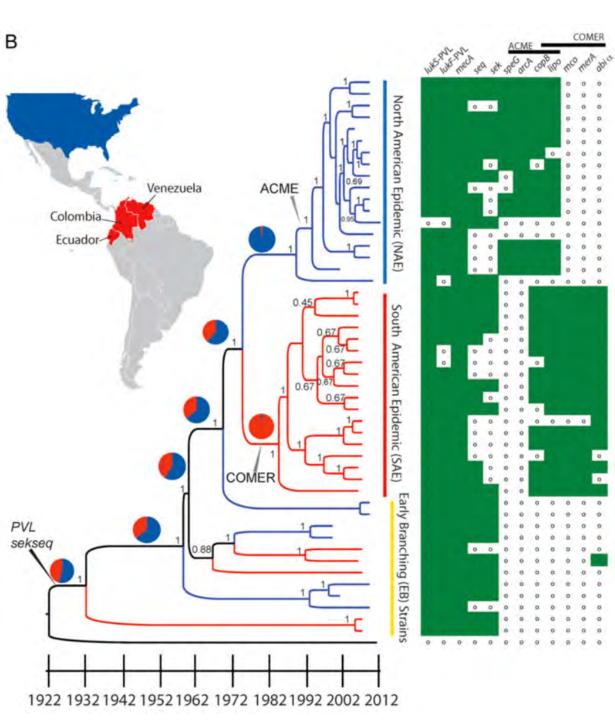

Review

The role of natural environments in the evolution of resistance traits in pathogenic bacteria

Jose L. Martinez*

Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Científicas, Darwin 3, Cantoblanco, 28049 Madrid, Spain 479

X. Van Doorslaer et al. / Science of the Total Environment 500–501 (2014) 250–269

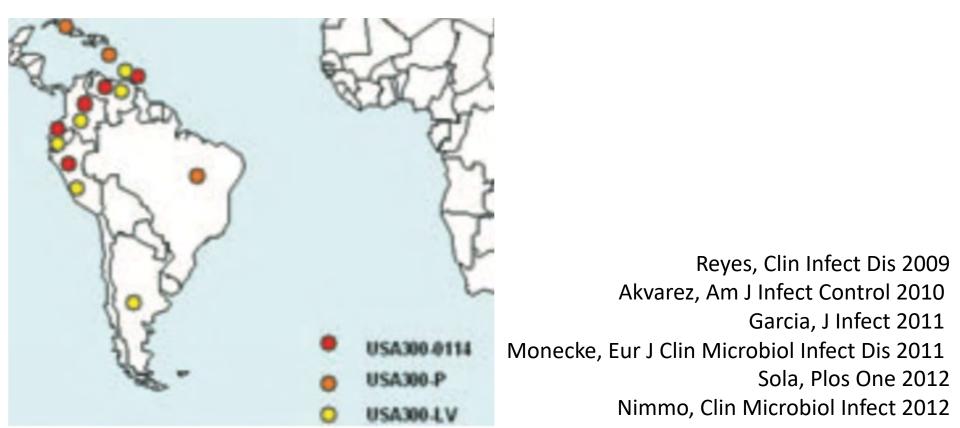


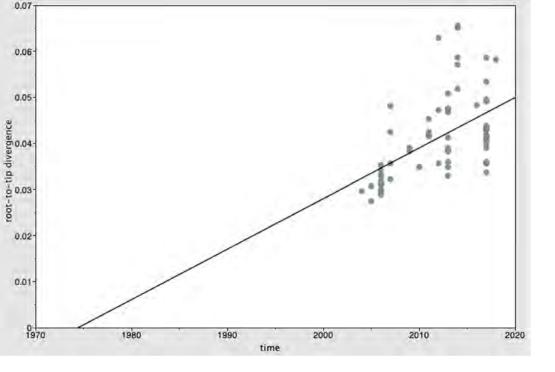
-> e.g. FQ concentration can be as high as 240 ug/L in HWW and 5.7 ug/L in surface water
 -> Favour AB entry AND accumulation into biota: vegetables, crops, aquatic plants, and animals

Gothwal et al. CSAWAC 43 (2015) Van Doorslaer et al., Sci Total Environ 2014

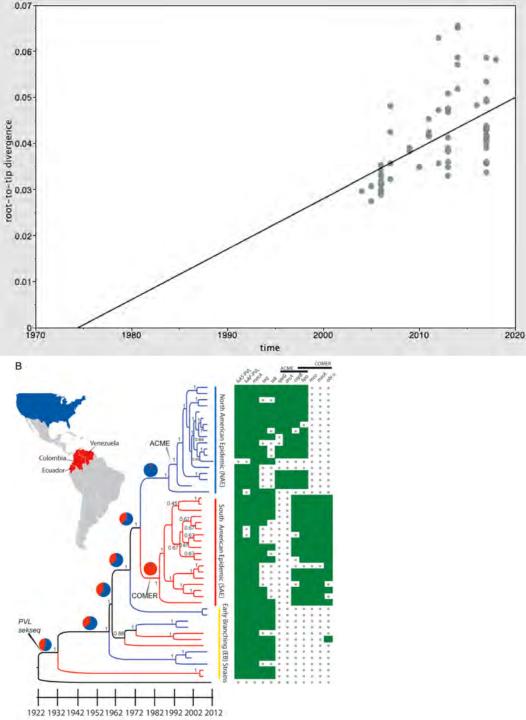
A trivial scenario

- ACME acquisition (USA300) and slight increased expression of virulence factors may have contributed to the success via enhanced inter-human transmission
- The most striking event is the acquisition of resistance genes
 - > biological cost of antibiotic resistance genes is totally reversed in the presence of trace amount of antibiotics
 - > Inappropriate antibiotic use / antibiotic in the environment may have driven the expansion
- A novel link between effective population size and a selective advantage conferred by antibiotic resistance

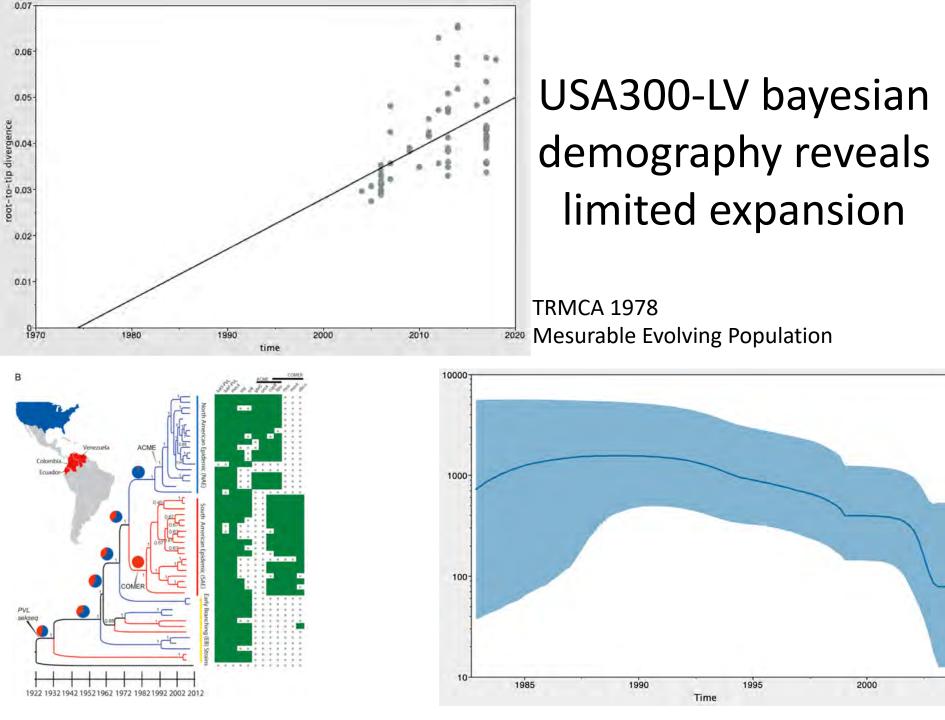

2 distinct clades (South America and North America) that segregate by geographical region


ACME in NA clade COMER in SA (or LV) clade

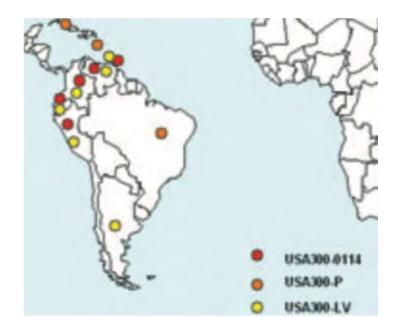
SA and NA clades diverged before the emergence of the USA300 epidemic in NA


USA300 LV in Latin America

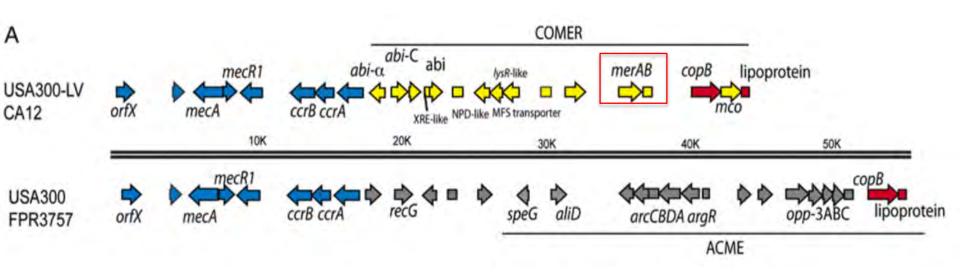
 USA300-LV is the dominant CA-MRSA clone in Colombia, Ecuador, Peru, Trinitad and Venezuela



Plotting genetic distanceagainst sampling time-> Measurably EvolvingPopulation-> TRMCA 1978



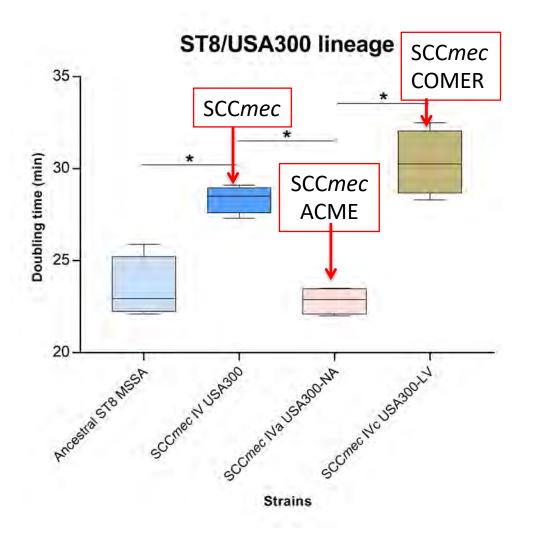
Plotting genetic distanceagainst sampling time-> Mesurably EvolvingPopulation-> TRMCA 1978


USA300 LV in Latin America

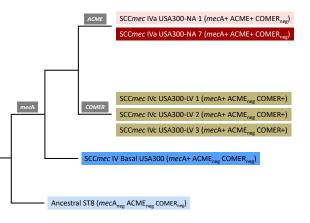
- USA300-LV is the dominant CA-MRSA clone in Colombia, Ecuador, Peru, Trinitad and Venezuela
- -> Why such success in these countries ?

Reyes, Clin Infect Dis 2009 Akvarez, Am J Infect Control 2010 Garcia, J Infect 2011 Monecke, Eur J Clin Microbiol Infect Dis 2011 Sola, Plos One 2012 Nimmo, Clin Microbiol Infect 2012

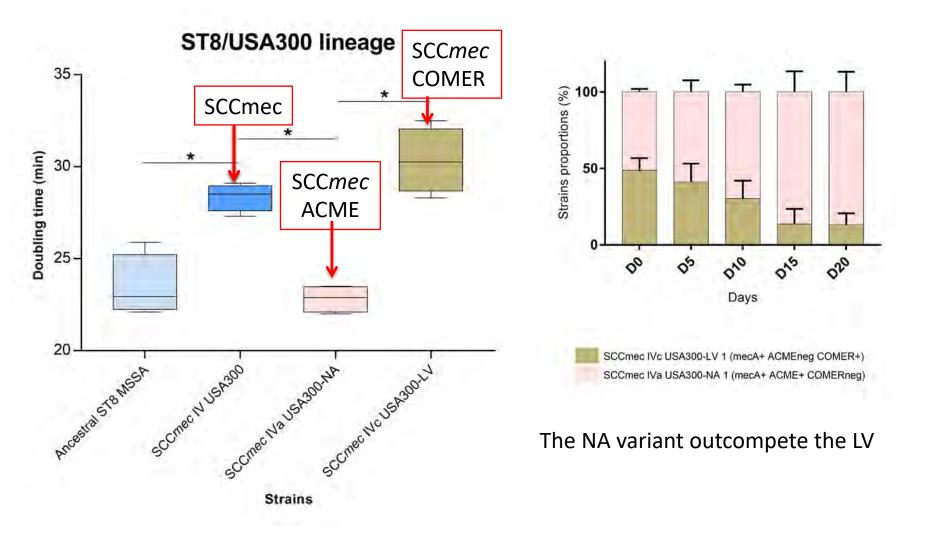
USA 300 SA possesses a unique mercury resistance locus

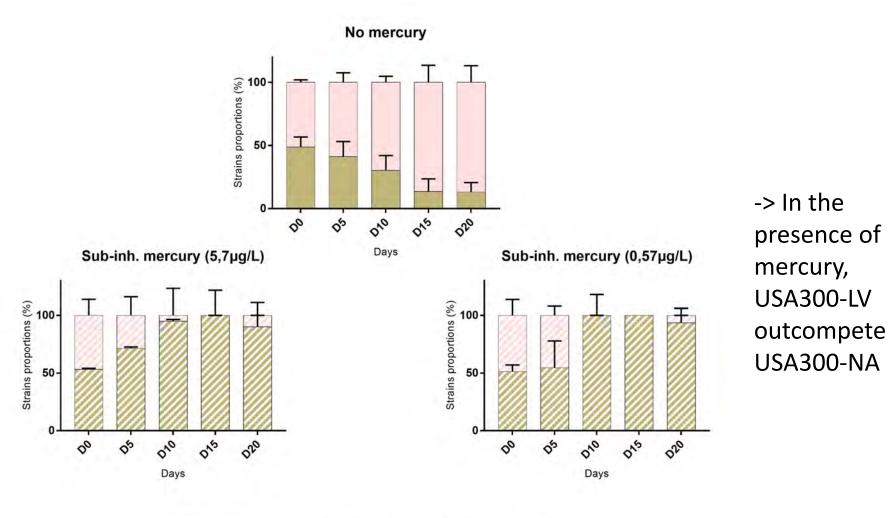

Purves J, Environ Microbiol (2018)

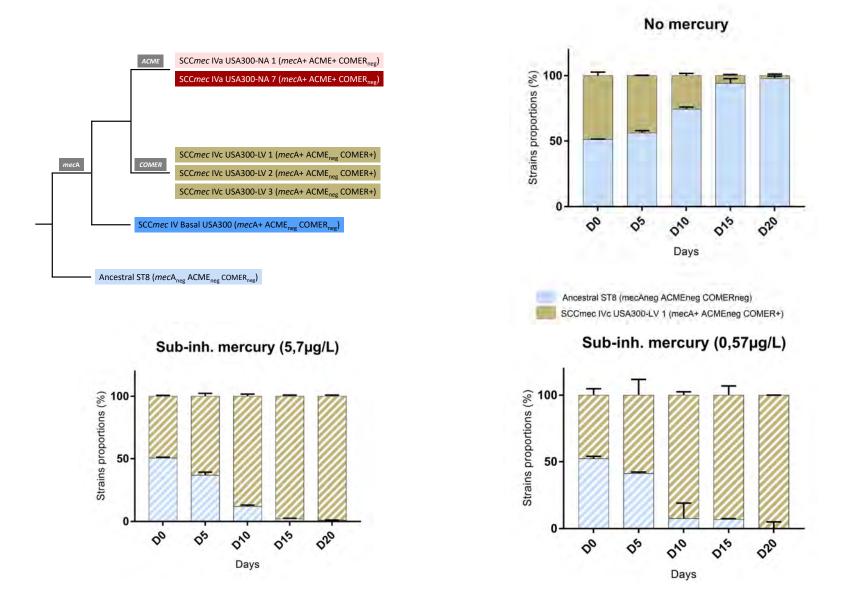
MIC


Strain designation	SCCmec content	MIC HgCl2
Ancestral ST8 ST20172183	mecA(-) ACME(-) COMER(-)	0,57 mg/L
Basal USA300 ST20172178	<i>mec</i> A(+) ACME(-) COMER(-)	0,57 mg/L
USA300 NA ST20111414	<pre>mecA(+) ACME(+) COMER(-)</pre>	0,57 mg/L
USA300 NA ST20170558	<pre>mecA(+) ACME(+) COMER(-)</pre>	0,57 mg/L
USA300 SA HT20030343	mecA(+) ACME(-) COMER (+)	1,70 mg/L
USA300 SA ST20172176	<pre>mecA(+) ACME(-) COMER(+)</pre>	1,70 mg/L
USA300 SA ST20172184	mecA(+) ACME(-) COMER(+)	1,70 mg/L

-> Comer confers a moderate (3 fold increase) resistance toward mercury

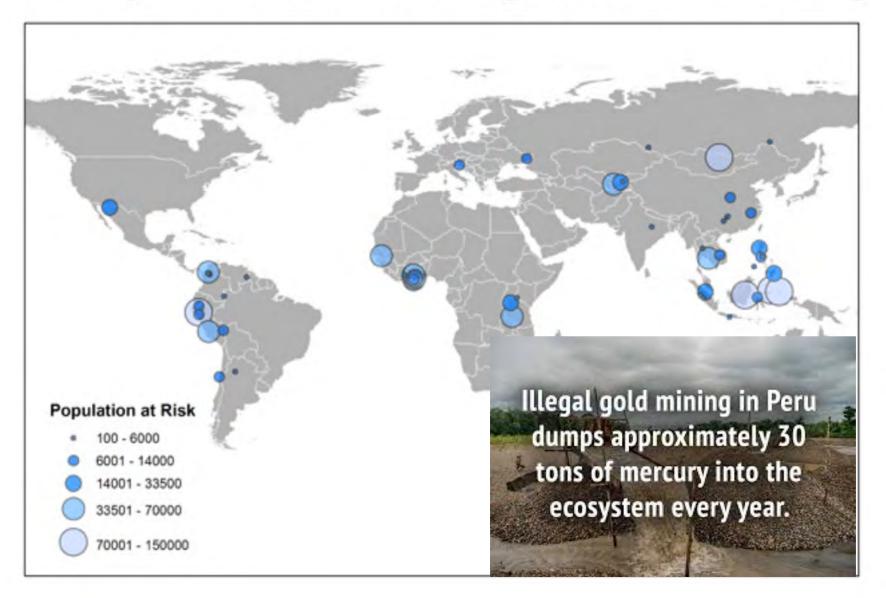

Mercury resistance & fitness cost


- Acme compensates the fitness cost of SCCmec
- COMER increases the fitness cost


Mercury resistance & fitness cost

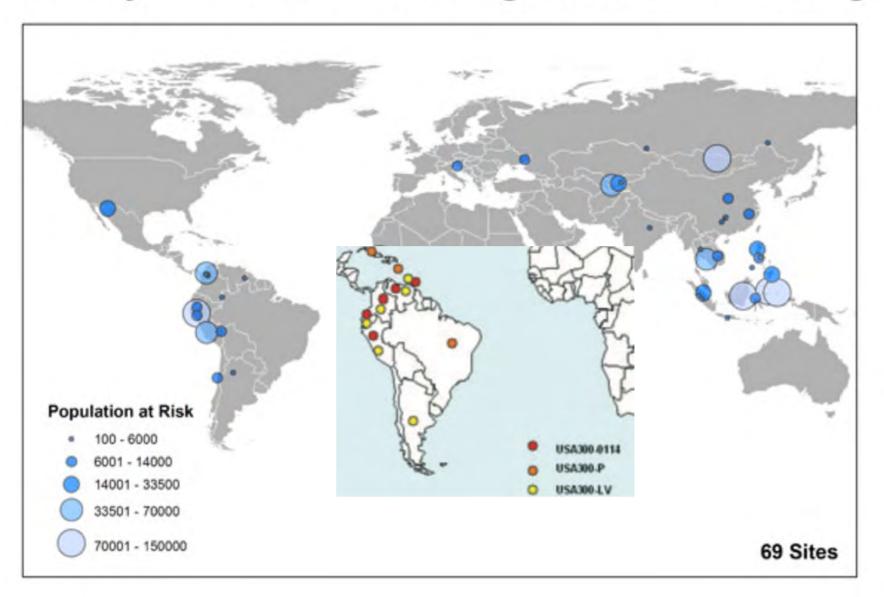
NA versus LV: Mercury exposure

SCCmec IVc USA300-LV 1 (mecA+ ACMEneg COMER+) SCCmec IVa USA300-NA 1 (mecA+ ACME+ COMERneg)


-> In the presence of mercury, USA300-LV outcompete the ancestral multisusceptible strain

What could be the link between mercury and USA300-LV ?

Golden mines !



Mercury Pollution from Mining and Ore Processing

https://www.worstpolluted.org/projects_reports/display/87

Mercury Pollution from Mining and Ore Processing

https://www.worstpolluted.org/projects_reports/display/87

Another trivial scenario

- USA300 LV contains a mercury resistance element
- USA300 LV is prevalent in countries were mercury pollution from mining and ore processing is important
- The biological cost of mercury resistance genes is totally reversed in the presence of trace amount of mercury
 - Anthropogenic activities leading to environmental pollution may have driven the expansion of USA300-LV
 - > environmental pollutants as a driving force of pathogen success

Pollution & Pathogen emergence: another Darwin's nightmare

http://www.regardsurlemonde.fr

Acknowledgements

ST80 Genome Project

Instituts

thématiques

- Statens Serum Institut, Copenhagen, Denmark: Marc Stegger, Paal S. Andersen, Robert L. Skov, Andreas Petersen, Anders R. Larsen¹
- Muséum National d'Histoire Naturelle, Paris: Thierry • Wirth, Anna de Grassi,
- Translational Genomics Research Institute, Flagstaff, ٠ Arizona, USA: Maliha Aziz, Elizabeth E. Driebe, Lance B. Price

USA 300 project

- Pasteur Institute. Genomic aspects: Philippe Glaser, Lulla Opatowski, Adrien Villain; Epidemiology: Didier Guillemot
- Muséum National d'Histoire Naturelle, Paris: Thierry Wirth

Centre International de Recherche en Infectiologie

Inserm

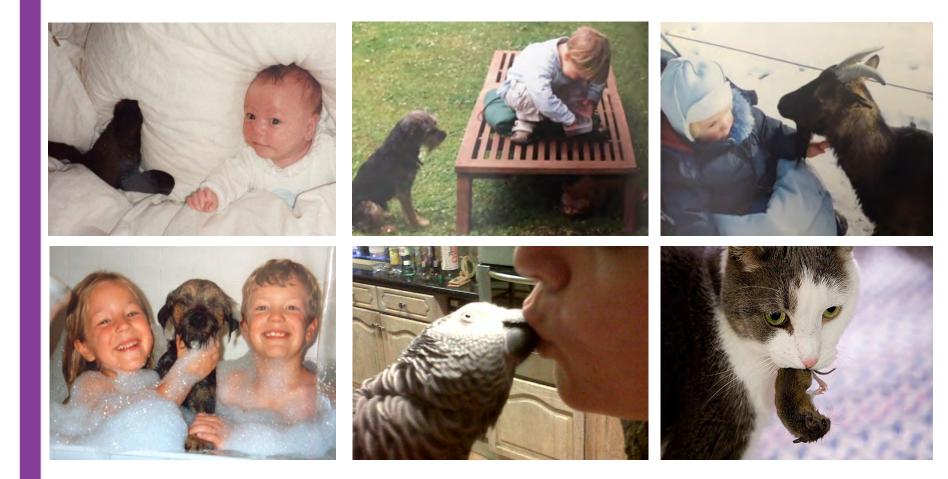
Institut national de la santé et de la recherche médicale

CIRI INSERM U1111-CNRS 5308-UCBL-ENS Team staphylococcal Pathogenesis AND Hospices Civils de Lyon-CNR des staphylocoques

- **Yvonne Benito**
- Michele Bes
- **Coralie Bouchiat**
- Florence Couzon
- **Olivier Dauwalder**
- **Oana Dumitrescu**
- Jerome Etienne
- **Claude-Alexandre Gustave**
- Fredéric Laurent
- Gérard Lina
- Anne Tristan
- Hélène Meugnier
- Jean-Philippe Rasigade
- Patricia Simoes-Martin

STAPHYLOCOQUES Centre National de Référence

MRSP carriage in dogs: A risk to people?


Anette Loeffler Reader in Veterinary Dermatology Email: aloeffler@rvc.ac.uk

"The scene" : Small animal veterinary practice

- Every patient comes with an owner
- Owners pay (or private insurance)
- Emotional bond
- Individual animal medicine (not health or flock prescribing)
- Competition amongst practices

Close contact and...

RVC

... same antimicrobial classes in people & pets

Sales figures for antimicrobials do not reflect true use in small animals

Summers et al. BMC Veterinary Research 2014, **10**:240 http://www.biomedcentral.com/1746-6148/10/240

RESEARCH ARTICLE

Open Access

Veterinary Research

BMC

Prescribing practices of primary-care veterinary practitioners in dogs diagnosed with bacterial pyoderma

Jennifer F Summers^{1*}, Anke Hendricks² and David C Brodbelt¹

- 54,600 dogs in the UK (2010)-electronic records
- 683 (1.3%) dogs with pyoderma
- 97% received antimicrobials, 92% systemic therapy
- Co-amoxiclav, cefalexin, clindamycin, cefovecin

The impact of MRSA emergence in pets

October 17, 2004 The Mail on Sunday

Experts warn of epidemic as actress tells how MRSA killed her beloved dog

By Matt Nixson

THE deadly hospital superbug MRSA has spread to pets, experts warned last night.

Now scientists believe that the bug, which kills 5,000 NHS patients every year, could become just as widespread in veterinary clinics.

An expert at the Royal Veterinary College called for urgent action to alert vets and pet owners to the danger.

Professor David Lloyd said: 'Vets may not be looking out for MRSA, and more and more infected animals are being referred to us.

'If we're not careful, veterinary hospitals will become as badly affected as NHS hospitals. There must be more research.'

The risk of infection between animals and humans is slim, but a sick pet is more likely to contract MRSA from a human than vice versa.

Scores of pets have been hit by MRSA but only one, a ten-year-old pedigree Samoyed dog, is known to have died. The animal, called Bella, suffered blood poisoning, pneumonia and organ failure caused by MRSA after an operation on a hind leg.

Bella's owner, actress Jill Moss, 34, said last night: 'It has been a terrible experience. Bella was my companion for more than eight years. She was a real personality and my best friend. I lost my partner in a plane crash four years ago and Bella and I were inseparable.

'In July she ruptured a cruciate ligament while chasing a squirrel. Fixing the problem is a routine operation - a lot of footballers have it - but the wound became infected.

'I kept getting conflicting opinions about what was wrong with her and she was given various drugs. By the time they identified MRSA, it was too late.

hardest decision of my life, but she was in agony. By that stage, veterinary nurses didn't want to treat her because they were scared of becoming infected.

Bella died in August and Miss Moss, who has appeared in TV shows including The Bill, Birds Of A Feather and EastEnders, has 'Having her put to sleep was the created a website warning other

pet owners to be on their guard. She added: 'Vets aren't waking up fast enough to the possibility of animal infections like this. I can't bring back Bella but I can warn other owners.'

Sixty years ago, most postoperative infections in humans could be controlled by antibiotics, but bugs have evolved to become resistant to methicillin, the synthetic form of penicillin.

The staphylococcus aureus bacteria that causes MRSA is harmless to healthy people - it is carried by many in the nose and armpits - but it can prove fatal for those with a weakened immune system, such as the sick and the elderly.

Dogs and cats do not commonly

carry the bacteria, making it harder for them to pick up MRSA.

41

Dr Alistair Gibson, of the British Small Animal Veterinary Association, said last night: 'There is little risk of MRSA spreading from pets to humans if owners take commonsense hygiene precautions ' J'll Moss's website is www.pets-mrsa.com

MRSA: How big a burden in pets?

- Prevalence amongst pets generally low
- No epidemic spread over past 20 years
- Pet isolates → human hospital-associated lineages (HA-MRSA)

JAC

Considered "spill-over" from human hospitals

Journal of Antimicrobial Chemotherapy (2005) 56, 692–697 doi:10.1093/jac/dki312 Advance Access publication 1 September 2005

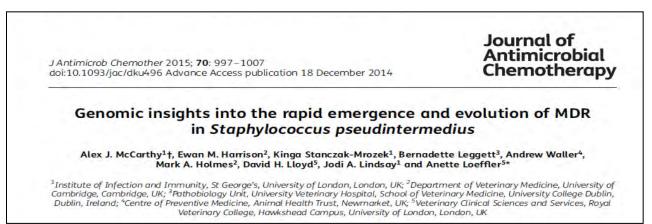
Prevalence of methicillin-resistant Staphylococcus aureus among staff and pets in a small animal referral hospital in the UK

Anette Loeffler¹⁹, Amanda K. Boag¹, Julia Sung², Jodi A. Lindsay², Luca Guardabassi³, Anders Dalsgaard³, Heather Smith¹, Kim B. Stevens¹ and David H. Lloyd¹

¹Department of Veterinary Clinical Sciences, Royal Veterinary College, University of London, London, UK; ²Department of Cellular and Molecular Medicine, St. George's, University of London, London, UK; ³Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Frederisksberg C, Denmark

MRSA isolated from: 9% of referred dogs (n=45) No cats (n=12) 18% of veterinary staff (n=78) 10% of environmental sites (n=30)

RVC


Methicillin-resistant Staphylococcus pseudintermedius

- Veterinary nosocomial pathogen (Risk factors & dog adapted)
- In US since 1999 (Gortel et al.), Europe & Japan since 2007
- Skin, ear, wound infections, urinary tract, chest infections etc.
- mecA but SCCs different to MRSA
- Multidrug-resistant & zoonotic

502

MRSP	MRSP Strains	1	2	3	4	5	6	7	8	9	10	11	12	
	Penicillin	R	R	R	R	R	R	R	R	R	R	R	R	
typical	Ampicm	R	R	R	R	R	R	R	R	R	R	R	R	
resistance	Amoxicillin- clavulanic acid		_	R	R	R	R	R	_ P		R	R	R	
pattern	Oxacillin*	R	R				<u> </u>			_			R	
•	Cefalexin*	R	R	R	R		Ρ	Pet MRSA typically						
	Cephalothin	R	R	R	R		t o	susceptible to etracyclines & TMPS (and often clindamycin)						
	Enrofloxacin	R	R	R	R	Ŕ	le							
	Clindamycin	R	R	R	R	R								
	Erythromycin	R	R	R	R	R	R			/		R	R	
	Gentamycin	S	S	S	S	S	S	S	S	S	S	S	S	
	Rifampicin	S	R	S	S	S	S	S	S	S	S	R	S	
	Tetracycline	R	R	R	S	R	R	R	S	R	R	R	R	
S	Trimethoprim- sulfamethoxazole	R	R	R	R	R	R	R	R	R	R	R	R	
	Fusidic acid	S	S	S	S	I	S	S	S	R	S	S	S	
RVC														

Rapid evolution of multidrug-resistance in S. pseudintermedius

From THEN-S. pseudintermedius to NOW-MRSP:

Only 3 genetic events (mecA, transposon acquisition, point mutations)

- Selection pressure! Need for antimicrobial stewardship
- Epidemiology similar to MRSA: successful lineages spreading

How big a problem?

North American university/derm: 17% 2003-2004 (Morris et al. 2006) 40.5% 2012 (Beck et al. 2012) 43.1% 2012 (Bryan et al. 2012)

Europe: 27% 2005-2006 Derm (Loeffler et al. 2007) 21% 2008 Italy vet lab (De Lucia et al. 2010) 2.6% 2007-2012 UK RVC (Beever et al. 2015) 5% UK vet diagnostic laboratory (Maluping et al. 2015)

Asia: Up to 70% from Japan (Kasai et al. 2016) Australia: 12-13% in 2013/2014 (Saputra et al. 2017)

Treatment of canine MRSP infections

- Surface & superficial
- Topical therapy (chlorhexidine, fusidic acid, bleach, multipharma ear drops)
- Compliance (!)

RVC C

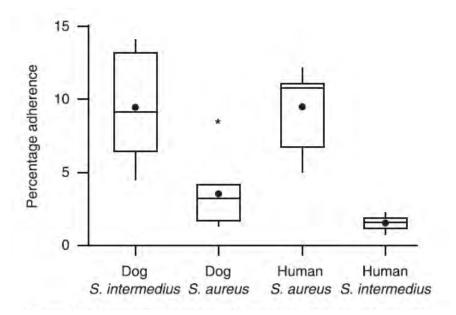
- Deep infections
 - Occasionally tetracyclines or fluoroquinolones (authorized for use in dogs)
- Off license: rifampicin, amikacin

Zoonotic potential of MRSP ?

- Infections reported in people but rare
- Mostly associated with dog contact (bites?)
- MORE DETAIL

- Carriage associated with infected dogs
- In-contact people & vet staff (Morris et al. 2010)
- Dog owners: identical strains recovered from dogs (MSSP), more frequently if pyoderma (Guardabassi et al. 2004)

S. pseudintermedius & S. aureus: Similar, but different but different host-preferences


- S. pseudintermedius carried by 46-94% of healthy dogs (reviewed by Bannoehr & Guardabassi 2012)
- S. aureus found in >50% people at least temporarily
- S. pseudintermedius carriage in <10% vet staff, vet students, dog owners (Mahoudeau et al. 1997, Talan et al. 1989, Harvey et al. 1994)
- S. aureus <10% canine pyoderma

SVC

Veterinary Dermatology 2005, 16, 156-161

Species specificity in the adherence of staphylococci to canine and human corneocytes: a preliminary study

CHRISI SIMOU*‡, PETER B. HILL*, PETER J. FORSYTHE† and KEITH L. THODAY*

Gene transfer S. aureus – S. pseudintermedius?

Zoonotic risk & epidemiology varies

- MRSA well adapted to humans
- If diagnosed in a pet, owners to inform their medical practitioner
- MRSP = veterinary nosocomial pathogen
- Owner advice on zoonotic potential
- Upgrade vet practice & personal hygiene

Mistaken identities?

JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 2004, p. 5881–5884 0095-1137/04/\$08.00+0 DOI: 10.1128/JCM.42.12.5881-5884.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved.

> Clinical Isolates of Staphylococcus intermedius Masquerading as Methicillin-Resistant Staphylococcus aureus

Vol. 42

Sudha Pottumarthy,¹ Jeffrey M. Schapiro,¹ Jennifer L. Prentice,¹ Yolanda B. Houze,¹ Susan R. Swanzy,¹ Ferric C. Fang,^{1,2} and Brad T. Cookson^{1,2*}

Ear J Clin Microbiol Infect Dis (2015) 34:839-844 DOI 10.1007/s10096-014-2300-y

ARTICLE

Staphylococcus pseudintermedius can be misdiagnosed as Staphylococcus aureus in humans with dog bite wounds

S. Börjesson • E. Gómez-Sanz • K. Ekström • C. Torres • U. Grönlund

• 13/101 S. aureus isolates from human dog bite wounds re-identified as S. pseudintermedius

MRSP carriage

80% of *S. pseudintermedius* isolates from lesional skin were identical to those carried orally by the dog (Pinchbeck et al. 2006)

MRSP carriage & contamination in dogs

- 31 dogs previously diagnosed with MRSP infection
- Sampled at 5 mucosal sites over time
- Median length of MRSP carriage = II months
- 3/5 dogs treated with an antimicrobial to which their MRSP-isolates were susceptible (tetracycline) were still MRSP-positive at the end of treatment

Current RVC study (ongoing)

- Clinical signs of infection resolved
- 6 carriage sites sampled
- Contact plates for house
- 18 / 27 (67%) dogs MRSP +ve
- 2-14 months after resolution
- MRSP +ve index dog household:
 - 69% environmental sites +ve
 - 90% in-contact dogs +ve
- MRSP –ve index dog household:
 - 14% environmental sites +ve
 - 20% in-contact dogs +ve

"Decolonisation"

- Naturally occurring
- Resistance = cost to fitness in staphylococci (Berger-Bächi 2004)
- Clean environment
- Prevent recurrent opportunistic infections
- For how long?

- Using antimicrobials
- No vet studies, only case reports
- Ethical considerations (healthy animals)
- No products licensed for decolonization of pets
- Poor long-term effect in human medicine for MRSA (Cochrane) mainly done pre-operatively

MRSP transmission/acquisition

- Dog-to-dog likely
- Environment-to-dog (+/humans) via surfaces possible (human carriage during vet hospital outbreaks (e.g van Duijkeren et al. 2011)
- Not easily transmitted between humans & transient: not recovered after two months (Frank et al. 2009)

- In dogs: no dog-to-dog transmission of MRSA:
- II dogs sharing a kennel with MRSA carrier dogs
- Daily environmental cleaning
- All MRSA-carriage negative at repeat sampling 2 weeks later

Short communication

Lack of transmission of methicillin-resistant *Staphylococcus aureus* (MRSA) between apparently healthy dogs in a rescue kennel

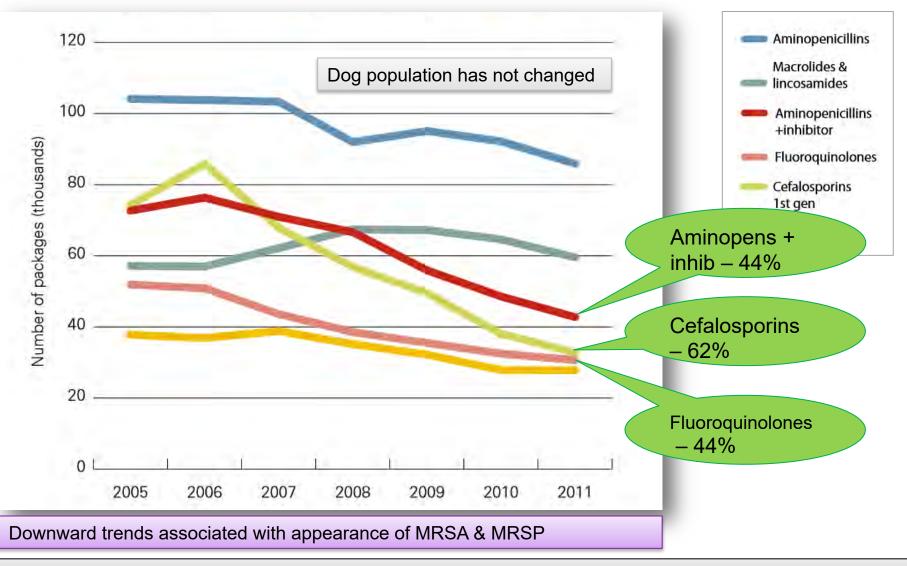
A. Loeffler^{a,} 🛓 · 🖾, D.U. Pfeiffer^a, J.A. Lindsay^b, R. Soares-Magalhaes^a, D.H. Lloyd^a

Is MRSP carriage a problem?

- Low risk to healthy people
- Problem for canine patients & vets
- Case by case discussion/decision

The Human–Companion Animal Bond: How Humans Benefit Vet Clin Nort

Vet Clin North Am Small Anim Pract. 2009;39:293-326.


Erika Friedmann, Phd*, Heesook Son, MPH, RN

KEYWORDS

- Animal assisted therapy
 Pet therapy
- Animal-assisted activities
 Stress reduction
 Pets
- Assistance animals
 Assistance dogs
 Companion animals

- Opportunity
- Improve awareness for AMS
- Improve hygiene
- Adjust regulations

Sales of antimicrobials for oral use in dogs (Swedish Veterinary Antimicrobial Resistance Monitoring 2011)

http://www.sva.se/upload/Redesign2011/Pdf/Om_SVA/publikationer/Trycksaker/Svarm2011.pdf

The bigger picture

'ESKAPE' : Clinically relevant multidrug-resistant pathogens (human med.)

- Enterococcus faecium
- **Staphylcooccus aureus (S. pseudintermedius)**
- Klebsiella pneumonia
- Acinetobacter baumannii (& other spp.)
- Pseudomonas aeruginosa
- Enterobacter species

Boucher et al. Clin Infect Dis 2009; 48: 1-12. Rice LB.. J Infect Dis 2008; 197: 1079-81

RVC

Footpad of a Cocker spaniel with MDR-Klebsiella and MRSP

MDR pathogens in pets

OPEN OACCESS Freely available online

2014 Mar 4;9(3)

PLOS ONE

PLos one

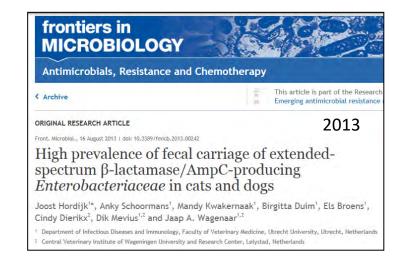
Extended-Spectrum-Beta-Lactamases, AmpC Beta-Lactamases and Plasmid Mediated Quinolone Resistance in *Klebsiella* spp. from Companion Animals in Italy

Valentina Donati¹, Fabiola Feltrin¹, Rene S. Hendriksen², Christina Aaby Svendsen², Gessica Cordaro¹, Aurora García-Fernández³, Serena Lorenzetti¹, Raniero Lorenzetti¹, Antonio Battisti^{1*}, Alessia Franco¹

1 Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Rome, Italy, 2 Technical University of Denmark, National Food Institute (DTU-Food), Kongens Lyngby, Denmark, 3 Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immune-Mediated Diseases, Rome, Italy

OPEN OACCESS Freely available online

Dogs Leaving the ICU Carry a Very Large Multi-Drug Resistant Enterococcal Population with Capacity for Biofilm Formation and Horizontal Gene Transfer 2011


Anuradha Ghosh¹, Scot E. Dowd², Ludek Zurek^{1,3}*

Multidrug-

Emerg Infect Dis. 2011; 17:1751-4

17:1751-4 Resistant Acinetobacter baumannii in Veterinary Clinics, Germany

Sabrina Zordan, Ellen Prenger-Berninghoff, Reinhard Weiss, Tanny van der Reijden, Peterhans van den Broek, Georg Baljer, and Lenie Dijkshoorn

Acknowledgements & Affiliations

Thanks to:

- RVC Dermatology Group
- David Lloyd (RVC)
- Jodi Lindsay, St Georges
- Dirk Pfeiffer (RVC)
- David Grant (RSPCA)

bioscience for the futur

Petplan

TRUST

CHARITABLE

Breeches instead of antibiotics for skin infections?

Figure 5:15. A. Breeches for giant breeds affected by elbow calus pyoderma. They are made of hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and hugh stretchable jersey material with foam rubber pad inserts in the region of the elbow. A strap and worn constantly in the lesions heal, and then "nighttime only" usually suffices. These breeches are also useful in with the lesions heal, and then "nighttime only" usually suffices. These breeches are also useful in with the lesions heal. B. Irish wolfhound with his breeches in place. C. Side view shows strap over the shoulders. (Fg. B and C, E. M. Farber's Irish wolfhound "Finnegan.")

RVC

Veterinary Dermatology text book from 1983 (Muller, Kirk & Scott)

Role of Antimicrobial Stewardship in the intensive care unit

Jeroen A. Schouten, MD Intensive Care IQ Healthcare

Center for Infectious Diseases
Radboudumc

the title of my presentation suggests that there is a problem we need to solve...

so is there a problem? well yes: there is actually a huge problem

ere a problem?

- Increasing antimicrobial resistance worldwide
- Increased morbidity and mortality attributed to untreatable infections
- No new drugs in the pipeline, especially not for gram negatives
- Need for responsible use of existing antibiotics, but poor adherence

Why is the pro

- 38-50% of ICU pati
- 60-70% of ICU pati therapy

in the largest point prevalance study on infections in ICU (EPIC II) data from thousends of patients 70% on AB,the highest in any healthcare setting- increasing the total

^Fection Dial

in ICU?

- transmission of resistant micro organisms more likely
- loss of physiological barriers
- poor host response

AMR not necessarily develops but emerges in ICU

Vincent 2009, EPIC II data

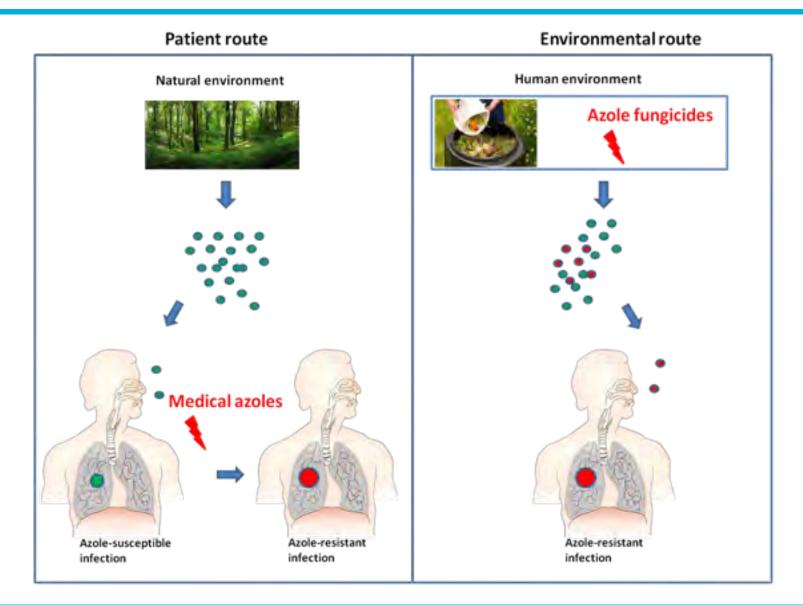
Vincent 2006, SOAP data

Why are we having this conference?

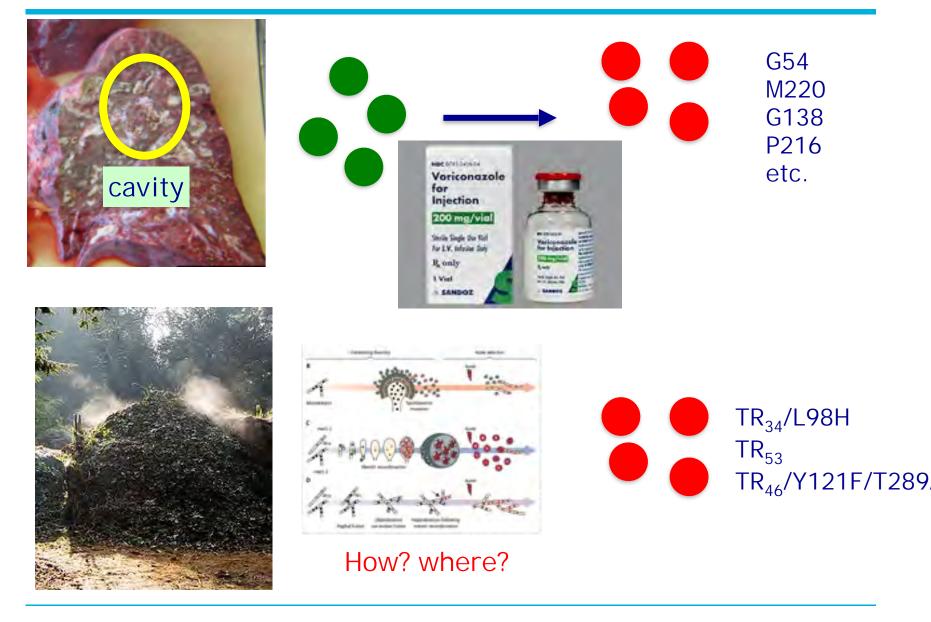
" 2nd ICOHAR aims at bringing together representatives from all relevant sectors (e.g. public health, human and veterinary medicine, livestock production, food safety and environmental sciences) to share research and education strategies for understanding and reducing the risks of AMR at the interphase between humans, animals and the environment. The programme does not only focus on zoonotic transfer of AMR but also on the numerous AMR-related challenges shared by clinicians, clinical microbiologists, infectious disease specialists and researchers working in these sectors"

Center for Infectious Diseases Radboudumc

Resistance of Aspergillus fumigatus in the Netherlands: One -Health issue in the ICU


Jeroen A. Schouten, MD Intensive Care IQ Healthcare

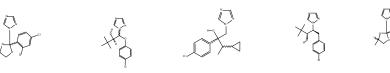
"Home sweet home"


Routes of resistance selection

Verweij et al. Lancet Infect Dis 2009;9:789-95

 $\begin{array}{c} {\sf Center for Infectious Diseases} \\ \hline Radboudumc \end{array}$

Routes of resistance selection

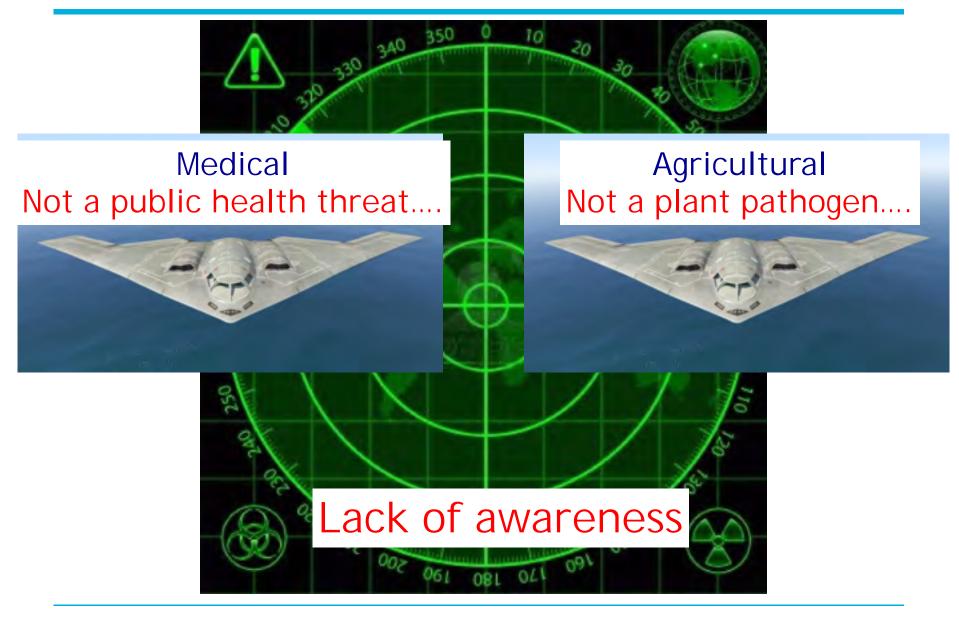


 $\begin{array}{c} {\sf Center for Infectious Diseases} \\ \hline Radboudumc \end{array}$

Environmental resistance - one health problem

Propiconazole; tebuconazole; epoxiconazole; difenoconazole; bromuconazole

an entropy of


Medical triazoles

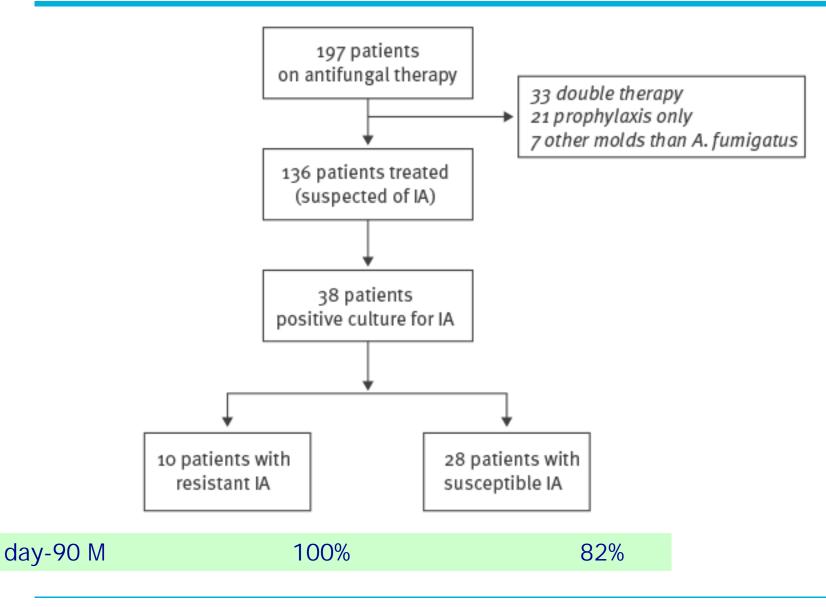
Center for Infectious Diseases

Verweij et al. Lancet Infect Dis 2009;9:789-95

Azole resistance in A. fumigatus: Under the radar ...

Aspergillus disease and development of resistance

Disease	Route of resistance	Characteristics
Cystic Fibrosis	E > P	
ABPA	?	
Aspergilloma	P >> E	cavity, multiple R-mutations, fitness cost
CPA	P >> E	cavity, multiple R-mutations, fitness
IA - pulmonary	E	TR ₃₄ > TR ₄₆ , mixed infections S/R - R/R
Influenza Associated	E	$TR_{34} > TR_{46}$, mixed infections,
Aspergillosis		
CNS-IA	E P = patient route	TR ₃₄ &TR ₄₆ , sanctuary site E = environmental route

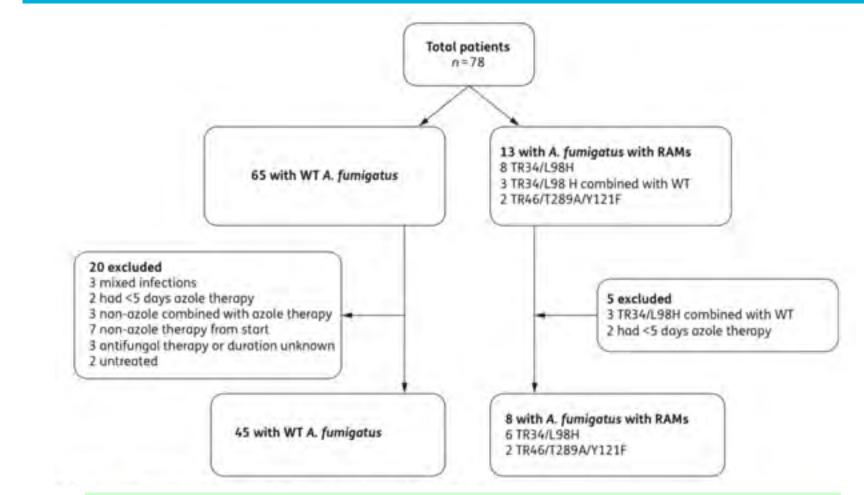

Azole resistance in A. fumigatus associated with increased mortality?

Patient age, y/ sex	Underlying disease	Disease	No. positive cultures†	Resistance mechanism	VCZ MIC, mg/L	Prior azole treatment (duration)‡	Treatment§	Outcome at 12 wk
66/M	Lung carcinoma	Proven pulmonary aspergillosis	1	TR/L98H	4	None	VCZ	Died
59/M	Hematologic malignancy, allo-SCT, GvHD	Proven pulmonary aspergillosis	4	TR/L98H	8	VCZ (>1 mo)	VCZ	Died
54/M	Acute myeloid leukemia, relapse, allo-HSCT	Proven pulmonary aspergillosis	1	TR/L98H	8	ITZ (2-4 wk)	VCZ	Died
50/M	Non-Hodgkin lymphoma, allo-SCT, GvHD, lung cavities	Probable pulmonary aspergillosis	2	TR/L98H	16	VCZ (>1 mo)	VCZ	Died
36/F	Breast carcinoma with metastasis	Probable pulmonary aspergillosis	1	TR/L98H	1	None	VCZ	Died
13/F	Non-Hodgkin lymphoma	Proven pulmonary and CNS aspergillosis	1	TR/L98H	16	None	VCZ, CAS, AMB	Died
58/M	Liver transplantation for hepatic failure after methotrexate treatment for arteritis	Proven pulmonary and CNS aspergillosis	5	TR/L98H	2	None	AMB, VCZ	Died
60/M	Acute myeloid leukemia, allo-SCT, GvHD	Proven pulmonary and CNS aspergillosis	3	TR/L98H	4	FCZ (1-2 wk)	VCZ, CAS, AMB, POS	Survived

Emerg Infect Dis. 2011;17:1846-54

 $\begin{array}{c} {\sf Center for Infectious Diseases} \\ {\color{blue}{Radboudumc}} \end{array}$

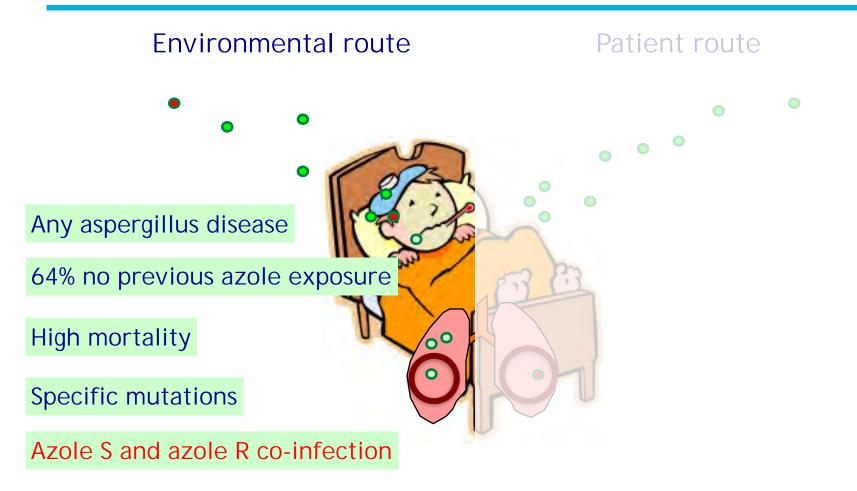
Azole R IA in the ICU


Euro Surveillance 2016; 21(30)

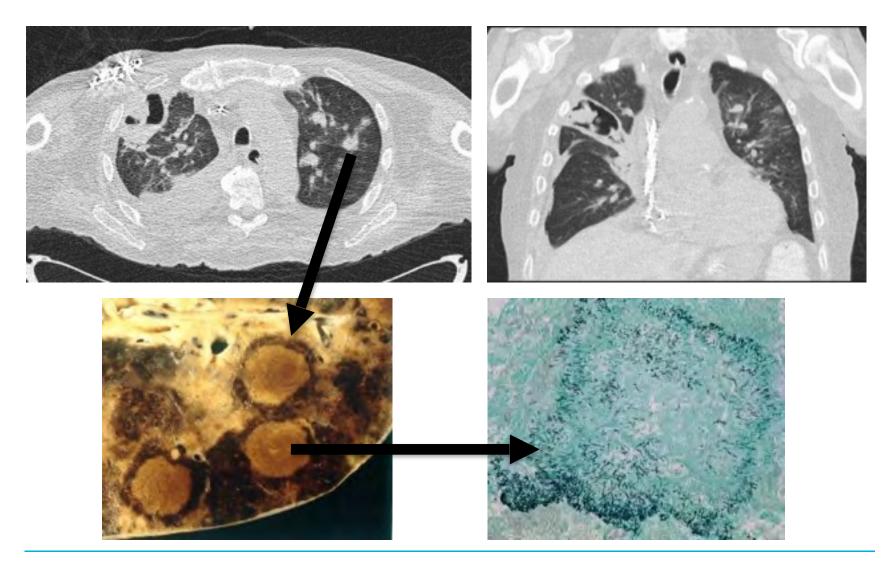
Influenza-associated aspergillosis - azole resistance

Patient ID/age	Underlying disease	Phenotype first culture (specimen)	alture resistant	MIC (mg/l)(interpretation) ^v						Resistance mutation	Initial antifungal therapy*	Subsequent treatment regimens*	Outcome*
				AmB	ITZ	VCZ	POS	ISA	AFG				
2-1/34	None	Azole- resistant (BAL)	First culture	0.5 (5)	>8 (R)	2 (1)	0.5 (R)	>8 (R)	0.016	TRH/L98H	Voriconazole (+7)	Li-AmB (+22)	Died (+27)
4-2/52	None	Mixed (sputum)	First culture	0.25 (S)	2 (1)	>8 (R)	0,5 (R)	>8 (R)	0,031	TR46/Y121F/ T289A	Voriconazole (0)	L-AmB (+4)	Died (+13)
5-5/38	None	Wild type (sputum)	At autopsy	0.5 (S)	8 (R)	2 (1)	0.5 (R)	8 (R)	0.031	TR34/L98H	Voriconazole (-5)	VCZ+AFG (0); VCZ+Li-AmB (+5)	Died (+16)
2-3/44	Asthma, sinusitis	Mixed (sputum)	First culture	1(5)	>8 (R)	4 (R)	0.5 (R)	>8 (R)	0.016	TR34/L98H	Voriconazole (+11)	Li-AmB (+16); CAS (+26); Li-AmB (+30)	Survived
5-1/71	Lung cancer, COPD	Azole- resistant (sputum)	First culture	0.5 (S)	>8 (R)	4 (R)	0.5 (R)	>8 (R)	0.016	TR34/L98H	Voriconazole (+5)	VCZ+AFG (+9); Li- AmB (+11); VCZ+AFG (+14)	Survived

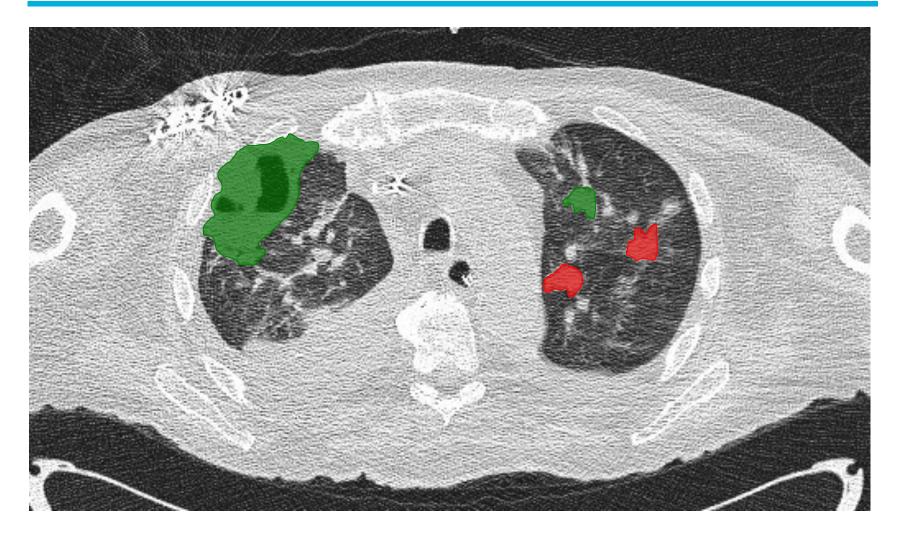
Van de Veerdonk F, et al. Am J Resp Crit Care Med 2017;196:524-7


PCR diagnosis of resistance-associated mutations (RAMs)

Six week mortality 2.6 times higher in patients with detected RAM (17.8% without versus 50.0%; P = 0.07).


J Antimicrob Chemother. 2016;71:3528-35.

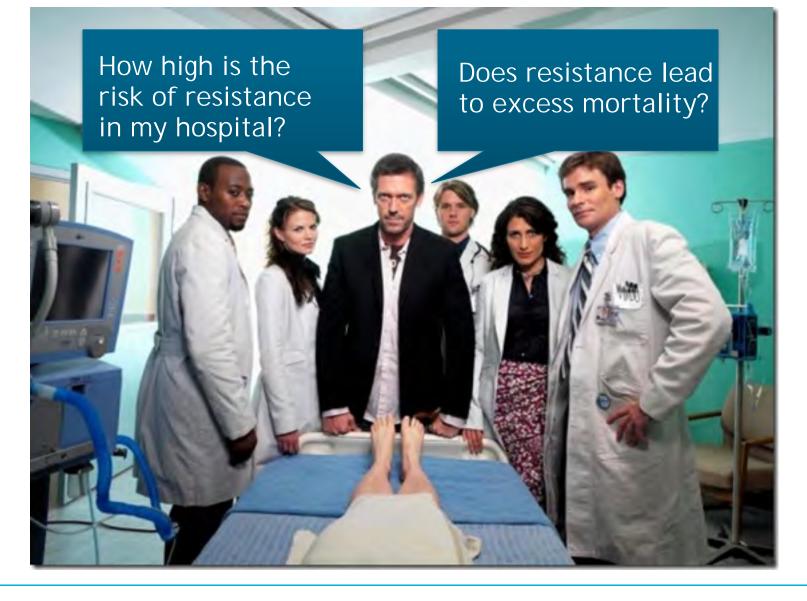
Characteristics of azole R aspergillosis

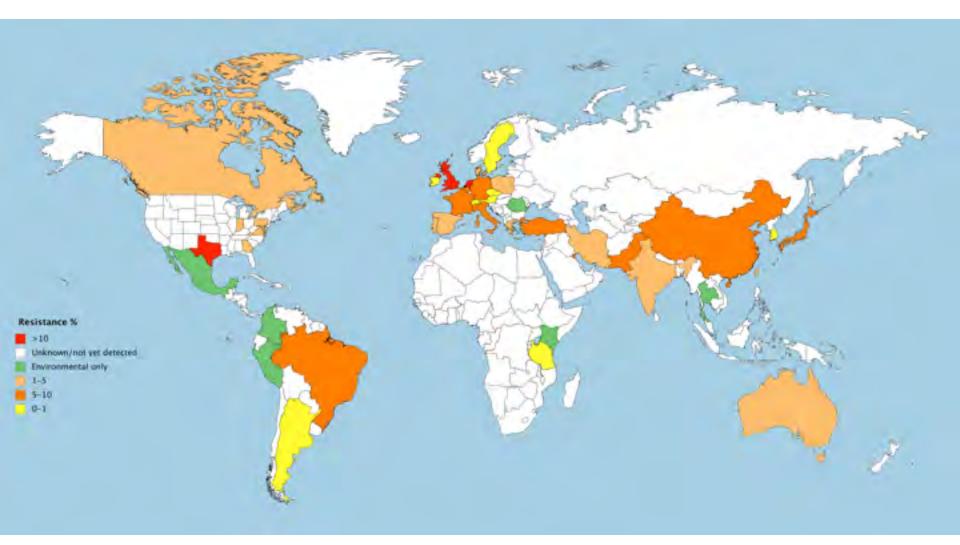


Selection of azole R during VCZ monotherapy

Pathogenesis of IA

Pathogenesis of mixed infection





 $\begin{array}{c} {\sf Center for Infectious Diseases} \\ \hline Radboudumc \end{array}$

Clinical implications of resistance

Geographic spread: clinical and environmental

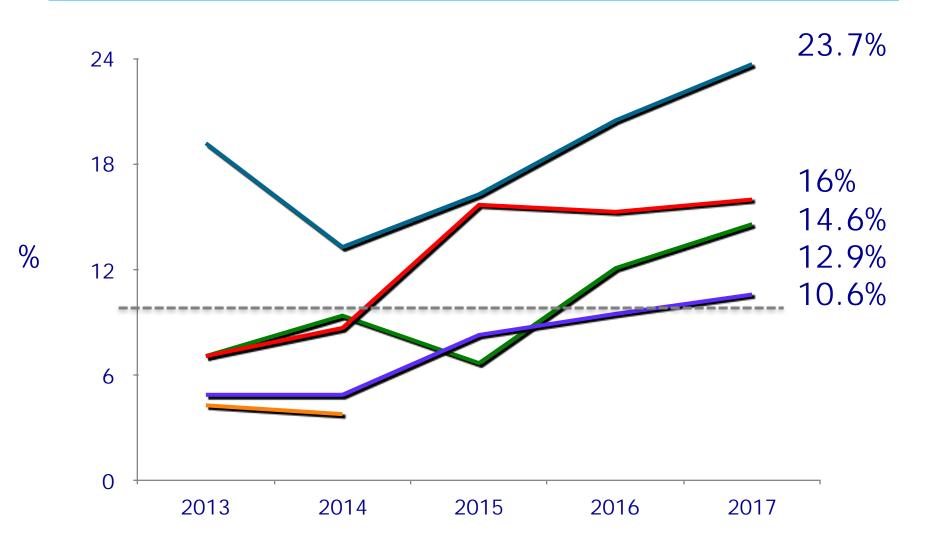
B. Lestrade et al. Clin Microbiol Infect 2018; [Epub Dec 20]

Acquired resistance frequency A. fumigatus 2013 - 17

5 university medical centers

Screening for resistance of unselected clinical isolates using VIPcheck™

Includes clinically notrelevant isolates


Number of patients screened 600 to 814 per annum

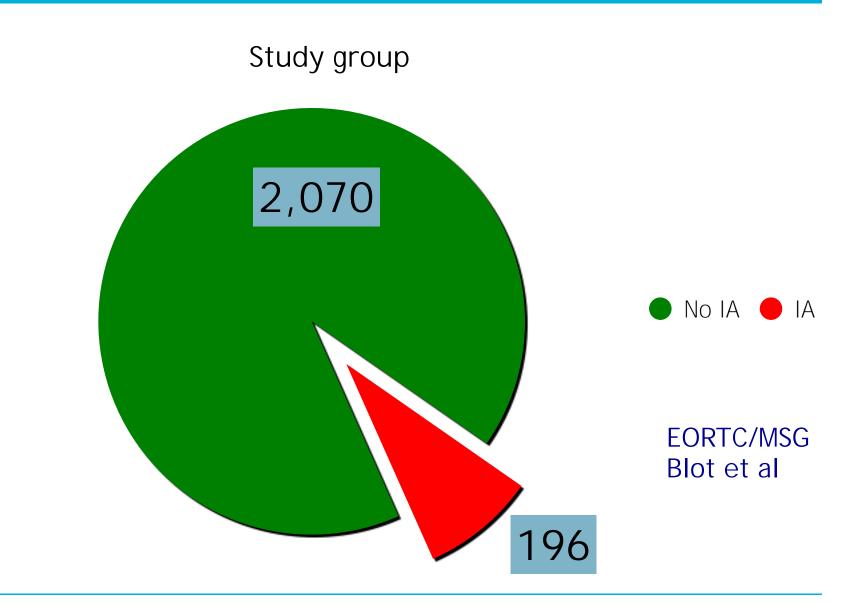
number of patients with Azole-R isolate

number of screened patients

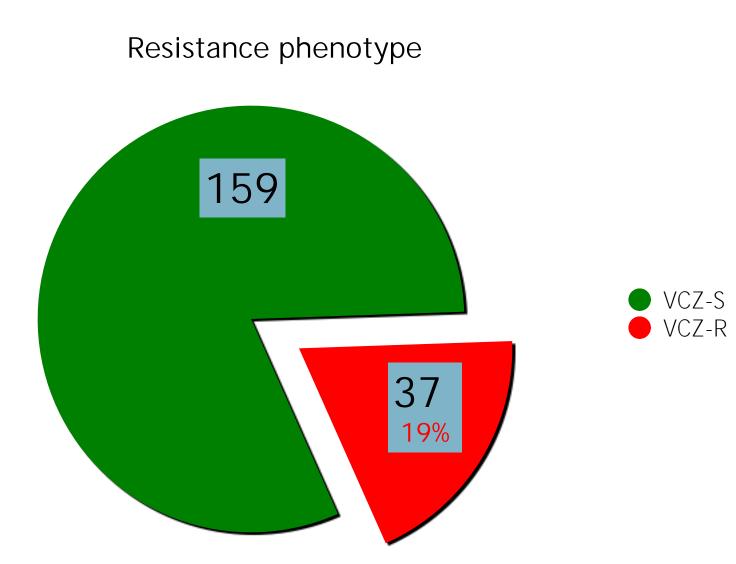
Netmap 2017:128-31

Acquired resistance frequency A. fumigatus 2013 -17

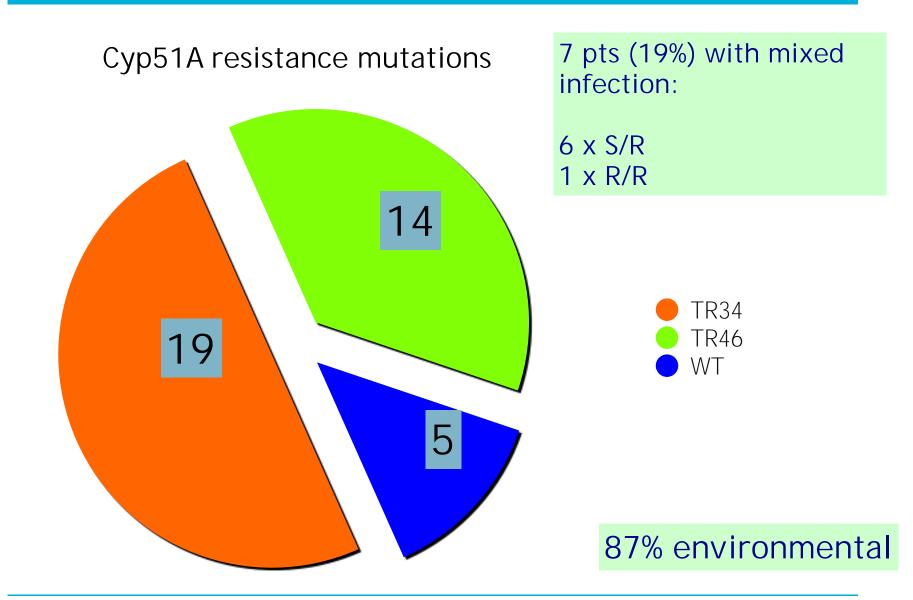
Does resistance lead to excess mortality?



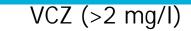
- Radboudumc LUMC ErasmusMC
- 2011 2015
- All patients with A. fumigatus in culture
- All isolates screened with VIPcheck^{\mathsf{TM}}
- Compare mortality in R versus S

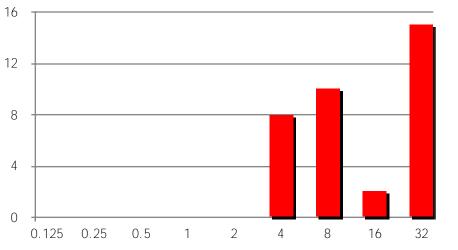


2,266 patients with positive Aspergillus fumigatus culture

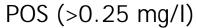

P. Lestrade et al. Clin Infect Dis 2018; Epub Oct 11th

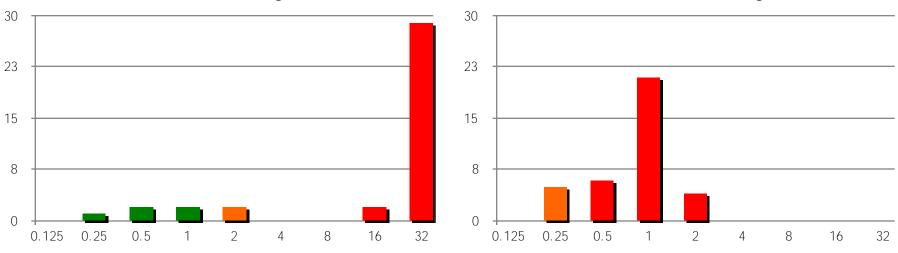
196 patients with invasive aspergillosis


P. Lestrade et al. Clin Infect Dis 2018; Epub Oct 11th

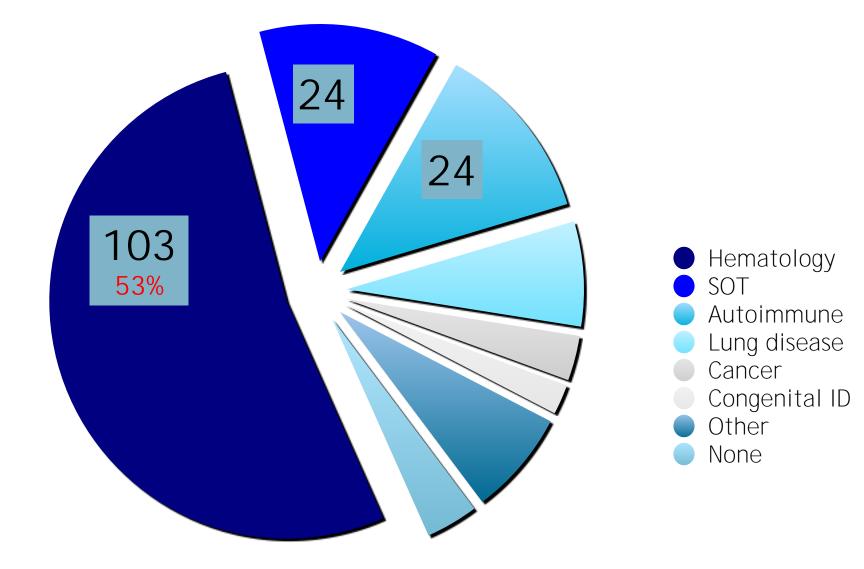

37 patients with VCZ-R invasive aspergillosis

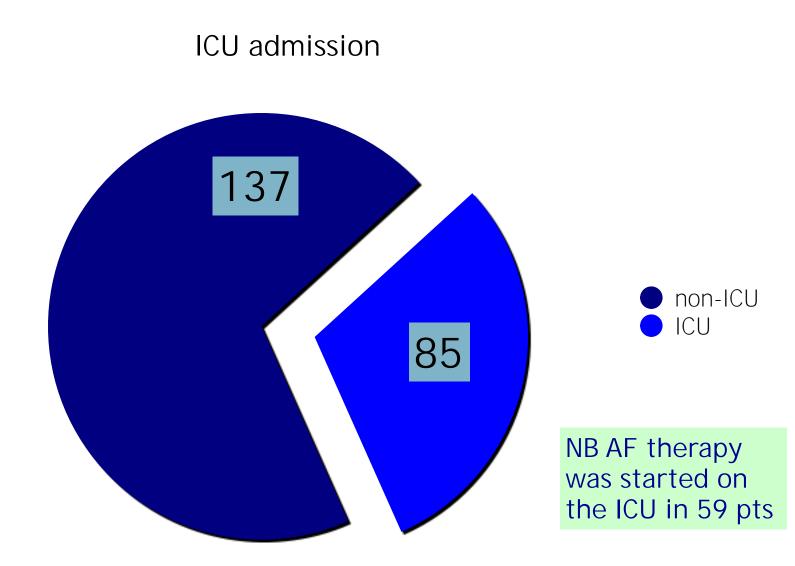
P. Lestrade et al. Clin Infect Dis 2018; Epub Oct 11th


A. fumigatus resistance phenotypes

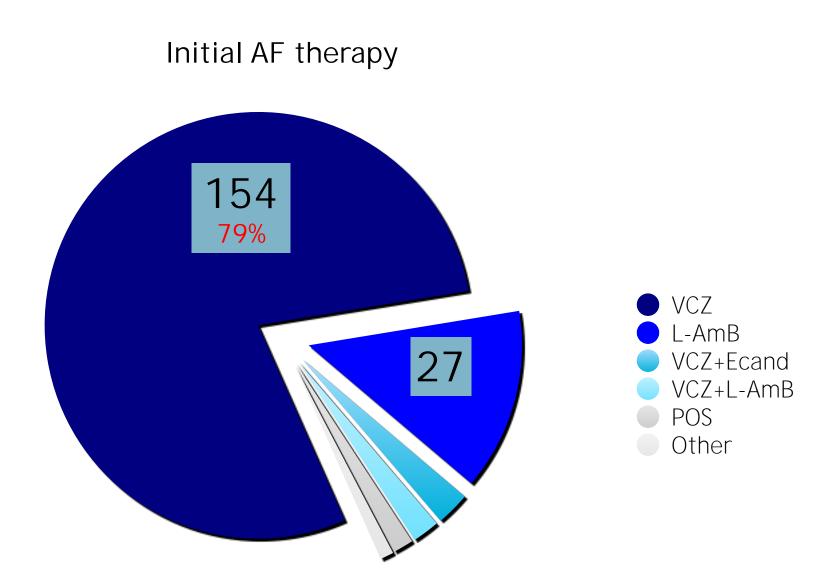


ITZ (> 2 mg/l)

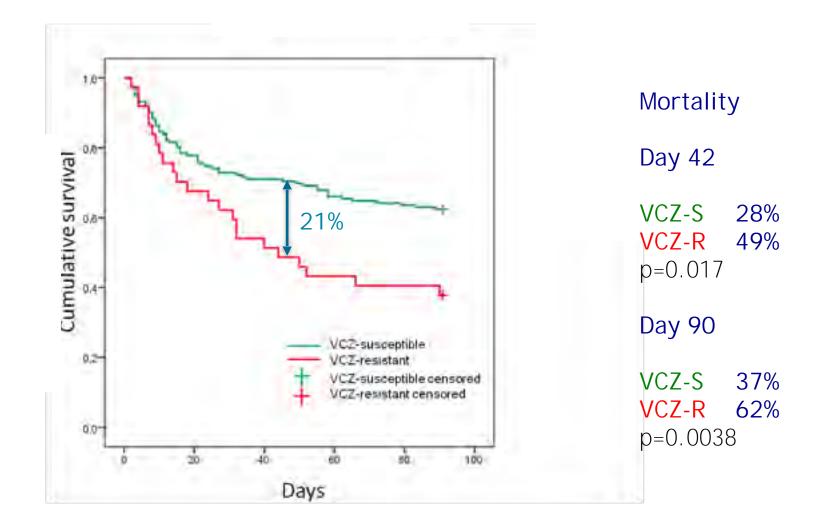

100% crossresistance with All susceptible to AmB


P. Lestrade et al. Clin Infect Dis 2018; Epub Oct 11th

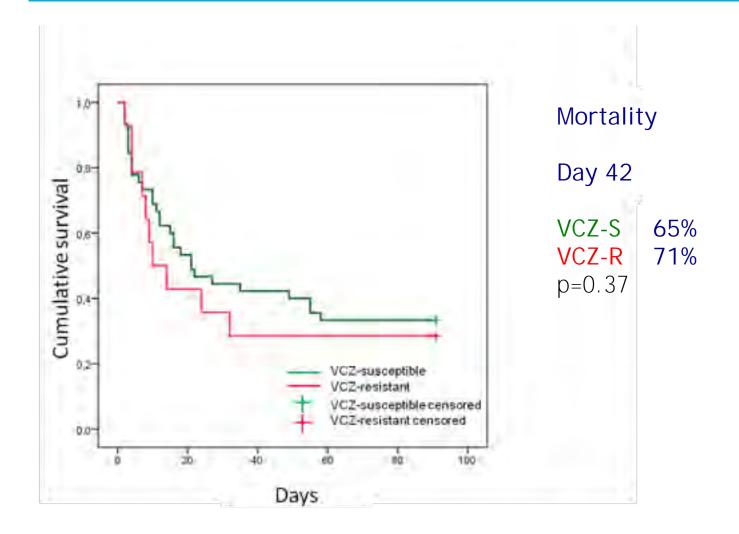
196 patients with invasive aspergillosis: underlying disease



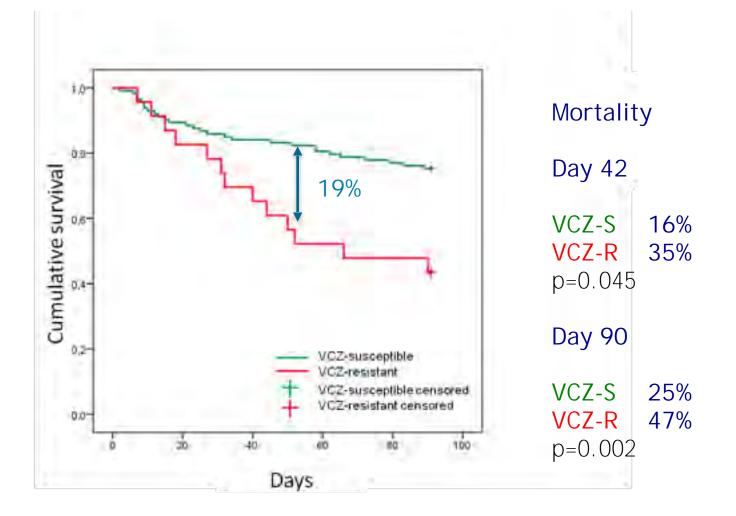
196 patients with invasive aspergillosis



196 patients with invasive aspergillosis

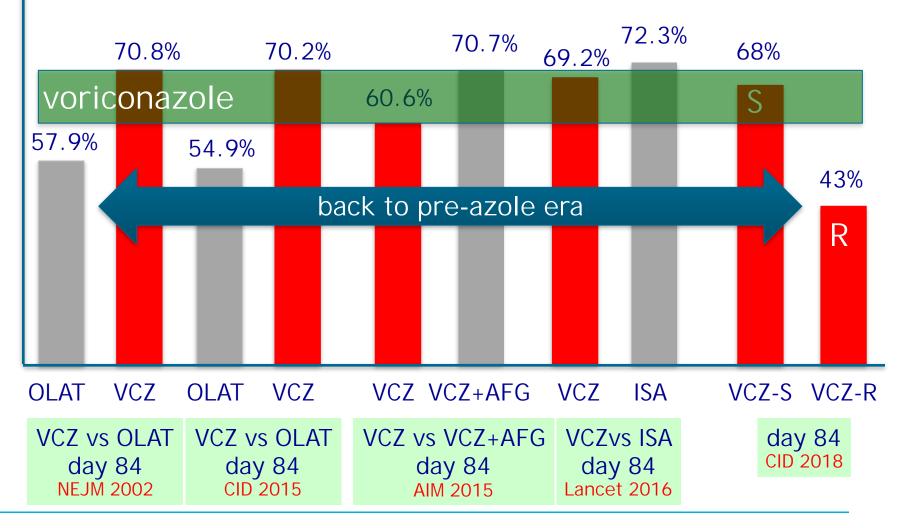

P. Lestrade et al. Clin Infect Dis 2018; Epub Oct 11th

Overall mortality in vori R versus vori S


P. Lestrade et al. Clin Infect Dis 2018; Epub Oct 11th

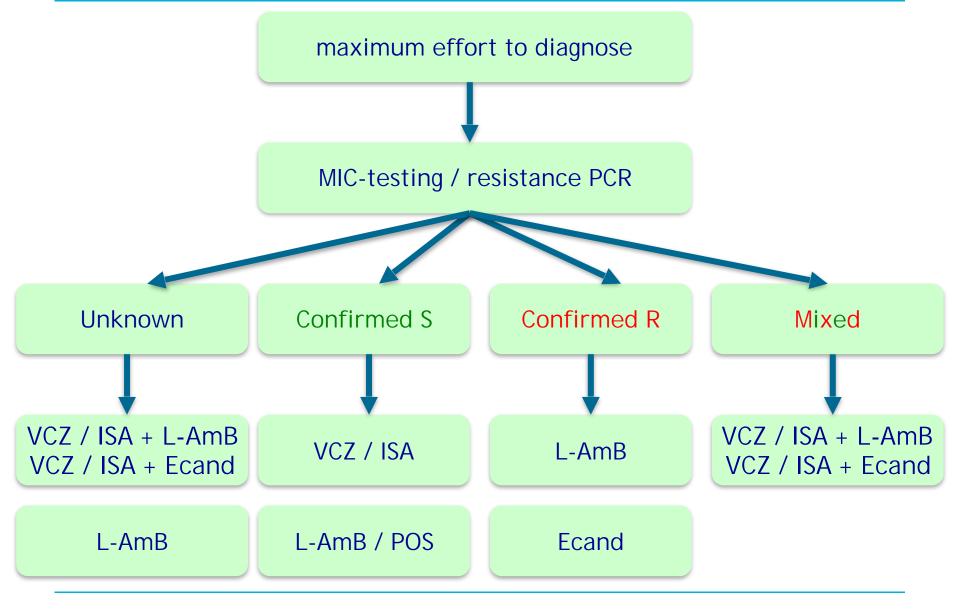
Overall mortality in vori R versus vori S in 59 ICU-patients

P. Lestrade et al. Clin Infect Dis 2018; Epub Oct 11th


Overall mortality in vori R versus vori S in non-ICU patients

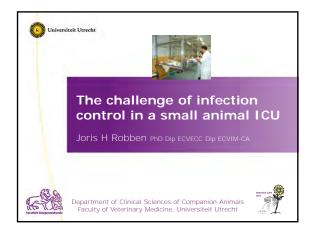
P. Lestrade et al. Clin Infect Dis 2018; Epub Oct 11th

Azole-resistant associated 12-week mortality of IA in perspective



What to do - treatment? ICU Antimicrobial stewradship

Dutch national guideline: invasive aspergillos


Resistance to VCZ was associated with excess mortality (21% to 33%) compared for VCZ susceptible infection

Inappropriate initial antifungal therapy was associated with increased mortality

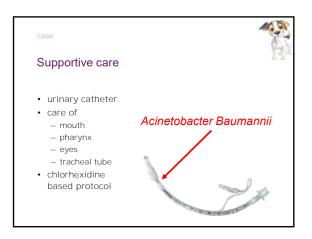
These data support initial therapy that covers voriconazole resistant isolates with de-escalation once sensitivity becomes available

Most resistant isolates show an <u>environmental</u> <u>origin</u>: TR 34 and TR 46 mutations

case

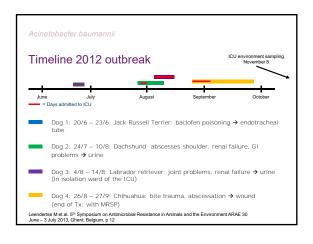
Kira

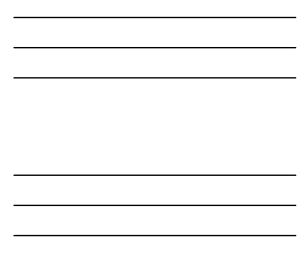
- dog ate 10 gram from a tube of 5% baclofen delivered by postal mail
- hypersalivation, ataxia ⇒ lateral recumbency, dysphoria/screaming, hypotonia, flaccid
- contact with National Poison
 Information Centre
- admitted to the ICU of the Dept. Clin. Sci. Comp. Anim. (DCSCA) of the Fac. Vet. Med. in Utrecht

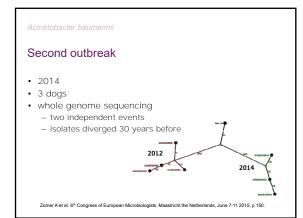


case

Tx of Kira


- oxygen Tx: oxygen cage
- sedation
- endotracheal intubation: secure airway + Tx O₂
- temperature control
- Intralipid[®] 20%
- mechanical ventilation for Tx of hypoventilation





Acinetobacter baumannii

Conclusions

- Self limiting outbreak of MDR A. Baumannii at small animal ICU of the DCSCA.
- Four dogs with indistinguishable strains.
- Despite OXA-51-like + ISAba1 gene combination: (intermediate) susceptible for meropenem + imipenem.
- Although, no advanced cleaning action took place, the strain could not be cultured from the ICU, which was in parallel with the fact that no additional clinical cultures were found positive for MDR A. baumannii.
- The source of the outbreak was not identified. The owner of the first dog was known to suffer from a diabetic foot with ulcers. The owner was not a known carrier of this *A. baumannii* strain.

Leendertse M et al. 5th Symposium on Antimicrobial Resistance in Animals and the Environment ARAE 30 June – 3 July 2013, Ghent, Belgium, p 12

antimicrobial resistance

ACVIM Consensus Statement on Therapeutic Antimicrobial Use in Animals and AMR

There are 3 main routes to reduce AMR development

- reduction of overall antimicrobial drug use
- improvement of antimicrobial drug use
- prevention of disease occurrence use of infection control measures in veterinary hospitals

Weese JS et al. J Vet Intern Med 2015;29:487–498 ACVIM Consensus Statement on Therapeutic Antimicrobial Use in Animals and Antimicrobial Resistance

Antimicrobial (AM) stewardship program

- A-team
- · education
- Tx guidelines
- discourage the use of AM for their nonantimicrobial effects

Working towards antimicrobial stewardship at the department of Clinical Scienc Companion Animals at Uterkl University - defining the current baseline situation F#3 and first {the lines' [M] and first() {the start first part of the start of the start and the start of the start () and the start () and the start of the start of the start of the start "Applient definite interest entropy to the start of the start interest entropy to the start of th

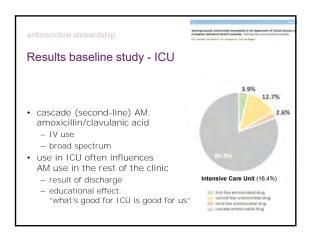
antimicrobial stewardship

Working transmits antimize that interactivity at the department of One Comparison Antimak at Other St University - University the Larent Transmit

Results baseline study

- Overall antimicrobial consumption (2013-2017): 4.44 defined daily doses animals (DDDAs) per year (2.60 DDDAs in general practice doses) (2014)).
- AM use decreased from 2013 through 2016, but increased in 2017. Second-line drugs (54.0%), primarily amoxicillin/clavulanic acid •
- (62.6%).
- (62.6%).
 213 bacterial isolates (2013-2017) from 154 patients (4% of total samples) were labelled as multidrug resistant (MDR):

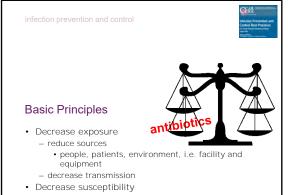
 methicillin-resistant (MR) staphylococci (48.4%)
 MDR Pseudomonas sp. (21.1%)
 extended-spectrum beta-lactamase producing (ESBL) Enterobacteriaceae (18.8%).


 Eight different recommendations regarding the development of an antimicrobial stewardship program were formulated.

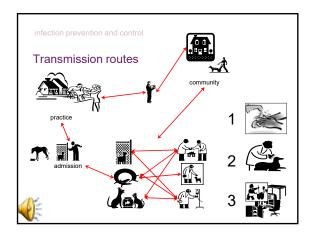
Recommendations

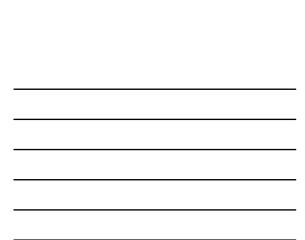
- Optimize the on-site availability of the Companion Animal Formulary provided by the WVAB of the Dutch Royal Veterinary Association (KNMvD).
- Optimize the on-site visibility of the AM classification according to Antibiotics Policy Working Group (WVAB).
- Guidelines for focused AM prescription.
 Guidelines for caring of patients carrying MDR bacteria.
- Optimize multidisciplinary communication on AMs and MDR bacteria. 5.
- 6. Optimize client and student education.

- Optimize instructions on handling AMs and patients carrying MDR bacteria for para-veterinary staff members.
 Education on AM administration and resistance for para-veterinary staff members


infaction provention and control

Controlling disease without AMs

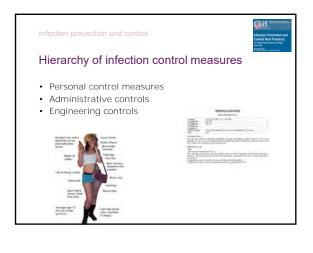

- signs attributed to bacterial infection → early and appropriate diagnostic testing
 not all bacterial infections need treatment with
- antimicrobials
 - treating underlying condition you may treat the (secondary) bacterial infection more effectively
 - consider other treatment modalities than AM
- · worsening disease state in critically ill animals
- does not always necessitate escalation of Tx AM Weese JS et al. J Vet Intern Med 2015;29:487-498



Increase resistance

infection prevention and control

Antimicrobial resistance


And Topological Control of Contro

mus, MOL

Conclusion

Among patients receiving mechanical ventilation in ICUs with moderate to high antibiotic resistance prevalence, use of CHX mouthwash, SOD, or SDD was not associated with reductions in ICU-acquired bloodstream infections caused by MDRGNB compared with standard care.

Wittekamp BH et al. JAMA. 2018;320(20):2087-2098.

Engineering controls

- planning and design of new and existing facilities less attention in veterinary medicine
- very important for staff compliance

infection prevention and control

ICU Design

- have enough space: invest in "empty"
- have good lighting and open visual lines
- pay attention to ergonomics
- separate functionshave enough storage facilities
- isolate the "uncleanable"

closing remarks

Outcome case

Day 1 after admission

• weaning of mechanical ventilator was unsuccessful Day 2

 dexmedetomidine (1 µg/kg/hr) was added as sedative: recovery was successful but dog developed tremors that made her body temperature go up to 40°C

• Tx cooling with wet towels

- Day 3
- discharge

closing remarks

What does veterinary medicine need?

• resources

- finances
- information
- professionals (hygienists)
- staff (nurses) - small spectrum AM
- awareness
 - professionals
 - lay people \rightarrow owner
- veterinary medicine needs to be inventive

closing remarks

Is small animal Intensive Care in trouble?

- median length-of-stay (LOS): 2-3 dayspatients are less sick/debilitated.

Antimicrobial Therapy Guidelines in Humans

J. M. Blondeau, M.Sc., Ph.D., RSM(CCM), SM(AAM), SM(ASCP), FCCP Head, Clinical Microbiology Provincial Clinical Lead for Clinical Micorbiology Royal University Hospital & Saskatchewan Health Authority Adjunct Professor of Microbiology and Immunology Clinical Associate Professor of Pathology Clinical Associate Professor of Ophthalmology University of Saskatchewan Saskatoon, Saskatchewan, Canada

Introduction

- International practice (therapy) guidelines
 - Arose out of a need to standardize treatment for common infections based on the "best" evidence available
 - Responsible antimicrobial use
 - Impact antimicrobial resistance (?)
 Considers epidemiology of AMR in recommendations
 Define "length of therapy"...including shorter durations of therapy...without compromising patient care

The Alarm....

- AMR...currently...700,000 deaths/year (est)
 Unchecked
 - 10 million deaths/year by 2050 (WHO)
- Strategies
 - "One Health" reduce Abx use world wide
 - Humans, animals
 - Priority pathogens
 - New drug development
 - Therapeutic guidelines ensuring minimum standard of care (evidence based)

WHO PRIORITY PATHOGENS LIST FOR R&D OF NEW ANTIBIOTICS Priority 1: CRITICAL[#]

LO

Acinetobacter baumannii, carbapenem-resistant

Pseudomonas aeruginosa, carbapenem-resistant

Enterobacteriaceae*, carbapenem-resistant, 3rd generation cephalosporin-resistant

Priority 2: HIGH

Enterococcus faecium, vancomycin-resistant

Staphylococcus aureus, methicillin-resistant, vancomycin intermediate and resistant

Helicobacter pylori, clarithromycin-resistant

Campylobacter, fluoroquinolone-resistant

Salmonella spp., fluoroquinolone-resistant

Neisseria gonorrhoeae, 3rd generation cephalosporin-resistant, fluoroquinolone-resistant

Priority 3: MEDIUM

Streptococcus pneumoniae, penicillin-non-susceptible

Haemophilus influenzae, ampicillin-resistant

Shigella spp., fluoroquinolone-resistant

Mycobacteria (including Mycobacterium tuberculosis, the cause of human tuberculosis), was not subjected to review for inclusion in this prioritization exercise as it is already a globally established priority for which innovative new treatments are urgently needed.

* Enterobacteriaceae include: Klebsiella pneumonia, Escherichia coli, Enterobacter spp., Serratia spp., Proteus spp., and Providencia spp, Morganella spp.

High mortality -decreasing ABX -IPC issue

Antimicrobial Resistance

- Global pandemic
- Multidrug-resistant strains
- Drugs of last resort
- Combination therapy being explored...not necessarily for clinical outcome but for resistance prevention
- Global Organizations/Societies/Governments
 Statements regarding resistance and prevention strategies

(World Health Organization

Government of Canada's response to antimicrobial resistance. We are working to prevent and control the spread of antimicrobial resistance (AMR). Learn how the Government of Canada monitors AMR and supports appropriate antimicrobial (antibiotic) use (AMU) in both humans and animals.

Antimicrobial Resistance: 2005-2017+

*Older agents, i.e. ciprofloxacin, levofloxacin

Blondeau, JM, 2017

EDITORIAL

For reprint orders, please contact: reprints@futuremedicine.com

Antimicrobial resistance & 'Man's best friend': what they give to us we might be giving right back

"Antimicrobial resistance follows antimicrobial use..."

Joseph M Blondeau*,1

First draft submitted: 9 March 2017; Accepted for publication: 15 March 2017; Published online: 12 June 2017

"direct contact is likely the quickest and easiest way by which bacteria are transferred in either direction between humans and animals....." Schwartz et al, Veterinary Dermatology 2017; 28(1):82-e19

Future

CROBIOLOGY

Blondeau et al, ICOHAR, 2019 Utrecht...transmission of *S. pseudintermedius* from family pets (dogs) to oncology patients

The Superbug Challenge

Acronym	Definition	Screening	Bacteria Signific	<u>cance</u>
CRE	Carbapenemase resistant Entero	Carb resistant	Kleb, Pseud, Entero	R to carbapenems
ESBL cephalosporins	Extended spectrum beta-lactamase	R to 3 rd gen cephalosporins*	<i>E. coli, Kleb.</i> Spp. <i>Enterobacteriaceae</i>	R to most
MRSA	methicillin R <i>S. aureus</i>	R to oxacillin PCR <i>– mec</i> A Chromo agar Cefoxitin R	S. aureus	R to all beta-lactams**
VRE	vancomycin R <i>Enterococcus</i>	Van screen plate Chromo	<i>Enterococcus</i> spp.	R to vancomycin PCR-
van genes				
VISA	Vancomycin inter <i>S. aureus</i>	reduced S to Van	S. aureus	reduced S to van
VRSA *cefotaxime, cefpodixime, ce ** penicillins, cephalosporing	Vancomycin R eftriaxone, ceftazidime s, carbapenems, monobactams	resistance to Van Blondeau, JM, 2013, ST 2 nd Edition: North Amer		R to vancomycin Therapy, Companion Animals,

Contributors to resistance

- Overuse
- Non-clinical use
- Under dosing
- Prolonged therapy
- Incorrect therapy
- Ease of use (minimal side effects)
- Patient expectations
 - Vet Med-Owner expectations (?)

- Susceptibility testing underestimates
- Breakpoints ?
 - Laboratory
 - clinical
- Prophylactic use without clear benefits
- Empiric use in noncritically ill patients

Blondeau, multiple publications

- Q. Is their a disconnect between human and veterinary medicine regarding the diagnosis and treatment of infectious diseases:
- **R.** Perhaps
 - Choice of initial empiric antibiotics
 - Duration of therapy
 - Rapid Diagnostics
 - Minutes to hours for organism identification and resistance genes detection
 - WGS not yet there for rapid diagnostics but will get there

Human Medicine...and what about Veterinary Medicine!!!

Editorial

For reprint orders, please contact: reprints@futuremedicine.com

The 24-h clinical microbiology service is essential for patient management

Joseph M Blondeau*, 1,2 & Evgeny A Idelevich³

¹Department of Clinical Microbiology, Royal University Hospital & Saskatchewan Health Authority; Saskatoon, Saskatchewan, Canada

²Departments of Microbiology & Immunology, Pathology & Ophthalmology, University of Saskatchewan, Saskatoon,

Saskatchewan, Canada

³Institute of Medical Microbiology, University Hospital Münster, Münster, Germany

*Author for correspondence: Tel.: +1 306 655 6943; Fax: +1 306 655 6947; joseph.blondeau@saskhealthauthority.ca

"optimal patient care requires access to necessary laboratory testing including clinical microbiology. A rethinking of hours of operation is required to shorten time to accurate result reporting."

Future Microbiol. (2018) 13(15), 1625-1628

Future

MICROBIOLOGY

Veterinary Dermatology

Vet Dermatol 2014; 25: 163-e43

DOI: 10.1111/vde.12118

Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases)

Andrew Hillier*, David H. Lloyd†, J. Scott Weese‡, Joseph M. Blondeau§, Dawn Boothe¶, Edward Breitschwerdt**, Luca Guardabassi††, Mark G. Papich**, Shelley Rankin‡‡, John D. Turnidge§§ and Jane E. Sykes¶¶

infection. Most studies evaluating the efficacy of AMDs indicate that SBF infections are resolved after 3 weeks or more of systemic AMD treatment; rapid improvement over the first 1–2 weeks is typically observed, but resolution of all lesions and prevention of rapid recurrence of disease requires 3–6 weeks of treatment.^{17–22,28} Although there is no significant difference in the likelihood of resolution of MSSP after 3–4 weeks of systemic AMD treatment compared with MRSP infections, it has been reported that MRSP infections took longer to treat compared with MSSP infections.⁶⁰

Journal of Veterinary Internal Medicine

Guideline and Recommendation J Vet Intern Med 2017;31:279–294

Antimicrobial use Guidelines for Treatment of Respiratory Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases

M.R. Lappin, J. Blondeau, D. Boothe, E.B. Breitschwerdt, L. Guardabassi, D.H. Lloyd, M.G. Papich, S.C. Rankin, J.E. Sykes, J. Turnidge, and J.S. Weese

Monitoring Treatment of Bacterial Pneumonia

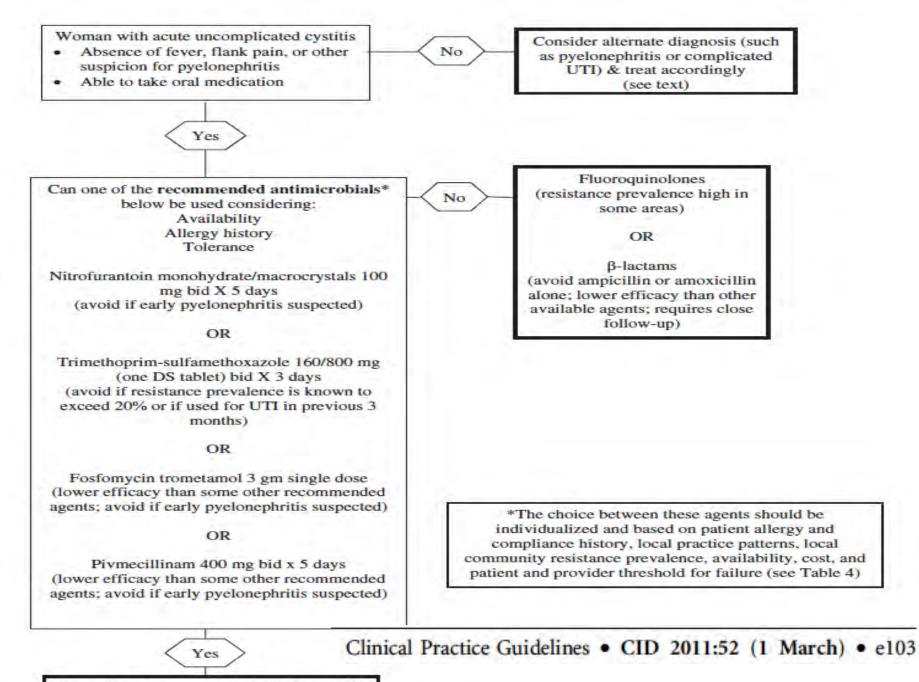
The current recommendation in most veterinary textbooks is to treat bacterial pneumonia for 4–6 weeks, but evidence to support this duration of treatment in either cats or dogs is lacking. Although such lengthy courses of antimicrobial treatment might be necessary for some animals with severe pulmonary involvement or

Research Article

Antimicrobial Use Guidelines for Treatment of Urinary Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases

J. Scott Weese,¹ Joseph M. Blondeau,² Dawn Boothe,³ Edward B. Breitschwerdt,⁴ Luca Guardabassi,⁵ Andrew Hillier,⁶ David H. Lloyd,⁷ Mark G. Papich,⁴ Shelley C. Rankin,⁸ John D. Turnidge,^{9,10} and Jane E. Sykes¹¹

Adequate evidence regarding duration of treatment is lacking, precluding the ability to make a specific recommendation for treatment duration. Typically, uncomplicated UTIs are treated for 7–14 days. However, the Working Group acknowledges the likelihood that a shorter treatment time (\leq 7 days) may be effective. Accordingly, in the absence of objective data, 7 days of appropriate antimicrobial treatment is reasonable. Clinical trials supporting shorter durations for treatment of UTIs in dogs and cats are strongly encouraged. Clinical Practice Guidelines • CID 2011:52 (1 March) • e103


International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases

Kalpana Gupta,¹ Thomas M. Hooton,² Kurt G. Naber,⁹ Björn Wullt,¹⁰ Richard Colgan,³ Loren G. Miller,⁴ Gregory J. Moran,⁵ Lindsay E. Nicolle,⁸ Raul Raz,¹¹ Anthony J. Schaeffer,⁶ and David E. Soper⁷

Table 1.	Strength of	Recommendations	and	Quality	of Evidence

Category/grade	Definition
Strength of recommendation	
A	Good evidence to support a recommendation for or against use
В	Moderate evidence to support a recommendation for or against use
C	Poor evidence to support a recommendation
Quality of evidence	
1	Evidence from ≥1 properly randomized, controlled trial
0	Evidence from ≥1 well-designed clinical trial, without randomization; from cohort or case- controlled analytic studies (preferably from >1 center); from multiple time-series; or from dramatic results from uncontrolled experiments
Ш	Evidence from opinions of respected authorities, based on clinical experience, descriptive studies, or reports of expert committees

NOTE. Data are from the periodic health examination. Canadian Task Force on the Periodic Health Examination. Health Canada, 1979. Adapted and Reproduced with the permission of the Minister of Public Works and Government Services Canada, 2009 [32].

Prescribe a recommended antimicrobial

Mean percentage (range) Estimated Estimated clinical microbiological efficacyab efficacyb Drug (dosage) Common side effects References Nitrofurantoin monohydrate/ 93 (84-95) 88 (86-92) Nausea, headache [36, 37, 39] macrocrystals (100 mg twice daily for 5-7 days) Trimethoprim-sulfamethoxazole 93 (90-100) 94 (91-100) Rash, urticaria, nausea, [36, 37] (160/800 mg twice daily for 3 days) vomiting, hematologic Fosfomycin trometamol (3 g 91 80 (78-83) Diarrhea, nausea, headache [39, 40] single-dose sachet) Pivmecillinam (400 mg twice 73 (55-82) 79 (74-84) Nausea, vomiting, diarrhea [29, 43] daily for 3-7 days) Nausea/vomiting, [35, 43, 44, 46-52] Fluoroquinolones (dose varies 90 (85-98) 91 (81-98) by agent; 3-day regimen)^c diarrhea, headache, drowsiness, insomnia

Table 4. Treatment Regimens and Expected Early Efficacy Rates for Acute Uncomplicated Cystitis

89 (79-98)

β-lactams (dose varies by

agent; 3-5 day regimen)^d

^a Efficacy rates refer to cure rates on the visit closest to a 5–9-day period following treatment, and are averages or ranges calculated from clinical trials discussed in the text.

82 (74-98)

Diarrhea, nausea,

vomiting, rash, urticaria

^b Estimated clinical efficacy and microbiological efficacy rates should not necessarily be compared across agents, because study design, efficacy definition, therapy duration, and other factors are heterogeneous. Studies represent clinical trials published since publication of the 1999 Infectious Disease Society of America guidelines so as to represent efficacy rates that account for contemporary prevalence of antibiotic-resistant uropathogens. Note that efficacy rates may vary geographically depending on local patterns of antimicrobial resistance among uropathogens. See text for details.

^c Data on fluoroquinolones are compiled from regimens of ofloxacin, norfloxacin, and ciprofloxacin from the referenced clinical trials and not other fluoroquinolones that are no longer commercially available. See text for details.

^d Data on βlactams data cited are derived from clinical trials examining second and third generation cephalosporins and amoxicillin-clavulanate. See text for details.

[38, 52, 54]

Recherche

CMAJ • FEB. 17, 2004; 170 (4)

© 2004 Canadian Medical Association or its licensors

Optimal duration of antibiotic therapy for uncomplicated urinary tract infection in older women: a double-blind randomized controlled trial

Thomas Vogel, René Verreault, Marie Gourdeau, Michèle Morin, Lise Grenier-Gosselin, Louis Rochette

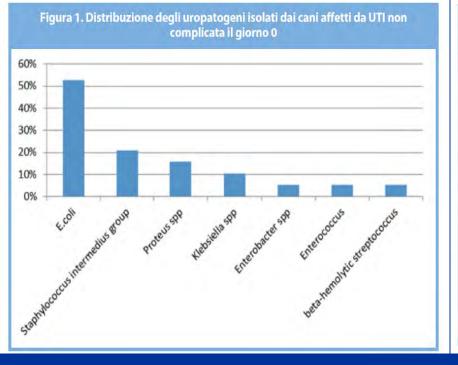
- **Results:** The proportion of patients with bacterial eradication at 2 days after treatment was 98% (91/93) in the 3-day group and 93% (83/89) in the 7-day group (p = 0.16). The frequency of adverse events, including drowsiness, headache, nausea or vomiting, and loss of appetite, was significantly lower in the 3-day group.
- Interpretation: These results suggest that a 3-day course of antibiotic therapy is not inferior to a 7-day course for treatment of uncomplicated symptomatic UTI in older women, and that the shorter course is better tolerated.

Table 2: Therapeutic efficacy at 2 days and 6 weeks after completion of treatment

	No. (and %		
Measure of efficacy	3-day group	7-day group	p value
2 days after treatment		0.00	
Bacterial eradication	91/93 (98)	83/89 (93)	0.16
Symptom improvement*			
Nocturia (≥ 1/night)	64/73 (88)	57/69 (83)	0.86
Urgency	35/48 (73)	43/49 (88)	0.05
Frequency	24/33 (73)	27/35 (77)	0.44
Burning on micturation	31/31 (100)	33/34 (97)	0.99
Suprapubic pain	12/14 (86)	21/25 (84)	0.71
6 weeks after treatment			
Reinfection	13/93 (14)	16/89 (18)	0.54
Relapse	14/93 (15)	12/89 (13)	0.83

*Among subjects who presented the symptom at baseline (time of entry into the study) and who also provided information on symptom relief at follow-up.

469


UROLOGIA DEL CANE

Valutazione della velocità di guarigione clinica e batteriologica della pradofloxacina nei cani affetti da **infezioni delle vie urinarie non complicate**

SUMMA animali da compagnia N° 5 Giugno 2017

Andrea Vercelli*, José M. Mottet**

*Ambulatorio Veterinario Associato, Corso Traiano 99/d, Torino **Bayer Animal Health GmbH, Monheim (Germany)

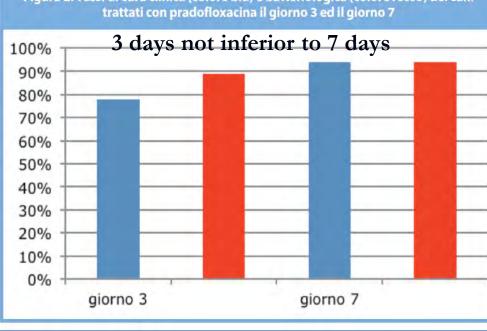


Figura 2. Tassi di cura clinica (colore blu) e batteriologica (colore rosso) dei cani trattati con pradofloxacina il giorno 3 ed il giorno 7 IDSA/ATS Guidelines for CAP in Adults • CID 2007:44 (Suppl 2) • S27

SUPPLEMENT ARTICLE

Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults

Lionel A. Mandell,^{1,a} Richard G. Wunderink,^{2,a} Antonio Anzueto,^{3,4} John G. Bartlett,⁷ G. Douglas Campbell,⁸ Nathan C. Dean,^{9,10} Scott F. Dowell,¹¹ Thomas M. File, Jr.^{12,13} Daniel M. Musher,^{5,6} Michael S. Niederman,^{14,15} Antonio Torres,¹⁶ and Cynthia G. Whitney¹¹

Table 1. Levels of evidence.

Evidence level	Definition	
Level I (high)	Evidence from well-conducted, randomized controlled trials.	
Level II (moderate)	Evidence from well-designed, controlled trials without randomization (including cohort, patient series, and case-control studies). Level II studies also include any large case series in which systematic analysis of disease patterns and/or mi- crobial etiology was conducted, as well as reports of data on new therapies that were not collected in a randomized fashion.	
Level III (low)	Evidence from case studies and expert opinion. In some instances, therapy recommendations come from antibiotic susceptibility data without clinical observations.	

Table 5. Clinical indications for more extensive diagnostic testing.

Indication	Blood culture	Sputum culture	Legionella UAT	Pneumococcal UAT	Other
Intensive care unit admission	х	Х	Х	Х	Xa
Failure of outpatient antibiotic therapy		Х	Х	х	
Cavitary infiltrates	Х	Х			Xp
Leukopenia	Х			х	
Active alcohol abuse	Х	Х	Х	х	
Chronic severe liver disease	Х			х	
Severe obstructive/structural lung disease		Х			
Asplenia (anatomic or functional)	х			х	
Recent travel (within past 2 weeks)			X		Xc
Positive Legionella UAT result		Xd	NA		
Positive pneumococcal UAT result	Х	Х		NA	
Pleural effusion	х	х	Х	X	Xe

NOTE. NA, not applicable; UAT, urinary antigen test.

^a Endotracheal aspirate if intubated, possibly bronchoscopy or nonbronchoscopic bronchoalveolar lavage.

^b Fungal and tuberculosis cultures.

^c See table 8 for details.

^d Special media for *Legionella*.

Thoracentesis and pleural fluid cultures.

Table 6. Most common etiologies of community-acquired pneumonia.

Patient type	Etiology
Outpatient	Streptococcus pneumoniae
	Mycoplasma pneumoniae
	Haemophilus influenzae
	Chlamydophila pneumoniae
	Respiratory viruses ^a
Inpatient (non-ICU)	S. pneumoniae
	M. pneumoniae
	C. pneumoniae
	H. influenzae
	Legionella species
	Aspiration
	Respiratory viruses ^a
Inpatient (ICU)	S. pneumoniae
	Staphylococcus aureus
	Legionella species
	Gram-negative bacilli
	H. influenzae

NOTE. Based on collective data from recent studies [171]. ICU, intensive care unit.

^a Influenza A and B, adenovirus, respiratory syncytial virus, and parainfluenza.

Table 7. Recommended empirical antibiotics for communityacquired pneumonia.

Outpatient treatment

 Previously healthy and no use of antimicrobials within the previous 3 months

A macrolide (strong recommendation; level I evidence)

- Doxycyline (weak recommendation; level III evidence)
- Presence of comorbidities such as chronic heart, lung, liver or renal disease; diabetes mellitus; alcoholism; malignancies; asplenia; immunosuppressing conditions or use of immunosuppressing drugs; or use of antimicrobials within the previous 3 months (in which case an alternative from a different class should be selected)
 - A respiratory fluoroquinolone (moxifloxacin, gemifloxacin, or levofloxacin [750 mg]) (strong recommendation; level I evidence)
 - A β-lactam **plus** a macrolide (strong recommendation; level I evidence)
- In regions with a high rate (>25%) of infection with high-level (MIC ≥16 µg/mL) macrolide-resistant *Streptococcus pneumoniae*, consider use of alternative agents listed above in (2) for patients without comorbidities (moderate recommendation; level III evidence)

Inpatients, non-ICU treatment

- A respiratory fluoroquinolone (strong recommendation; level I evidence)
- A β-lactam **plus** a macrolide (strong recommendation; level I evidence)

Inpatients, ICU treatment

A β-lactam (cefotaxime, ceftriaxone, or ampicillin-sulbactam) **plus** either azithromycin (level II evidence) **or** a respiratory fluoroquinolone (level I evidence) (strong recommendation) (for penicillin-allergic patients, a respiratory fluoroquinolone and aztreonam are recommended)

Special concerns

If Pseudomonas is a consideration

An antipneumococcal, antipseudomonal β-lactam (piperacillintazobactam, cefepime, imipenem, or meropenem) plus either ciprofloxacin or levofloxacin (750 mg)

or

The above β -lactam plus an aminoglycoside and azithromycin or

The above β-lactam plus an aminoglycoside and an antipneumococcal fluoroquinolone (for penicillin-allergic patients, substitute aztreonam for above β-lactam)

- (moderate recommendation; level III evidence)
- If CA-MRSA is a consideration, add vancomycin or linezolid (moderate recommendation; level III evidence)

NOTE. CA-MRSA, community-acquired methicillin-resistant Staphylococcus aureus; ICU, intensive care unit.

Table 8. Epidemiologic conditions and/or risk factors related to specific pathogens in community-acquired pneumonia.

Condition	Commonly encountered pathogen(s)	
Alcoholism	Streptococcus pneumoniae, oral anaerobes, Klebsiella pneumoniae, Acinetobacter species, Mycobacterium tuberculosis	
COPD and/or smoking	Haemophilus influenzae, Pseudomonas aeruginosa, Legionella species, S. pneumoniae, Moraxella carar- rhalis, Chlamydophila pneumoniae	
Aspiration	Gram-negative enteric pathogens, oral anaerobes	
Lung abscess	CA-MRSA, oral anaerobes, endemic fungal pneumonia, <i>M. tuberculosis</i> , atypical mycobacteria	
Exposure to bat or bird droppings	Histoplasma capsulatum	
Exposure to birds	Chlamydophila psittaci (if poultry: avian influenza)	
Exposure to rabbits	Francisella tularensis	
Exposure to farm animals or parturient cats	Coxiella burnetti (Q fever)	
HIV infection (early)	S. pneumoniae, H. influenzae, M. tuberculosis	
HIV infection (late)	The pathogens listed for early infection plus <i>Pneumocys-</i> <i>tis jirovecii</i> , <i>Cryptococcus</i> , <i>Histoplasma</i> , <i>Aspergillus</i> , atypical mycobacteria (especially <i>Mycobacterium</i> <i>kansasii</i>), <i>P. aeruginosa</i> , <i>H. influenzae</i>	
Hotel or cruise ship stay in previous 2 weeks	Legionella species	
Travel to or residence in southwestern United States	Coccidioides species, Hantavirus	
Travel to or residence in Southeast and East Asia	Burkholderia pseudomallei, avian influenza, SARS	
Influenza active in community	Influenza, S. pneumoniae, Staphylococcus aureus, H. influenzae	
Cough >2 weeks with whoop or posttussive vomiting	Bordetella pertussis	
Structural lung disease (e.g., bronchiectasis)	Pseudomonas aeruginosa, Burkholderia cepacia, S. aureus	
Injection drug use	S. aureus, anaerobes, M. tuberculosis, S. pneumoniae	
Endobronchial obstruction	Anaerobes, S. pneumoniae, H. influenzae, S. aureus	
In context of bioterrorism	Bacillus anthracis (anthrax), Yersinia pestis (plague), Francisella tularensis (tularemia)	

NOTE. CA-MRSA, community-acquired methicillin-resistant Staphylococcus aureus; COPD, chronic obstructive pulmonary disease; SARS, severe acute respiratory syndrome.

Table 9. Recommended antimicrobial therapy for specific pathogens.

Organism	Preferred antimicrobial(s)	Alternative antimicrobial(s)
Streptococcus pneumoniae		
Penicillin nonresistant; MIC <2 µg/mL	Penicillin G, amoxicillin	Macrolide, cephalosporins (oral [cefpodox- ime, cefprozil, cefuroxime, cefdinir, cefdi- toren] or parenteral [cefuroxime, ceftriax- one, cefotaxime]), clindamycin, doxycyline, respiratory fluoroquinolone ^a
Penicillin resistant; MIC ≥2 µg/mL	Agents chosen on the basis of susceptibil- ity, including cefotaxime, ceftriaxone, fluoroquinolone	Vancomycin, linezolid, high-dose amoxicillin (3 g/day with penicillin MIC ≤4 μg/mL)
Haemophilus influenzae		
Non–β-lactamase producing	Amoxicillin	Fluoroquinolone, doxycycline, azithromycin, clarithromycin ^b
β-Lactamase producing	Second- or third-generation cephalosporin, amoxicillin-clavulanate	Fluoroquinolone, doxycycline, azithromycin, clarithromycin ^b
Mycoplasma pneumoniae/Chlamydophila pneumoniae	Macrolide, a tetracycline	Fluoroquinolone
Legionella species	Fluoroquinolone, azithromycin	Doxycyline
Chlamydophila psittaci	A tetracycline	Macrolide
Coxiella burnetii	A tetracycline	Macrolide
Francisella tularensis	Doxycycline	Gentamicin, streptomycin
Yersinisa pestis	Streptomycin, gentamicin	Doxycyline, fluoroquinolone
Bacillus anthracis (inhalation)	Ciprofloxacin, levofloxacin, doxycycline (usually with second agent)	Other fluoroquinolones; β-lactam, if susceptible; rifampin; clindamycin; chloramphenicol
Enterobacteriaceae	Third-generation cephalosporin, carbape- nem ^c (drug of choice if extended-spec- trum β-lactamase producer)	β-Lactam/β-lactamase inhibitor, ^d fluoroquinolone
Pseudomonas aeruginosa	Antipseudomonal β-lactam ^e plus (ciproflox- acin or levofloxacin ^f or aminoglycoside)	Aminoglycoside plus (ciprofloxacin or levofloxacin ^f)
Burkholderia pseudomallei	Carbapenem, ceftazadime	Fluoroquinolone, TMP-SMX
Acinetobacter species	Carbapenem	Cephalosporin-aminoglycoside, ampicillin- sulbactam, colistin
Staphylococcus aureus		
Methicillin susceptible	Antistaphylococcal penicillin ⁹	Cefazolin, clindamycin
Methicillin resistant	Vancomycin or linezolid	TMP-SMX
Bordetella pertussis	Macrolide	TMP-SMX
Anaerobe (aspiration)	β-Lactam/β-lactamase inhibitor, ^d clindamycin	Carbapenem
Influenza virus	Oseltamivir or zanamivir	
Mycobacterium tuberculosis	Isoniazid plus rifampin plus ethambutol plus pyrazinamide	Refer to [243] for specific recommendations
Coccidioides species	For uncomplicated infection in a normal host, no therapy generally recom- mended; for therapy, itraconazole, fluconazole	Amphotericin B
Histoplasmosis	Itraconazole	Amphotericin B
Blastomycosis	Itraconazole	Amphotericin B

NOTE. Choices should be modified on the basis of susceptibility test results and advice from local specialists. Refer to local references for appropriate doses. ATS, American Thoracic Society; CDC, Centers for Disease Control and Prevention; IDSA, Infectious Diseases Society of America; TMP-SMX, trimethoprim-sulfamethoxazole.

^a Levofloxacin, moxifloxacin, gemifloxacin (not a first-line choice for penicillin susceptible strains); ciprofloxacin is appropriate for *Legionella* and most gram-negative bacilli (including *H. influenza*).

^b Azithromycin is more active in vitro than clarithromycin for *H. influenza*.

^c Imipenem-cilastatin, meropenem, ertapenem.

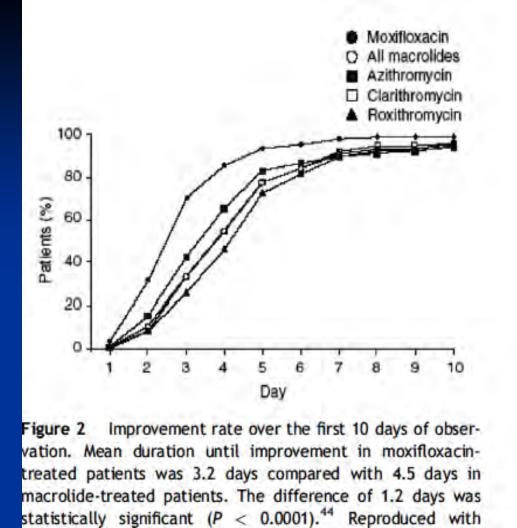
^d Piperacillin-tazobactam for gram-negative bacilli, ticarcillin-clavulanate, ampicillin-sulbactam or amoxicillin-clavulanate.

^e Ticarcillin, piperacillin, ceftazidime, cefepime, aztreonam, imipenem, meropenem.

f 750 mg daily.

⁹ Nafcillin, oxacillin flucloxacillin.

Respiratory Medicine (2010) 104, 1396-1403


REVIEW

Short-course fluoroquinolone therapy in exacerbations of chronic bronchitis and COPD

Antonio Anzueto^{a,*}, Marc Miravitlles^b

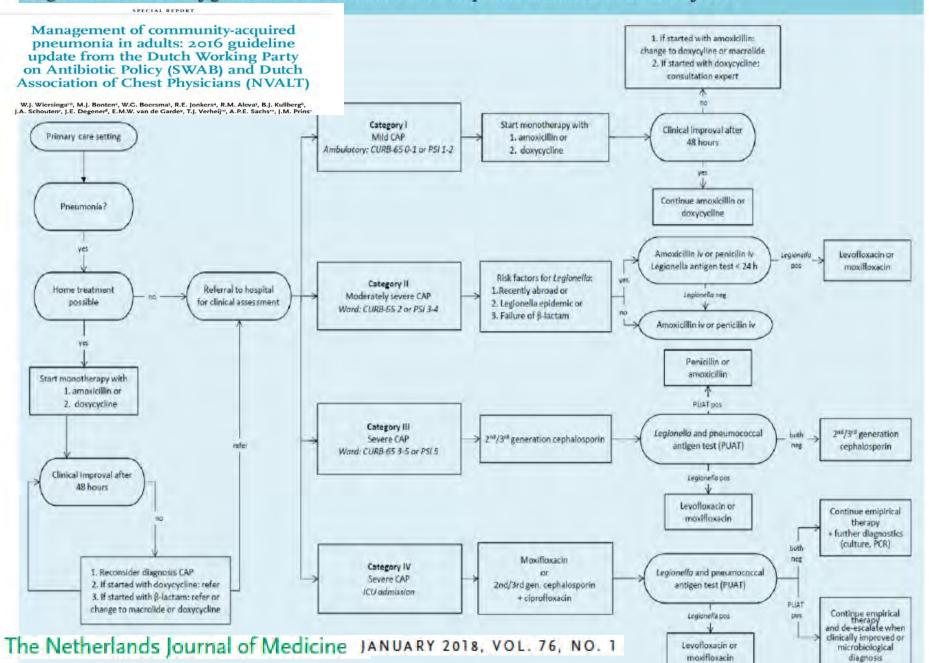
^a Department of Medicine, Pulmonary Disease, 111E, 7400 Merton Minter Boulevard, The University of Texas Health Science Center at San Antonio, South Texas Veterans Health Care System, San Antonio, TX 78229, USA ^b Fudació Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Catalonia, Spain

Received 28 October 2009; accepted 26 May 2010

greater clinical success. Evidence suggests that short-course antimicrobial therapy can be as effective as standard duration therapy (>7 days) in treating exacerbations. Randomized trials have shown that clinical and bacteriological success rates are comparable with both 5-day and standard antibiotic courses. Furthermore, 5-day fluoroquinolone therapy is associated with faster recovery, fewer relapses, prolonged duration between episodes, and less hospitalization when compared with standard therapy. Both moxifloxacin and gemifloxacin have received FDA-approval for 5-day therapy in AECB.

LUNG ALERT

Short course antibiotics in community acquired pneumonia


▲ El Moussaoui R, de Borgie CA, van den Braek P, et al. Effectiveness of discontinuing antibiotic treatment after three days versus eight days in mild to moderate-severe community acquired pneumonia: randomised, double blind study. BMU 2006;332;1355-8

his Dutch study, undertaken between November 2000 and July 2003, took adults with a pneumonia severity index score of ≤ 110 and randomly assigned those who substantially improved after 72 hours of intravenous amoxicillin to either 750 mg oral amoxicillin (n = 63) or placebo (n = 56) three times daily for 5 days thereafter.

Clinical, bacteriological and radiological outcomes were assessed. The clinical success rate at day 10 (per protocol analysis) was 93% in both groups (50/54 in the 3 day treatment group and 56/60 in the 8 day treatment group: difference 0.1% (95% CI -9 to 10)). At day 28 clinical success rates were 90% (47/52) in the 3 day treatment group and 88% (49/56) in the 8 day treatment group (difference 2% (95% CI -9 to 15)). There was therefore little difference between the two groups.

This study suggests that a short course of antibiotic therapy is not inferior to a longer course in patients with mild to moderate-severe uncomplicated community acquired pneumonia who show clinical improvement after 3 days of intravenous antibiotics.

Figure 1. Flow chart of guideline recommendations on empirical antibiotic treatment of CAP

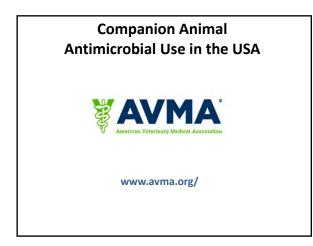
Are all antibiotics the same...

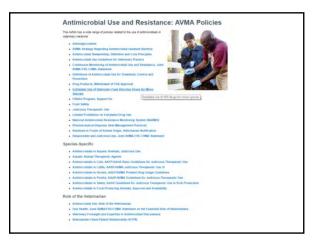
NO

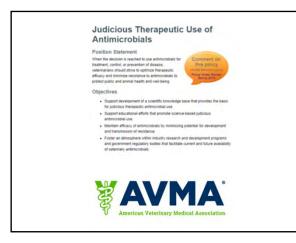
- Bactericidal vs bacteriostatic
- Distribution
- Serum versus tissue
- Rate of kill
- Protein binding >60%

- Could choice of antibiotic influence duration of therapy?
 - Faster kill...shorter durations of therapy?
 - Some differences captured in therapy guidelines
 - ISCAID...using best evidence available

Blondeau 2018


The WSAVA Therapeutics Guideline Group The mission of the TGG is to ensure best practices for the selection and use of medicines including their quality, availability and responsible use in companion animals while engaging participation of stakeholders and the WSAVA Global Community under the concept of One Health


https://www.wsava.org/Committees/Therapeutics-Guideline-Group


WSAVA Position Statement on Equitable Access to Veterinary Therapeutics for Veterinarians Globally

"Ready access by healthcare professionals to pharmaceuticals (e.g., medicines, anesthetics/analgesics, etc), biologicals (e.g., vaccines, etc), parasiticides, and antiseptics is one of the key pillars of appropriate patient care, whether in human or veterinary medicine. Inequities in availability and access exist between various regions of the world for a variety of reasons. We call upon key stakeholders (regulatory authorities, manufacturers, and healthcare professionals) to seek solutions that would broaden access while maintaining the sanctity of the veterinaryclient-patient+/- pharmacist relationship, where warranted."

Feline Lower Urinary Tract Signs

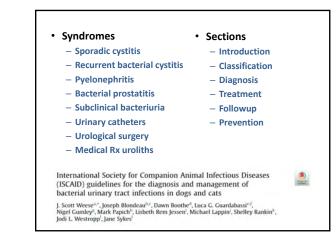
- #1 cause of signs is sterile interstitial cystitis (75%)
- Recent clinic survey in the USA
 - 19,123 cats with signs were administered antibiotics
 - Only 1,299 cats were cultured
 - 372 cats were culture positive
 - 927 cats were culture negative

Judicious?

Feline Upper Respiratory Infections

- Over 95% of these kittens have been exposed to feline herpesvirus 1
- Many veterinarians administer antibiotics

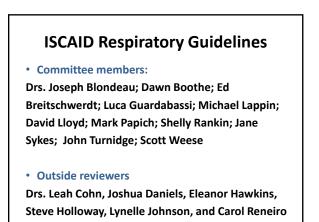
Judicious?


Research Article

Antimicrobial Use Guidelines for Treatment of Urinary Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases

J. Scott Weese,¹ Joseph M. Blondeau,² Dawn Boothe,³ Edward B. Breitschwerdt,⁴ Luca Guardabassi,² Andrew Hillier,⁶ David H. Lloyd,⁷ Mark G. Papich,⁴ Shelley C. Rankin,⁸ John D. Turrilog,^{8,16} and Jane E. Sykse¹¹

> Veterinary Medicine International Volume 2011, Article ID 263768, 9 pages



Drug (WHO category)*	Dear	Comments
Amikarin (CIA)	Dog:: 15-30 mg/kg W/M/SC every 24h Cata: 10-14 mg/kg W/M/SC every 24h	Not recommended for estaine use but may be useful for treatment of multialrua resistand organisms. Potentially nephrotosic, Annid in annuals with reduced kidney functions. Other factors (e.g., how pH) can affect anneophysicoside activity, which should be considered. Care should be taken when using it in combination with nephroaestic drugs (e.g. RNMr).
Amonicillin (CIA)	11-15 ong kg PO overy 8-12 h	Conditional line options for ignorable Externial cystilis, Exercised to usine performinately in active from it incremal kilology functions in present. Although support of the environment of the strength strength of the strength activity of monochilding. Respective for supported billing levels in a present distribution index the strength of the strength strength of the strength activity of submitted billing and the strength strength of the strength strength of performance in the strength strength of the strength st
Ammonille():Londano acid (CIA)	12.5-25 mg/kg PO every 12 h Note: done of stal product (annoxicilitis + clandanic acid)	Nor evaluation of the second
Arryan Allien (CIA)		Not recommended became of pase or al bioavailability. Annate illin to preferred. Angentillin is used in unceptibility texts to predict activity of amonicillin.
Gefamilin (HIA)	22 mg/kg IV ~ 30 mm prior to the processive.	Main use is for peri-procedure prophylasis as a single pre-procedure dose. Celessin, at a broadquint of < 10 µg/ml case also be used to pryslict activity of read cerebalmenting.
Gelovenin (HP-GA)	firmg/kg single SC injection. Can be repeated once after 7-14 days,	Duration and spectrum are longer than is typically needed, so on recommended for routine see. Should only be used in situations where outle treatment is not possible. <i>Environ</i> and an are restant. Pharma-minimetic data are available to support a dimension of 164,day in degs and 21 days in cass.
Orfpedeximir preamil (HP-GA)	Dag: 5-10mg/kg every 24h PO Cats: no done established.	More active than expluitnin or celalennil against Emerohacteriaceae when using the breakpoint of 2 pagini. For interpretation. Enterpretation, are resistant.
Ceitiadar (HP-CIA)	Diago: 2 mag/kg every 12-24/h SC Caro: ner ulener entablishent.	Approved for treatment of bacterial cystein in dogs to some regions. Enterweature spip are resistant.

Guidelines rating

A draft document was developed over several years and an attempt to reach 100% agreement on each recommendation

100% agreement was not always reached and so the committee employed a modified Delhi rating system on the final draft.

Each guideline committee members and the outside reviewers were asked to independently select whether they agreed, were neutral, or disagreed with each recommendation."

For those recommendations that received any "disagree" votes from the 17 total reviewers (Working Group and outside reviewers), the percentage distribution of all reviewers and appropriate comments are presented.

Bacterial Respiratory Infections

- Feline upper respiratory tract disease Acute and chronic
- **Canine infectious respiratory disease complex**
- **Bronchitis** •
- Pneumonia
- Pvothorax

Overall 40 recommendations

14 recommendations had 1 -3 disagree votes with comments

Bacterial Respiratory Infections

Summary of Recommendations

Diagnosis of the syndrome

- · Emphasis on documenting a bacterial (and less commonly protozoal) infection exists
- Treatment of the syndrome

- Monitoring treatment

Table 1. First line drugs Table 2. All drugs and doses with comment

Table 1. First line anti-microbial options for treatment of bacterial respiratory infections in dogs and cats

Infection Type Acute bacterial upper respiratory infection (URI) in cats Chronic bacterial URI in cats

Canine infectious respiratory disease complex

(bacterial component) Bacterial bronchitis (dogs or cats)

nonia in animals with extensive contact with other animals that have no systemic manifestations of disease (ie, fever, lethargy, dehydration) "neumonia with or without clinical evidence of sepsis^e

Pyothorax (dogs or cats)h

First-Line Drug Options Doxycycline^a or amoxicillin p er os (PO)

Doxycycline or amoxicillin PO Base the choice on C&S^b if available Doxycycline^a or amoxicillin-clavulanate PO

Doxycycline* PO

Doxysycline⁸ PO Base changes if needed on clinical responses and C&S if available Doxycycline⁸ PO Base changes if needed on clinical responses and C&S if available Parenteral administration of a fluoroquinolone⁴ and a penicillin or clindamycin⁶ initially Base oral drug choices to follow on clinical responses and C&S results if available Parenteral administration of a fluoroquinolone⁴ and a penicillin or clindamycin⁶ initially combined with therapeutic lawage initially

therapeutic lavage initially Base oral drug choices to follow on clinical respon and C&S results if available

Feline Upper Respiratory Disease "Syndrome consisting of clinical signs that may include serous to mucopurulent ocular and nasal discharges, epistaxis, sneezing, and conjunctivitis. – Acute (≤ 10 days) - Chronic (> 10 days) The term "upper respiratory infection (URI)" is reserved for cats with clinical signs of URTD that are directly associated with one or more of the known pathogenic viral, bacterial, or fungal organisms.

ISCAID Recommendation

"The Working Group recommends that antimicrobial therapy be considered within the 10-day observation period only if fever, lethargy, or anorexia are present concurrently with mucopurulent nasal discharge"

ISCAID Recommendation

"The Working Group recommends empirical administration of doxycycline (Table 1 and Table 2) for 7 – 10 days to cats with suspected acute bacterial URI as the first line antimicrobial option"

"Of the 17 reviewers, 16 (94.1%) agreed with this Working Group recommendation and one disagreed because there is no breakpoint data for this antimicrobial for B. bronchiseptica or other bacteria in cats and there are no pharmacokinetics, controlled clinical trials, susceptibility data, or pharmacodynamic data on which to base the recommendation"

Duration of therapy?

Bacterial pneumonia in dogs and cats – Textbook recommendations for 4-6 weeks of treatment

Committee discussion/recommendation

"The consensus opinion of the Working Group that shorter courses of appropriate treatment, such as those used to treat pneumonia in humans, might be effective in some situations. In the face of insufficient data supporting a shorter course of treatment, the Working Group recommends re-evaluation of animals with pneumonia no later than 10-14 days after starting treatment. At that point, decisions to extend treatment should be based on clinical, hematological, and radiographic findings. Additional studies evaluating durations of treatment that are shorter than 4-6 weeks are required"

Antimicrobial Use Guidelines

• Veterinary issues

- Generally underpowered studies
- Regional trends from susceptibility patterns not easily accessible
- Tools to measure impact of guidelines development generally lacking
- In USA, lack of legislative recommendation for use of specific guidelines

SENSITIVE PATHOGEN DETECTION AND RAPID AST IN THE ONE HEALTH FUTURE

Alex van Belkum ICOHAR, 18 April, Utrecht 30 minutes

PIONEERING DIAGNOSTICS

ANTIBIOTICS AND AMR ARE EVERYWHERE!

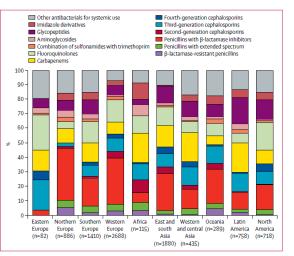


Figure 1: Proportion of prescribed antibiotics for systemic use for health-care-associated infections among adult inpatients, 2015 (n=9261) East and south dati includes couth east and southeast Acia

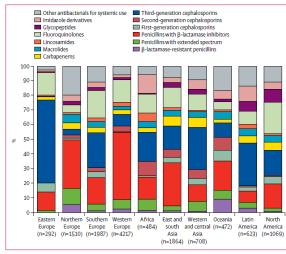
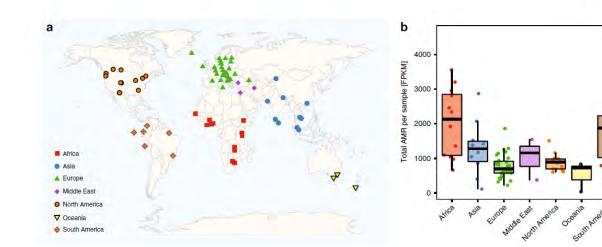


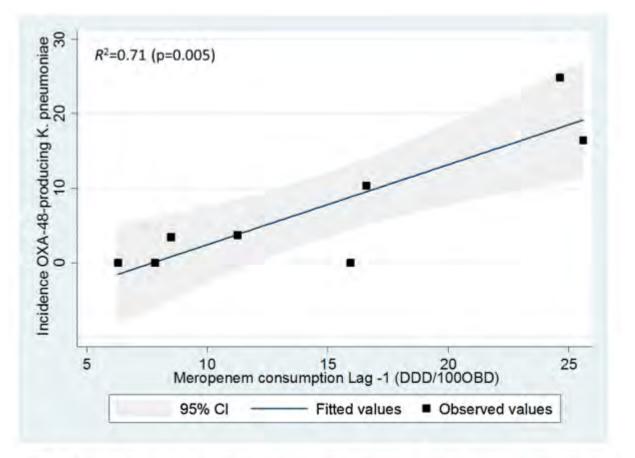
Figure 2: Proportion of prescribed antibiotics for systemic use for community-acquired infections among adult inpatients, 2015 (n=13 226)

ARTICLE


East and south Asia includes south, east, and southeast Asia.

Ann Versporten et al

Hendriksen et al., 2019

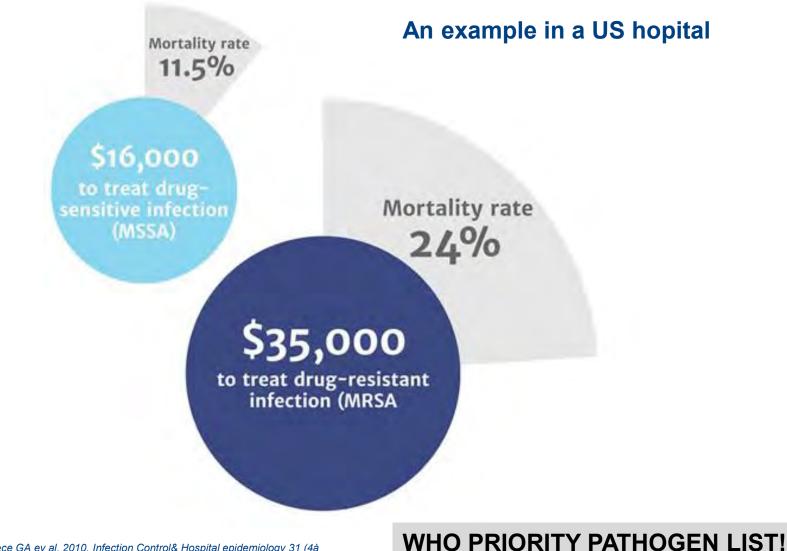

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08853-3

USE OF ANTIBIOTICS DRIVES RESISTANCE UP

One example out of many: Meropenem at the hospital

Fig. 1. Cross-correlation between meropenem consumption lag -1 (the preceding year) and the incidence rate of OXA-48-producing *Klebsiella pneumoniae* in a West London renal unit from 2008–2009 to 2013–2014.

TRANSMISSION ROUTES ARE OMNIPRESENT: CAN WE TRACE THEM ALL?



Stephan Harbarth¹, Hanan H. Balikh², Herman Goossens³, Vincent Jariler⁴, Jan Kluytmans³, Ramanan Laxminarayan⁶, Mirko Saam⁷, Alex Van Belkum⁸, Didier Pittet^{1*} and for the World Healthcare-Associated Infections Resistance Forum participants

en Access ٩


A RESISTANT INFECTION IS MORE LIKELY TO BE LETHAL AND CERTAINLY MORE COSTLY

Source : Filece GA ey al. 2010. Infection Control& Hospital epidemiology 31 (4à

FROM BROAD SPECTRUM EMPIRIC THERAPY TO

WHO ASSURED CRITERIA!

IS IT BACTERIAL OR VIRAL?

Objective

• Provide information within the span of a medical visit, that can help decide on antibiotic or antiviral therapy. Or nothing at all!

Rapid test (lateral flow):

• Confirm the bacterial or viral etiology of infection

Host response biomarkers (CRP, PCT)

 Help distinguish patients with bacterial versus viral infection or identify those without infection

Rapid multiplex PCR tests direct on specimen:

• Identify causative organisms (bacteria, viruses, fungi, parasites; syndromic approach).

MOLECULAR AMR DIAGNOSTICS

FILMARRAY® RESPIRATORY (RP) PANELS

1 Test. 20 Respiratory Pathogens. All in about an hour.

Viruses

- Adenovirus
- Coronavirus HKU1
- Coronavirus NL63
- Coronavirus 229E
- Coronavirus OC43
- Human Metapneumovirus

- Human Rhinovirus/ Enterovirus
- Influenza A
- Influenza A/H1
- Influenza A/H1-2009
- Influenza A/H3 .

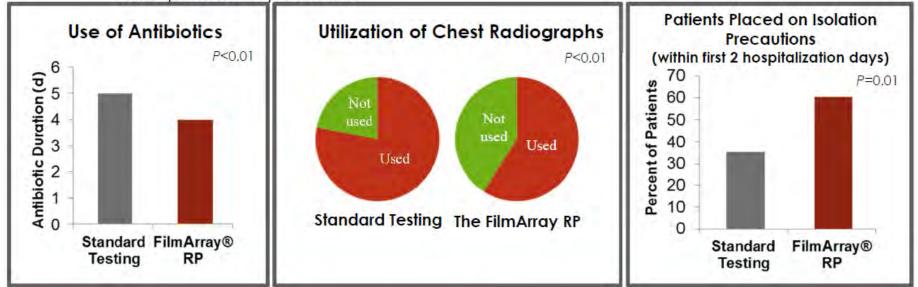
- Influenza B
- Parainfluenza 1
- Parainfluenza 2
- Parainfluenza 3
- Parainfluenza 4
- Respiratory Syncytial Virus

Bacteria

- Bordetella pertussis
- Chlamydophila pneumoniae
- Mycoplasma pneumoniae

RP2 (US): Improved detection of 14 targets Includes B. parapertussis

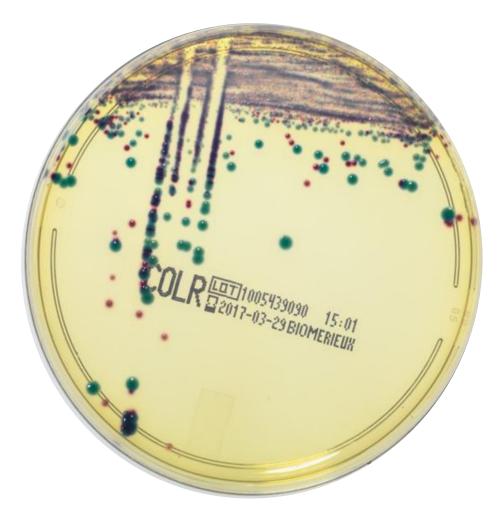
RP2 (OUS) and RP2Plus (US): Improved detection of 14 targets Includes *B. parapertussis* and MERS CoV



IMPACT OF THE FILMARRAY® RESPIRATORY PANEL (RP) ON HEALTHCARE RESOURCE UTILIZATION FOR PEDIATRIC INPATIENTS

BIOMÉRIEU

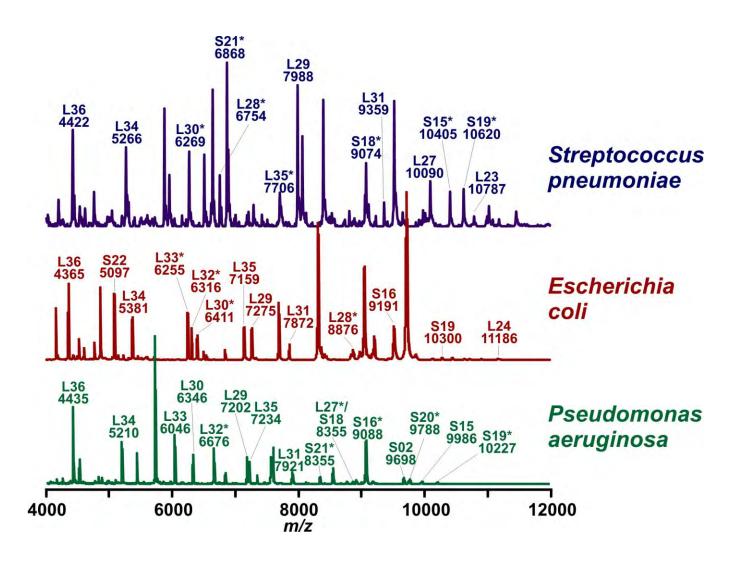
- A single-center, retrospective US cohort study
- 4779 pediatric patients.

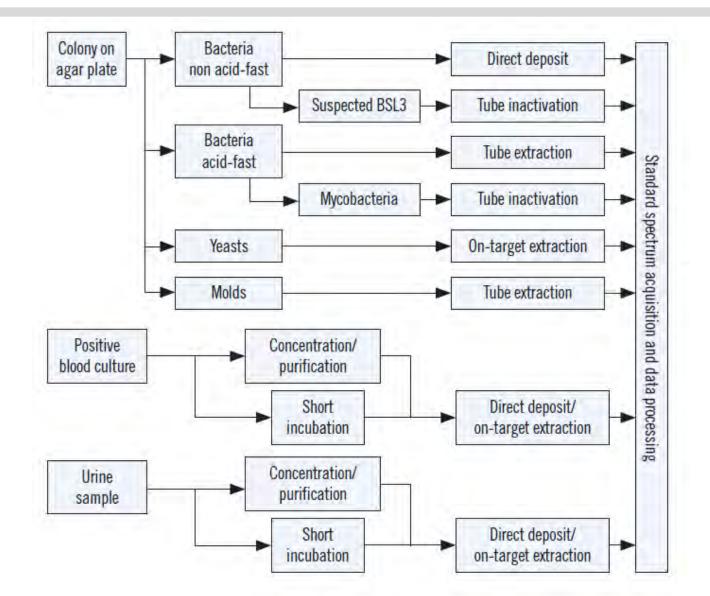


Use of the FilmArray RP was associated with:

- Decreased use of antibiotics (4 vs 5 days) and chest radiographs (59% vs 78%)
- Increased use of isolation measures within first 2 hospitalization days (60.3% vs 35.3%)
- Decreased turnaround time (order entry to results being viewed by providers) from 2-5 days to approximately 3 hours

CULTURE: MAJOR PROBLEM OR IMPORTANT REQUIREMENT?



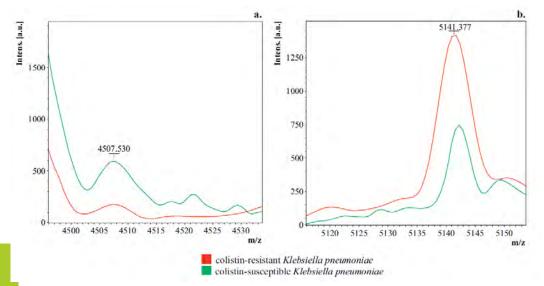

Screening of Colistin-resistant Enterobacteriaceae from rectal swabs and stools

MALDI-TOF-MS: DIFFERENT SPECIES, DIFFERENT STRAINS?

SUMMARY PROTOCOLS

BIOMÉRIEUX

AST IS A MICROBIOLOGICAL PROCEDURE THAT DETERMINES THE CONCENTRATION OF ANTIBIOTIC REQUIRED TO INHIBIT THE GROWTH OF OR KILL A MICROORGANISM.


THIS CAN BE ACCOMPLISHED VIA GROWTH-BASED (PHENOTYPIC) METHODS OR (ON A MORE SURROGATE LEVEL) VIA MOLECULAR MEANS (PROTEO/LIPIDO/GLUCO/GENOTYPIC).

RESISTANCE DETECTION BY MALDI TOF MS

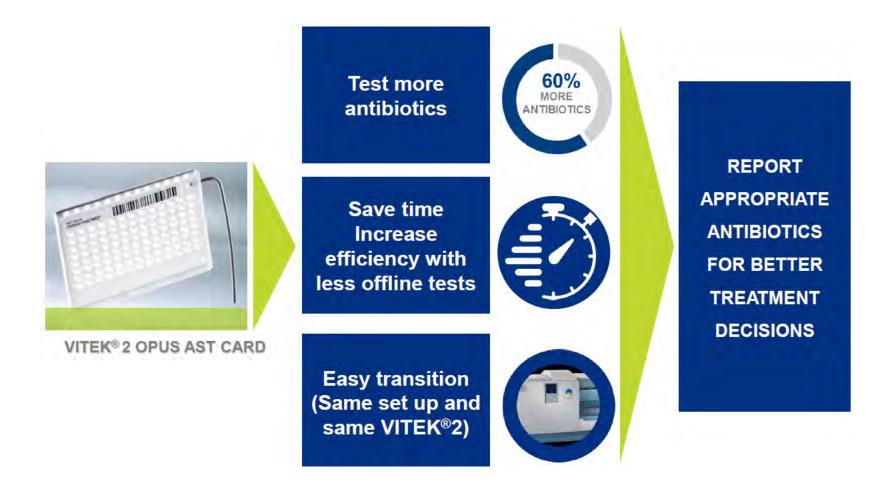
- 1. Detection of degradation or modification of antibiotics.
- 2. Use of incorporation of stable-isotope labeled amino acids.
- 3. MS mediated nucleic acid sequencing (Iridica, Abbott).
- 4. Direct detection of resistance (associated) factors (including next gen MS and pre-purification methods).
- 5. Changes in metabolic patterns.
- 6. Quantitation of MALDI detectable compounds.
- 7. Application of next gen MS methods

Giordano C, Barnini S. Rapid detection of colistin-resistant Klebsiella pneumoniae using MALDI-TOF MS peak-based assay. J Microbiol Methods. 2018 Dec;155:27-33.

BARRIERS

- SMALL NUMBERS OF CELLS
- SLOW GROWTH
- LAG TIME
- HETEROGENEITY OF ANTIBIOTIC RESISTANCE
- INDUCTION OF RESISTANCE
- LOW LEVEL RESISTANCE
- CIDAL VERSUS STATIC ANTIBIOTICS
- DETECTION OF NEW MECHANISMS

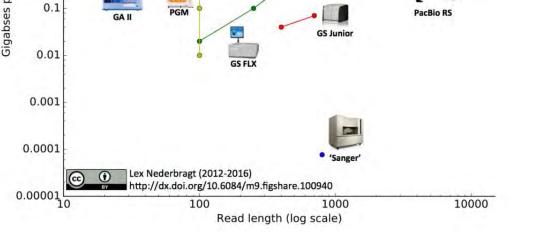
TECHNOLOGY

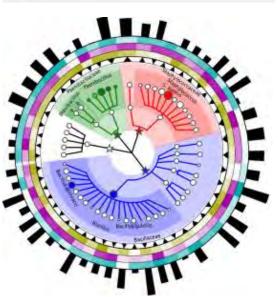

- NEED FOR ID AND AST AT THE SAME TIME (?)
- SPEED PHENOTYPIC AST IN LESS THAN 4 H IS A CHALLENGE.
- MANDATORY DAILY QC TESTING (IRRESPECTIVE OF METHOD)
- RECURRING ISSUES AND DEVELOPMENT DELAYS IN SEMI AUTOMATED AST (MICROSCAN, PHOENIX, VITEK2)

BIOMÉRIEUX

- POOR QUALITY OF ASSAYS FROM SOME MANUFACTURERS
- RECURRING ISSUES WITH GRADIENT TEST QUALITY
- INFLUX OF NEW PHENOTYPIC METHODS DIFFICULT TO ASSESS.

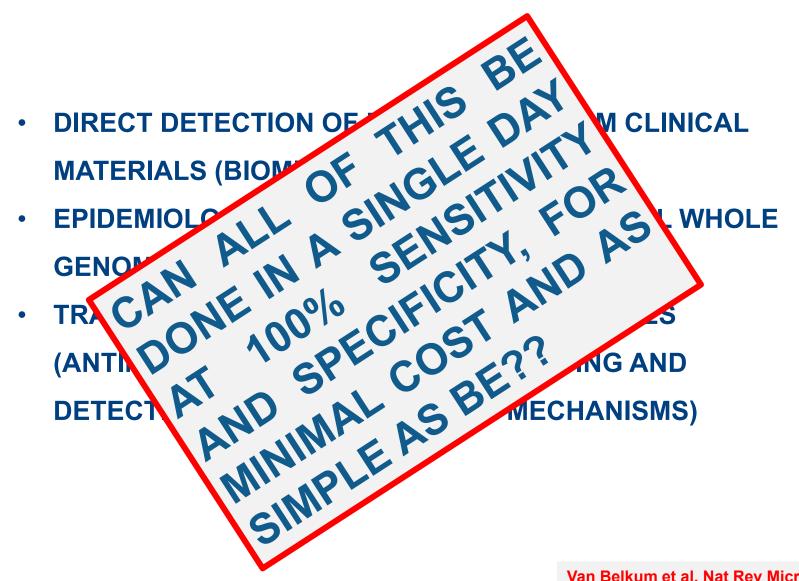
MORE DRUGS ON A SINGLE CARD




POTENTIALLY INVASIVE NEW TECHNOLOGY

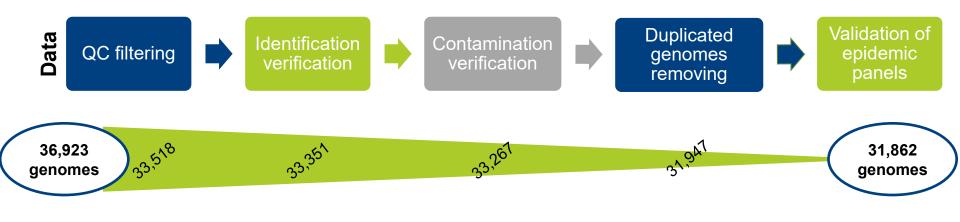
MICROFLUIDICS AND SINGLE CELL HANDLING. TRANSCRIPTOMICS. NEXT GENERATION MASS SPECTROMETRY. (FLOW) CYTOMETRY. CANTILEVERS. **ISOTHERMAL MICRO-CALORIMETRICS. MAGNETIC BEAD ROTATION. MICRODROPLETS.** NMR. MICROSOUND. **METABOLOMICS (ROS AND CELLULAR RESPIRATION).** RAMAN, IR AND OTHER SPECTROSCOPIES. **BACTERIOPHAGES. REAL-TIME, VIDEO ENHANCED MICROSCOPY. APOPTOSIS MARKERS. ELECTRONIC NOSES. IMPEDANCE MARKERS.** ETC ETC

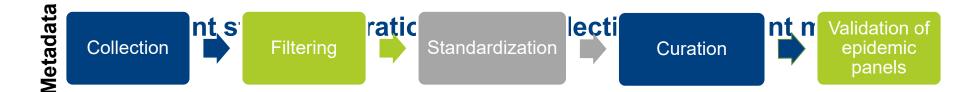
NGS TECHNOLOGY UNIFIES ALL; OR NOT?? BIOMÉRIEUX liseq X Hiseq 4000 Hiseq 2000/2500 1000 Hiseq2500 RR 1 10 NextSeq 500 100 MiSed MinION Gigabses per run (log scale) Proton 10 -S5/S5XL SOLID MiniSeq 1


THREE MAIN DOMAINS OF MICROBIOLOGY APPLICATION

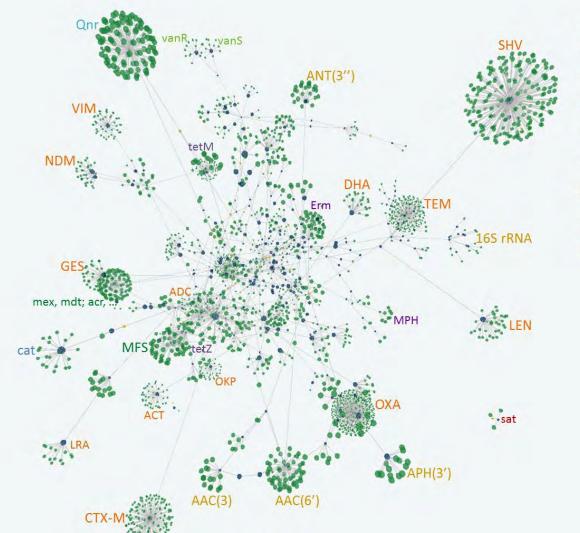
- DIRECT DETECTION OF PATHOGENS FROM CLINICAL
 MATERIALS (BIOMICS)
- EPIDEMIOLOGICAL TYPING AT THE BACTERIAL WHOLE GENOME LEVEL
- TRANSLATING GENOTYPES INTO PHENOTYPES
 (ANTIMICROBIAL SUSCEPTIBILITY TESTING AND
 DETECTION OF NEW RESISTANCE MECHANISMS)

THREE MAIN DOMAINS OF CLINICAL **MICROBIOLOGY APPLICATION**

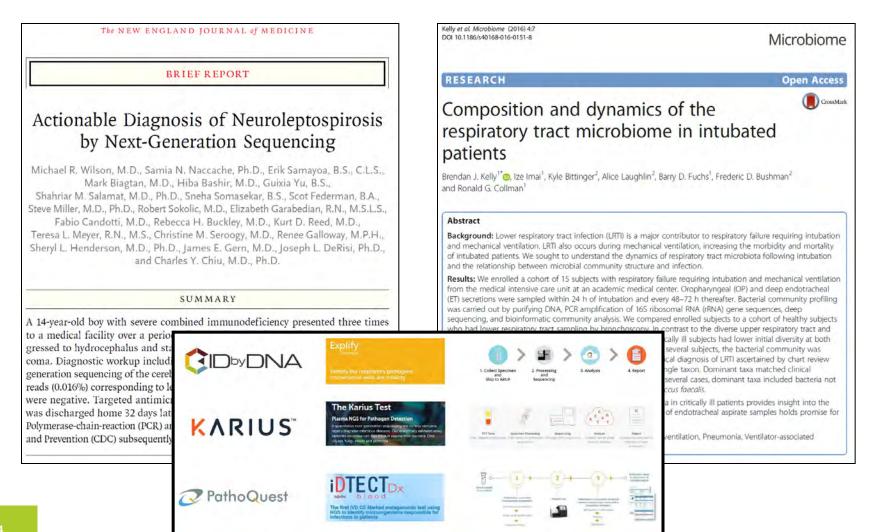




DATA AND DATABASES: QUALITY AND CLEANSING


Different steps of filtering for the selection of genomes of quality

ANTIBIOTIC RESISTANCE GENE CATALOGUE



Beta-lactamase Fluoroquinolone resistance Aminoglycoside resistance Chloramphenicol resistance Glycopeptide resistance Tetracycline resistance Streptothricin resistance Efflux resistance Macrolide resistance

Provided by Stéphane Schicklin

CLINICALLY SIGNIFICANT DETECTION-IDENTIFICATION EXAMPLES

NEW RESISTANCE MECHANISMS

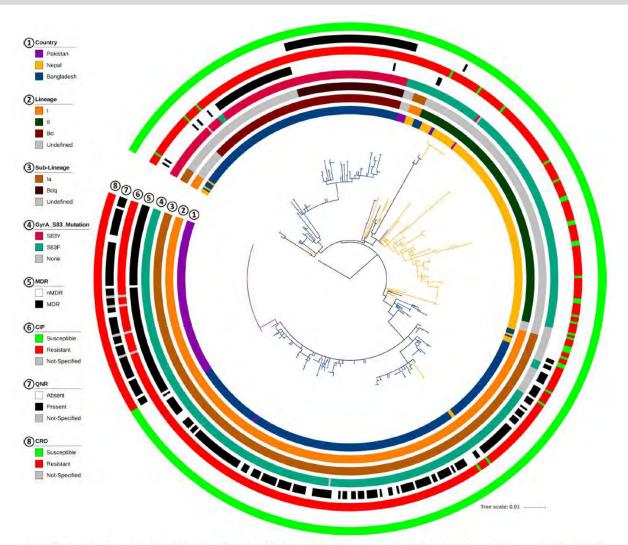


FIG 3 Comparison of genotype 4.3.1 (H58) isolates from Bangladesh, Pakistan, and Nepal in a wgSNP-derived MLT. No singleton was considered in the consensus SNP data. The tree is colored by country. Different data points, including lineage, sublineage (details), presence of different gyrA-83 mutations, MDR, cip resistance, presence of qnr genes, and cro resistance phenotypes are indicated (by colors) in different circles around the tree.

Salmonella enterica Serovar Typhi in Bangladesh: Exploration of Genomic Diversity and Antimicrobial Resistance AMM. Temp.^{1,10} Easter Research Sean Correl Sean Correl Sean Research Mananus S. L. Salt. Marco Media Search Sean Correlation Sean Correl Sean Correlation

E)

anna mBio

BIOMÉRIEUX

ONE HEALTH TECHNO ASSESSMENT

- Classical microbiology will not soon cease to be
- Automation and mobile applications (phone, drone, robots) are being developed but at a pace that is not as high as initially foreseen; mostly robotic replacement for standard human actions and manipulations.
- MALDI TOF MS is the new gold standard for bacterial identification and its rapidity has clinical impact.
- PCR testing is the single methodology to date allowing rapid and reliable direct-from-sample diagnostics.
- OMICS testing is entering the routine laboratory.
- Next generation sequencing, currently considered a panacea by many, will fill in many significant niches in the routine laboratory.
- The diagnostic use of "big clinical data" will become commonplace.
- Hence, diagnostic TAT will go down. Question is how much and whether this will be clinically actionable

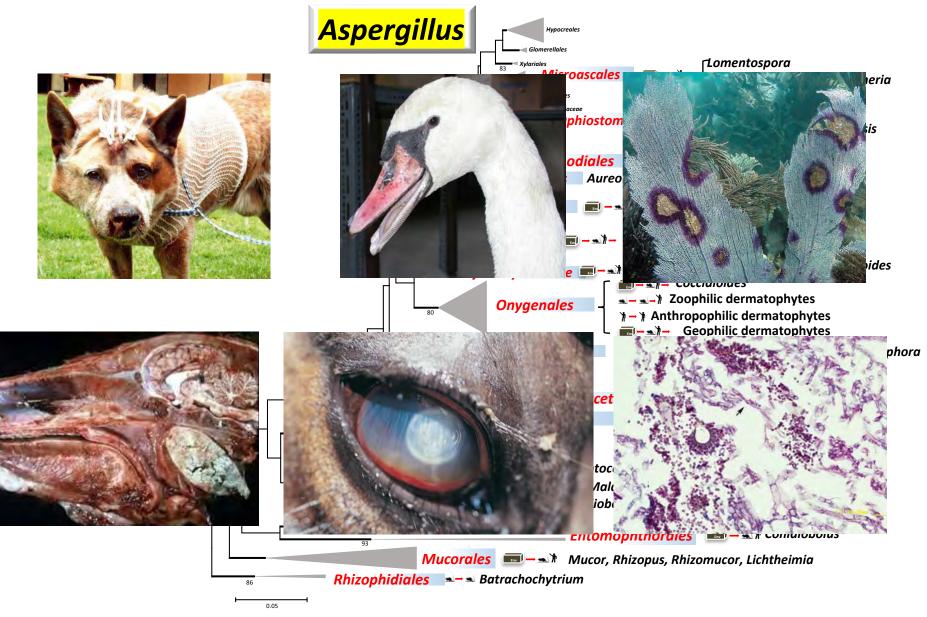
ACKNOWLEDGMENTS

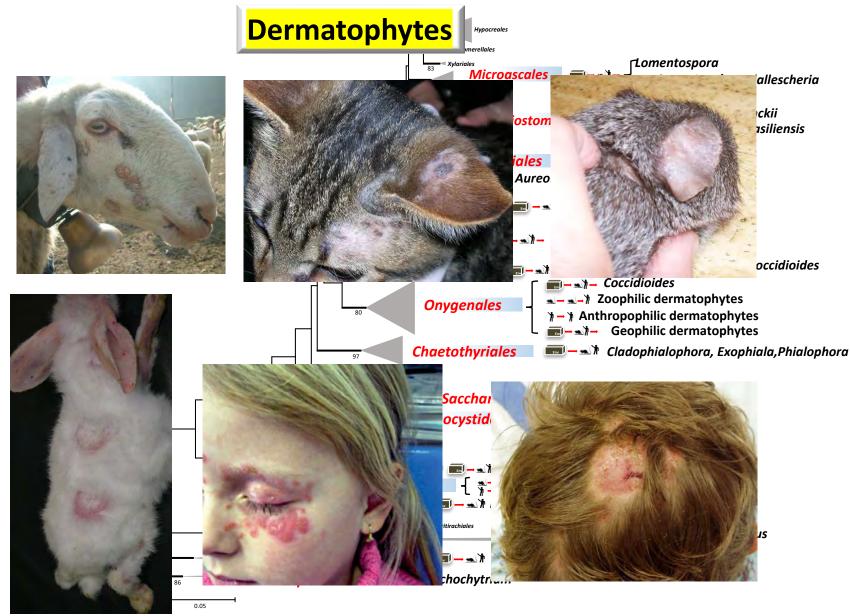
- Marie Françoise Gros and Claude Mabilat for (many) slides.
- The Point Prevalence Surveillance team.
- Marc van Nuenen for BioFire slides.
- Victoria Girard for any MALDI TOF MS stuff.
- Mike Dunne for (post-retirement) AST activities.
- François Vandenesch et al for *S. aureus* genomics.
- Fondation Mérieux and Tanmoy for *S. typhi* collaboration.

Antifungal use in veterinary practice and emergence of resistance

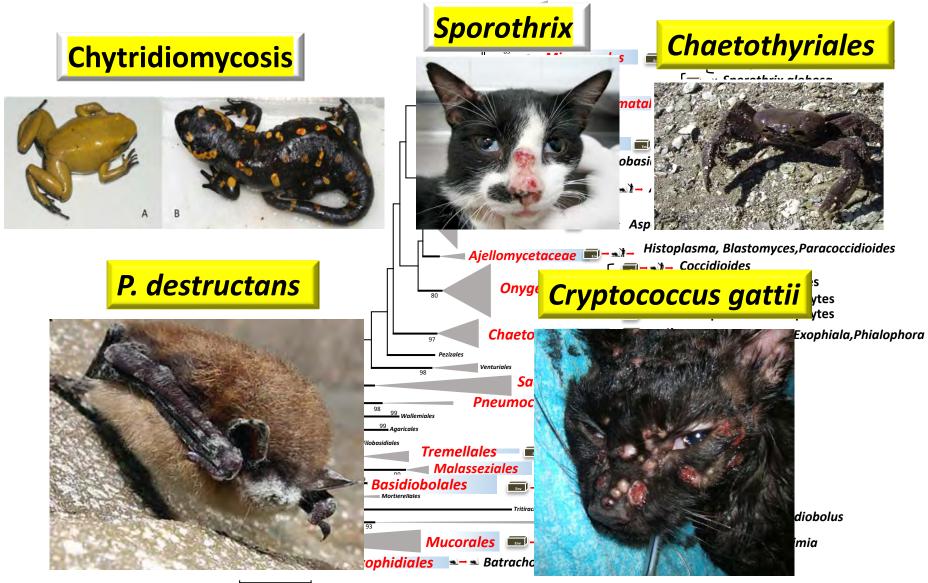
Amir Seyedmousavi, DVM, PhD, (F)ECMM

Senior Staff Clinical Microbiologist


Department of Laboratory Medicine, National Institute of Health Clinical Center, Bethesda, MD, USA

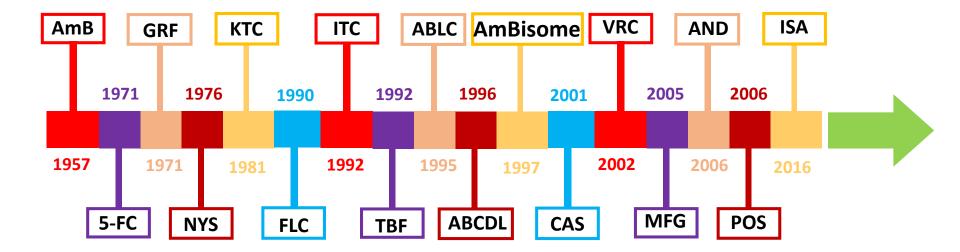

Clinical Center

Is resistance in fungi a concern for you?


Medically relevant fungal groups

Medically relevant fungal groups

Medically relevant fungal groups



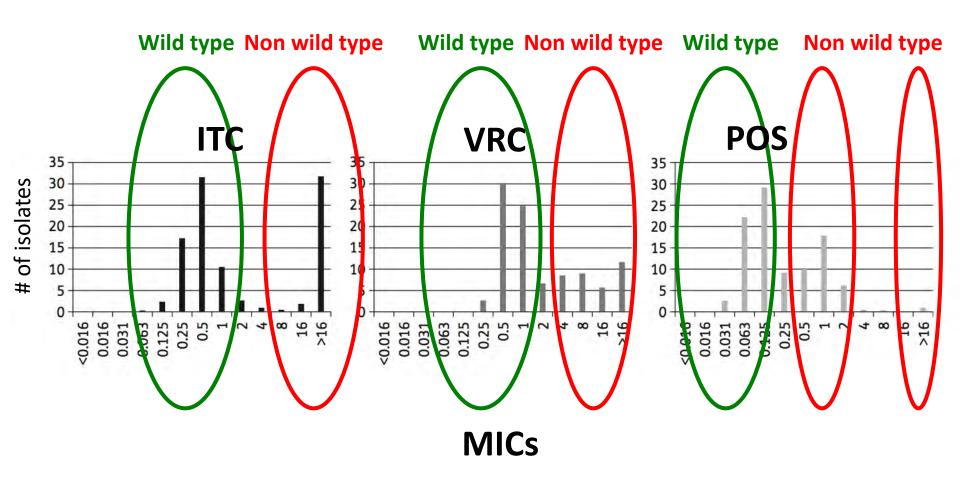
Antifungal therapy is a central component of protecting human and animals against fungal infections

Topical and/or systemic antifungal drugs can be used

The drug: principal antifungals in clinical practice from the 1950s to present

Azoles Polyenes Echinocandins

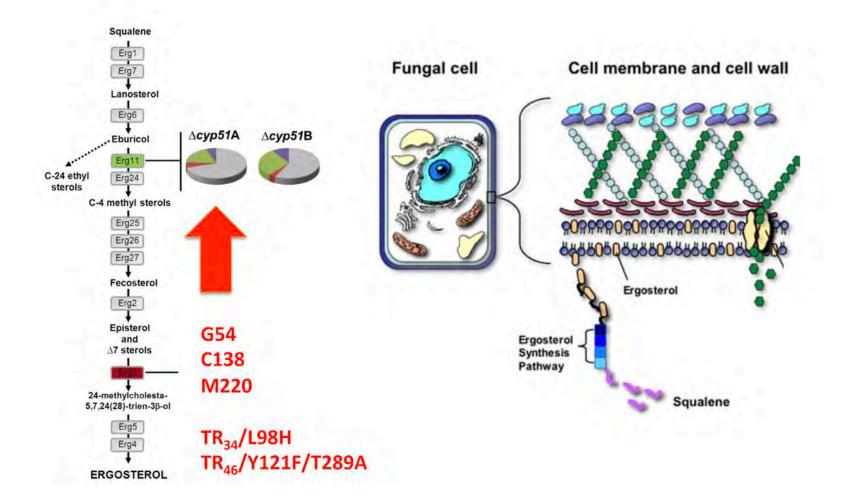
Off-label use of human antifungals is quite common

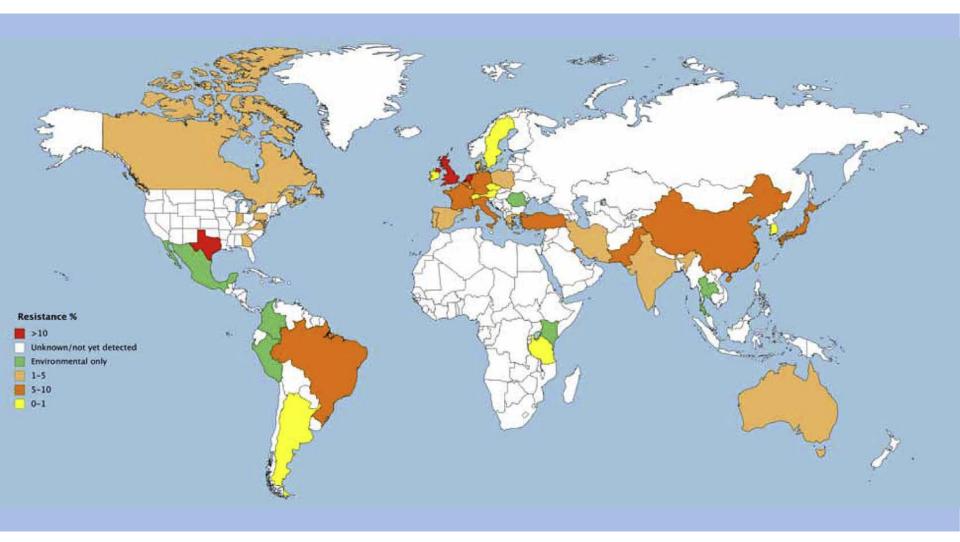


Jacques Guillot. Ecole nationale vétérinaire d'Alfort, France

FDA / EMA Approved Animal Drug Products

Application#	Sponsor Name	Proprietary Name	Ingredients		Application Statu
012-258	Zoetis Inc.	Panolog® Ointment	Neomycin Su	Ifate Nystatin	Approved
y a fe	w prod	ducts are	licen	sed for	or anim
		Cream			Withdrawn
096-676	Zoetis Inc.	Panolog® Cream	Neomycin Su Thiostrepton	Ilfate Nystatin Triamcinolone	Approved
140-810	Med-Pharmex, In	OTIC SUSPENSION (Orbifloxacin, Mometasone Furoate Monohydrate and Posaconazole, Suspension) Antibacterial		ate Nystatin riamcinolone	Approved
140-847	Fougera Pharmaceuticals, Inc.	Anti-inflammatory, Antifungal Caution: Federal law rest drug to use by or on the arallicensed vete Federal law prohibits the extra of this drug in food producing	x1 4089 42 15g	ate Nystatin riamcinolone	Approved
140-879	Zoetis Inc.	(Orbit Posace Keep O Noom	POSATEX* DTIC SUSPENSION loxacin, Mometasone te Monohydrate and onazole, Suspension) hut of Reach of Children. 141-266.	ate Nystatin riamcinolone	Approved
140-889	Biocraft Laboratories, Inc.	OJ CH	ed by FDA. Intervet	ate Nystatin riamcinolone	Voluntarily Withdrawn
1		Derm-Otic Ointment	Neomycin S Thiostrepto Acetonide	/	
	in financia representation (2)	. Derma-Vet Cream	Neomycin S Thiostrepto Acetonide	6	
CONFECTANT SMOKE	CENERATOR	Animax® Cream	Neomycin S Thiostrepto		


MIC distributions for clinical A. fumigatus isolates


Most isolates were multi-azole resistant

Seyedmousavi et al. Emerg Infect Dis. 2013;19(5):832-834.

Antifungal azole drug targets

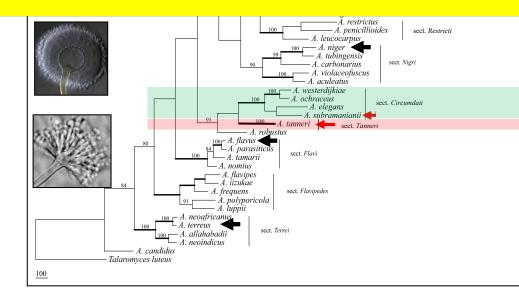
Geographic spread: clinical and environmental



Lestrade et al. Clinical Microbiology and Infection. 2019. In press.

Veterinary cases of azole-R in A. fumigatus

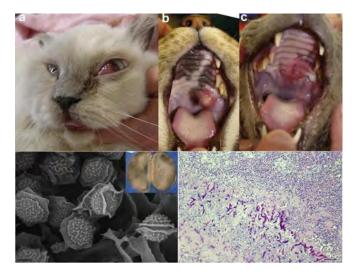
S NCBI Resources 🗹 How To 🖸								
Publiced.gov US National Library of Medicine National Institutes of Health	PubMed Image: azole resistance fumigatus avian Create RSS Create alert Advanced	Search	Help					
Article types Clinical Trial Review Customize Text availability Abstract	Format: Summary - Sort by: Most Recent - Per page: 20 - Send to - Search results Items: 6	Filters: <u>Manage Filters</u> Sort by: <u>Best match</u>	Most recent					
Free full text Full text Publication dates 5 years 10 years Custom range	 Molecular identification of clinical and environmental avian Aspergillus isolates. Sabino R, Burco J, Valente J, Veríssimo C, Clemons KV, Stevens DA, Tell LA. Arch Microbiol. 2019 Mar;201(2):253-257. doi: 10.1007/s00203-019-01618-y. Epub 2019 Jan 9. PMID: 30627760 Similar articles 	Find related data Database: Select	•]					
Species Humans Other Animals <u>Clear all</u> Show additional filters	 Assessment of carvacrol for control of avian aspergillosis in intratracheally challenged chickens in comparison to voriconazole with a reference on economic impact. Tartor YH, Hassan FAM. J Appl Microbiol. 2017 Nov;123(5):1088-1099. doi: 10.1111/jam.13557. Epub 2017 Sep 13. PMID: 28795522 Similar articles 	Search details ("azoles"[MeSH Terms] OR "azoles" [All Fields] OR "azole"[All Fields]) AND resistance[All Fields] AND ("aspergillus fumigatus"[MeSH Terms] OR ("aspergillus"[All Fields] AND						
	 Drug resistance of Aspergillus fumigatus strains isolated from flocks of domestic geese in Poland. Ziołkowska G, Tokarzewski S, Nowakiewicz A. Poult Sci. 2014 May;93(5):1106-12. doi: 10.3382/ps.2013-03702. PMID: 24795302 Similar articles 	Search Recent Activity Q azole resistance fumig	See more <u>Turn Off</u> <u>Clear</u> atus avian (6)					
	 Mutations in the Cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus isolated from avian farms in France and China. Wang DY, Gricourt M, Arné P, Thierry S, Seguin D, Chermette R, Huang WY, Dannaoui E, Botterel F, Guillot J. Poult Sci. 2014 Jan;93(1):12-5. doi: 10.3382/ps.2013-03541. 	 Aspergillus felis sp. no of Invasive Aspergillos One-health pathogens viridioutans complex 	is in Huma in the Aspergillus					


Emerging Aspergillus species associated with CGD

A. quadrilineatus

A. calidoustus

Extremely difficult to treat



A. subramanianii A. tanneri

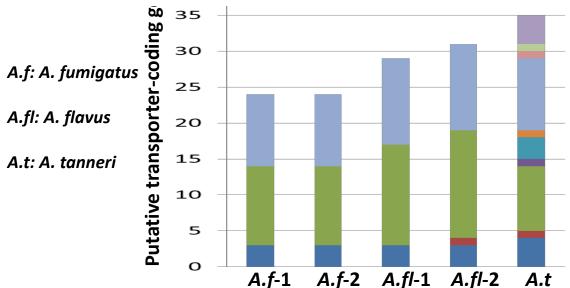
Veterinary: A. viridinutans species complex

A. udagawae, A. felis clade species (A. felis, A. pseudofelis, A. parafelis), A. pseudoviridinutans, A. wyomingensis

ITZ - 20 (54.1 %) - (>1 mg/L) VCZ - 31 (83.8 %) - (>1 mg/L) ISA - 30 (81.1%) - (>1 mg/L) POS – 1 isolate

Resistance mutations detected! G138C

inherently resistant to antifungals



A. fumigatus

A. tanneri

No change in CYP51A

- Pleiotropic drug resistance proteins (PR115), ABC superfamily protein
- bile acid ABC transporter

 Various efflux pumps
 Total number of ABC transporters

J. Craig Venter[®]

INSTITUTE

ABC drug exporter AbcA

ABC bile acid transporter

Dolphin with invasive aspergillosis

A 10 year old female captive bottlenose dolphin (175 kg)

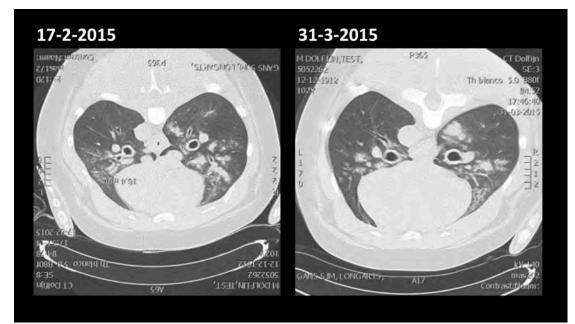
Culture: Aspergillus fumigatus

Treatment during 1 year with POS (a dose of 600 mg/day)

Progression of the infection

Treated with antibiotics for <u>bacterial</u> <u>pneumonia</u> caused by <u>Vibrio alginolyticus</u>

6 months into therapy:


multiple white, raised lesions in the trachea and bronchi

Bunskoek and Seyedmousavi et al. Med Mycol Case Rep 2017;16:16-19

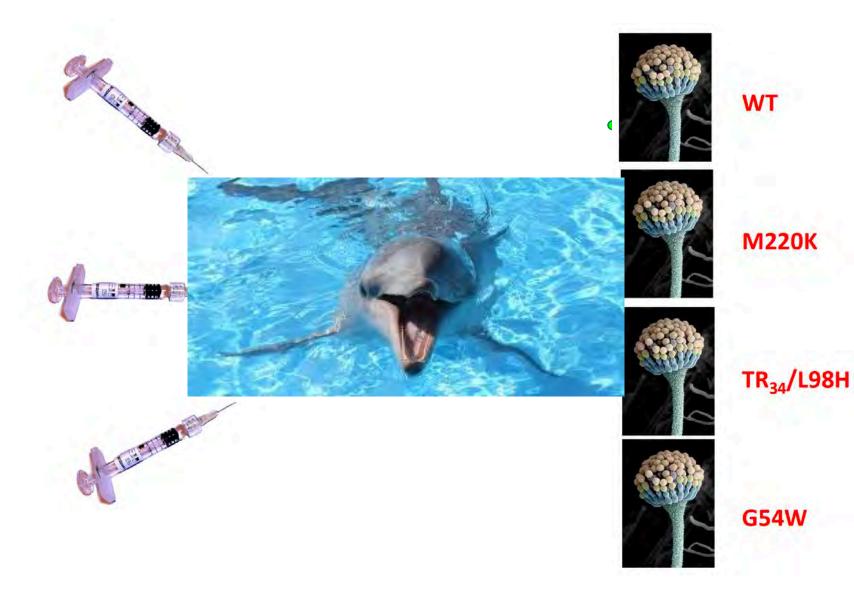
CT scan

Small granulomas and some infiltrates

MIC test:

 AmB 0.5 mg/l

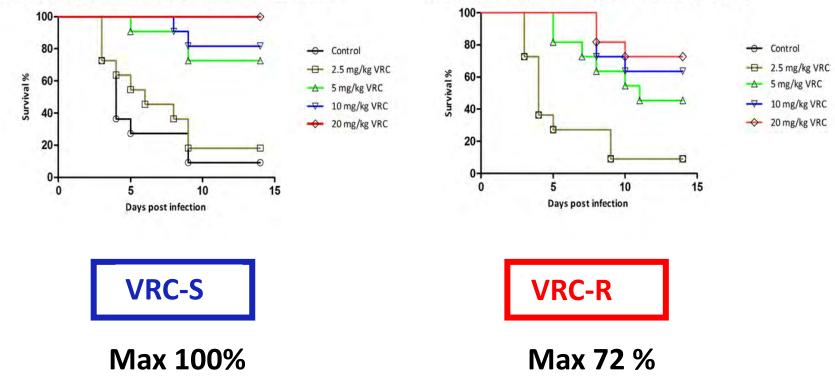
 ITC >16 mg/l
 R


 VRC 16 mg/l
 R

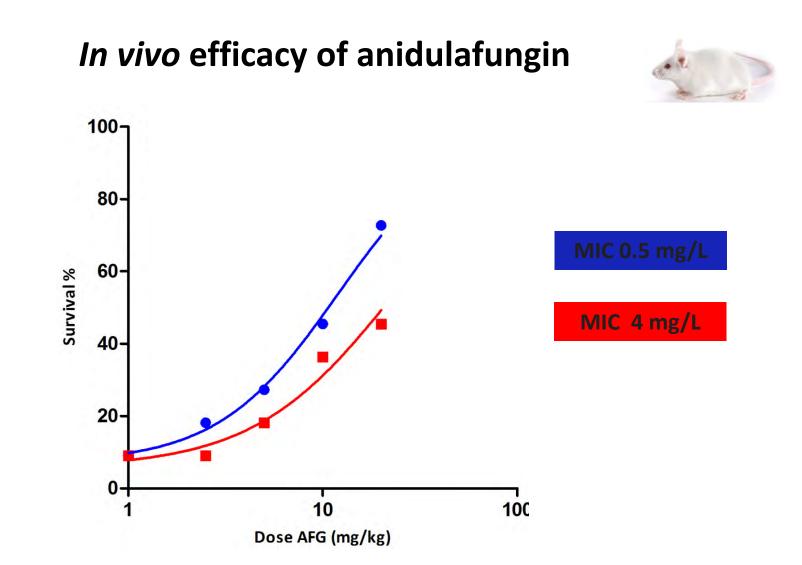
 POS 0.5 mg/l
 R (low)

 AFG 0.06 mg/l

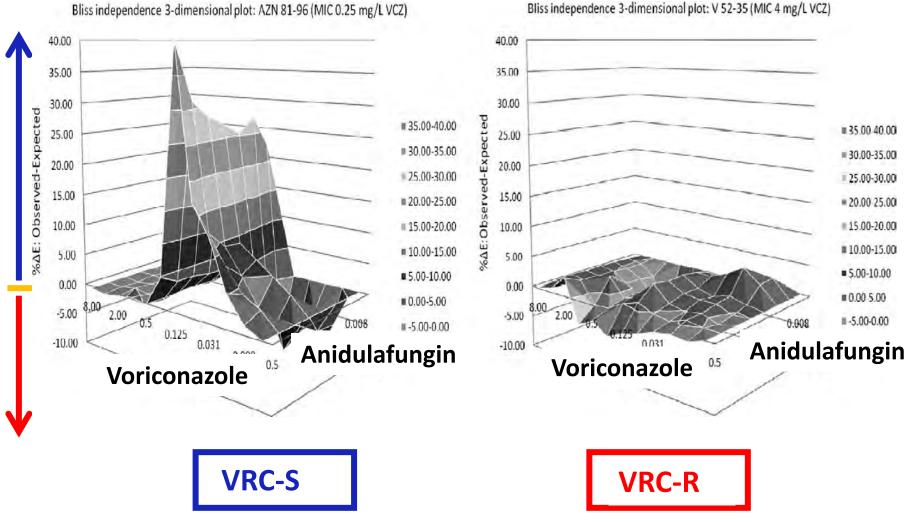
The strain harbored the TR46/Y121F/T289A resistance mutation in the *cyp*51A-gene


How to treat azole **R** Aspergillus diseases?

In vivo efficacy of voriconazole



Efficacy of 2.5-20 mg/kg VRC-monotherapy against VRC-R A. fumigatus (MIC4)


Efficacy of 2.5-20 mg/kg VRC-monotherapy against VRC-S A.fumigatus (MIC 0.25)

Seyedmousavi et al. Journal of Antimicrobial Chemotherapy, 2013, 68, 2, 385–393

A maximal response was not achieved with either isolates

in vitro and in vivo combination: VRC+AFG

MIC based dosing

POS MIC (mg/L)	0,031	0,063	0,125	0.25	0.5	1	2	4	8	16
S	6	-								
				554E	G54E	0340 m				
			-			GTINC	GINC	GIBE	0138C	
				64125				1		
	-	1.0			~	G434C				
Martin and an and a					04485	G4485				
utation in ta	rant	tann	n	M2201	M2201-T: -V	M220K;-V	M220K; -R	M220K	MZZOK	M220
	inge	r geni			-	P216L	P216L	1	ŀ	
	2				TR ₃₄ /L98H	TW ₈₄ /L98H	TR:=/L98H	TR1./L98H	TR _{SU} /L98H	
				TRac/YLEAF/T288A	TR //1215/7289A	TR_//1215/T289A	TR _{tc} /Y121F/T2BBA	TR 10/Y121F/T289A		
				TRyA		and a second		1		
	8			-	121	¥433C	~	-	÷	
Pharmacodynamic target (total AUC _{p. 2e} /MIC) predicting therapeutic success [adopted from preclinical study of Howard 2011, Mavridou 2012, Lepak 2013.]					El ₅₀ : 167 – 17	8 (EUCAST)				
needed to be achieved [calculation made by us]	5.32.6.56	10,43-11,125	20.87-22.5	41.75-44.5	83.5-89	167-178	334-356	668-712	1336-1424	2672-28
Calculated trough concentration (C _{mm}) needed to be achieved [adopted from clinical data of Bruggemann et al. 2010]	⊲0.4	49.4	0.72-0.77	1.44-1.54	1.09-3.33	6.18-6.66	>10	>10	>10	>10
rough (TDN	1).	s	5	> 3.09	requir	ed 🛚	ĸ	è		8
Proposed interpretation breakpoints [adopted from Verweij et al. 2009]	5	\$	s	5	4	R	R	R	R	а
Probability of achieving optimal exposure (AUC) with 800 mg a day idoged from the Tarif st 4, 2010]	96%	18 ja	15.3 N	0.6%			çüĞN			
Probability of Oral Fasted reaching the [Courtney]	d	ases 400% with a hig			1					
day IV [Cornely et al. ICAAC 2013 – A-294]		CD resubed in mea								

Seyedmousavi et al. Drug Resist Updat. 2014;17(3):37-50.

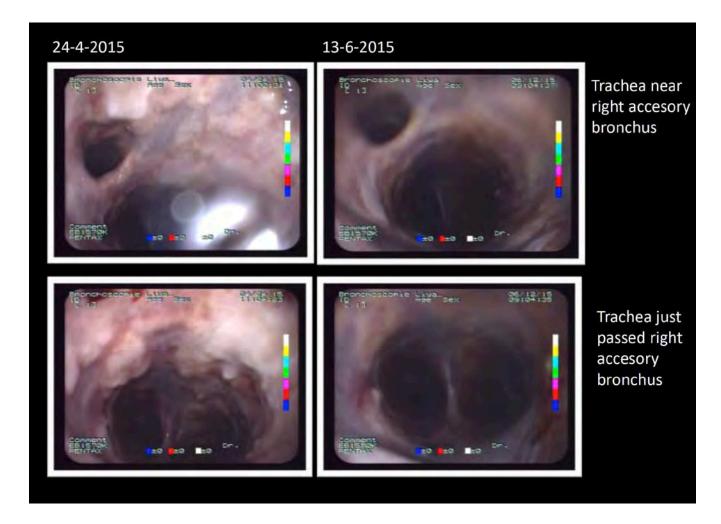
What advice to give?

MIC test:

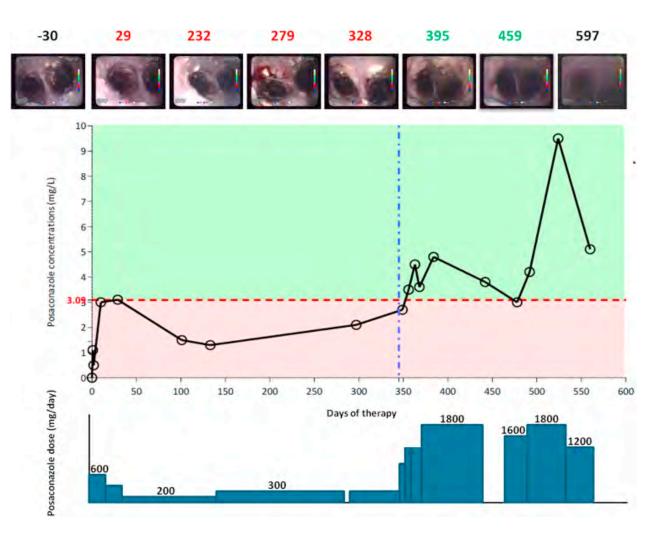
 AmB 0.5 mg/l

 ITC >16 mg/l
 R

 VRC 16 mg/l
 R


 POS 0.5 mg/l
 R (low)

 AFG 0.06 mg/l


The strain harbored the TR46/Y121F/T289A resistance mutation in the *cyp*51A-gene

Recommendation: continue POS therapy try to achieve a drug level of > 3.09 mg/l

Follow-up bronchoscopy and CT showed complete resolution of the lesions

POS serum levels of 3-9.5 mg/l were achieved without significant side-effects ultimately leading to clinical cure

Bunskoek and Seyedmousavi et al. Med Mycol Case Rep 2017;16:16-19

Conclusion

Azole resistance is an emerging concern in medically important fungi

Importance of environmental route of resistance selection

Focus on your local epidemiology

Acknowledgement

RadboudUMC, Nijmegen, NL

Prof. Paul Verweij Dr. Willem Melchers Dr. Roger Bruggemann Hein van der Lee

MMS, LCIM, NIAID, NIH

Dr. June Kwon-Chung

MMS, LCIM, NIAID, NIH

Intramural program

Erasmus MC, Rotterdam, NL

Prof. Johan Mouton

Westerdijk Fungal Biodiversity

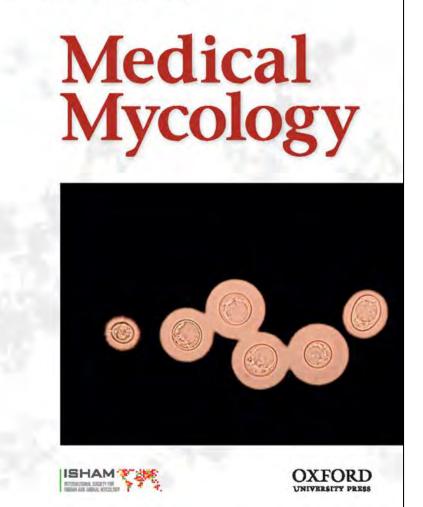
<u>Institute, Utrecht, NL</u>

Prof. Sybren de Hoog

<u>University of Tehran and</u> <u>Mazandaran UMC, Iran</u> Prof. Mohammad Hedayati

Pharmaceutical companies

Gilead, Pfizer, MSD, Astellas, Basilea


<u>Veterinary Mycology Working Group</u> <u>Aspergillus Resistance Surveillance Working Group</u>

ESCMID Fungal Infection Study Group - EFISG

ASM Country Ambassador to Iran

ISSN 1369-3786 JUNE 2019 VOLUME 57 NUMBER 4

Seyedmojtaba Seyedmousavi G. Sybren de Hoog Jacques Guillot Paul E. Verweij Editors

Emerging and Epizootic Fungal Infections in Animals

Veterinary Mycology Working Group Aspergillus Resistance Surveillance Working Group

ESCMID Fungal Infection Study Group - EFISG

International Science Ambassador

Thank you for your attention

Clinical Center

CBPs, ECOFFs, "I" and All that Jazz

John Turnidge EUCAST Scientific Secretary Joint Curator EUCAST MIC database

Terminology

- (Clinical) Breakpoints
 - Susceptible
 - Intermediate (CLSI)
 - Susceptible—Increased exposure (EUCAST)
 - Resistant
 - Non-susceptible (CLSI)
- Epidemiological Cutoff Values
 - Wild type
 - Non-wild type (above wild type)

Predicting treatment <u>outcomes</u>

Predicting resistance <u>mechanisms</u>

Understanding MIC distributions

- 1. What is an MIC, mathematically speaking? an <u>interval</u> measure, and the MIC is at the **UPPER** end of the interval
- 2. Why the 2-fold dilution series? a happy accident of history
- 3. How are wild-type MICs distributed? anything but wildly, they are **log-normally** distributed
- 4. Why are wild-type MICs distributed that way? because of variation<u>s</u>

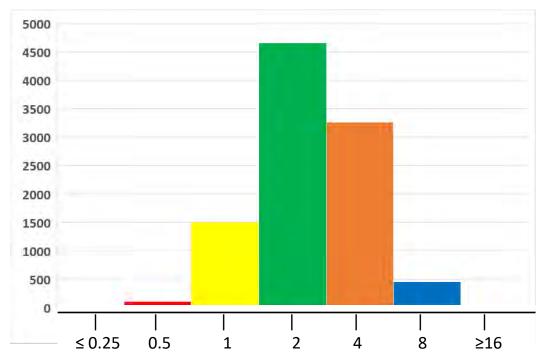
European Society of Clinical Microbiology and Infectious Diseases

Why are wild-type MICs distributed that way?

Variations!

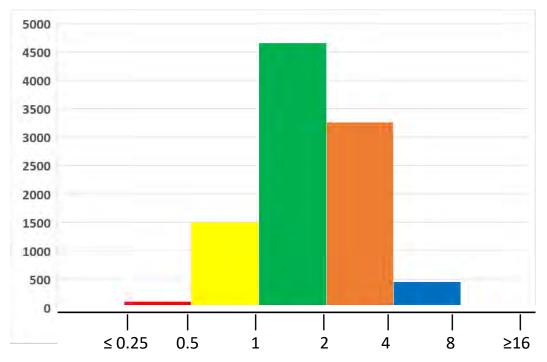
- Assay variation
 - reagents
 - intra-laboratory (reading)
 - inter-laboratory (conditions)
- Biological variation
 - strain-to-strain

CVs are typically 50-100%

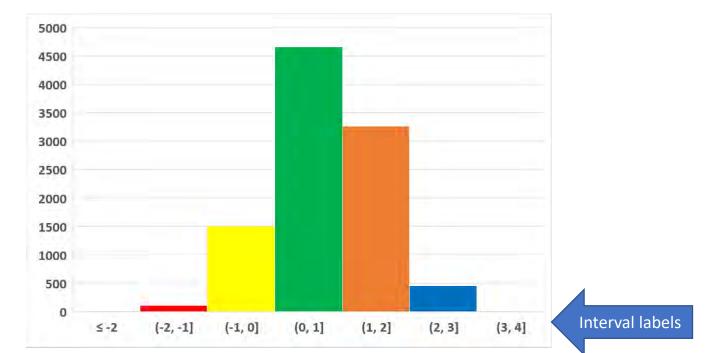

Table 1. Media lot comparisons and inter- and intra-laboratory comparisons of finafloxacin

MIC results versus E. coli ATCC 25922. Same strain, same batches of reagents

MIC	Occur	rences E	By Lot			Laborat	ory Code (Occurrences)					Total N
(µg/ml)	Α	В	С	Α	В	С	D	Е	F	G	Н	
0.002	101 444 401		MMMA derender o									
0.004												
0.008	antes a constantas				11							
≤0.015	11	10	47	11			17		12	11	17	68
0.03	41	42	17	14	2	6	13	16	18	18	13	100
0.06	26	28	15	5	27	23	C 2002/10/2010/00/2010	14				69
0.12	2				1	1						2
0.25												
0.5												
1												
2												
Total	80	80	79	30	30	30	30	30	30	29	30	239
Mode	0.03	0.03	0.015	0.03	0.06	0.06	0.015	0.03	0.03	0.03	0.015	0.03
GeoMean	0.035	0.035	- 0.023	0.026	0.059	0.053	0.020	0.041	0.023	0.023	0.020	0.030
Range	4	3	3	3	3	3	2	2	2	2	2	4


What is an MIC? • The way the data are usually presented...

For EUCAST Copyrights, see www.eucast.org


What is an MIC? • The correct way to present the data...

EUROPEAN COMMITTEE

• Or mathematically, as a formal histogram on a log₂ scale...

"]" means up to and including

Setting ECOFFs

EUCAST controlled document Date of issue: 14 November 2017 EUCAST SOP 10.0 Page 1 of 18

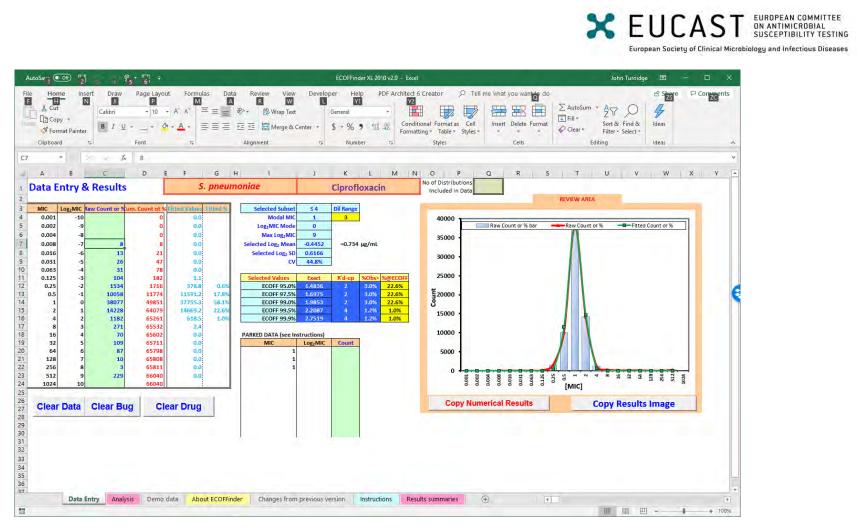
EUCAST EUCOPEAN COMMITTEE ON ANTIMICROBIAL SUSCEPTIBILITY TESTING

European Society of Clinical Microbiology and Infectious Diseases

Standard Operating Procedure

PS: Not everyone uses this approach

MIC distributions and the setting of epidemiological cutoff (ECOFF) values.


Epidemiological cutoff values

- Definition
 - The highest MIC in the wild-type distribution without phenotypically-detectable resistance
 - Note: the finding of a resistance gene does NOT change the ECOFF

Epidemiological cutoff values

- Methods for estimating ECOFFs
 - Visual symmetry ("eyeball")
 - Iterative statistical method (ECOFFinder)
 - NRI
 - Second derivative method

Constructing Breakpoints

- 1. MIC distributions
- 2. ECOFFs

Cutoff Value 1

- 3. Resistance mechanisms and genes
- 4. Pre-clinical PK-PD

Cutoff Value 2

- 5. Clinical PK-PD (protein binding)

Cutoff Value 3

European Society of Clinical Microbiology and Infectious Diseases

The MIC Reference Standard

ISO

First edition

2006-11-15

INTERNATIONAL STANDARD 20776-1

Clinical laboratory testing and in vitro diagnostic test systems - Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices -

Part 1: /

Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases

d'essais en laboratoire et de diagnostic in vitro - Essais de d'agents infectieux et évaluation des performances des ispositifs de receptivite antimicrobienne

Pertie 1: Méthode de référence pour la détermination de la sensibilité in vitro aux agents microbiens des bacteries aerobies à croissance rapide impliquées dans les maladies infectieus

> Reference number ISO 20776-1-2006/E © ISO 2006

ALL other methods are derivative, even if they generate an MIC

They are compared using this document \rightarrow

ISO/ INTERNATIONAL STANDARD 20776-2 Firmi orbitice 2007-07-01 Clinical laboratory testing and in vitro diagnostic test systems - Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices -Part 2: Evaluation of performance of antimicrobial susceptibility test devices Systèmen d'ussels en laboratoire et de diagnostic in vitro — Sensibilité n vitro des agents infectieux et évaluation des performances des ispoanti's pour antibiogramm Partie 2: Evaluation des performanens des dispositifs pour

> Helimonde Gumber SO 20176-22007(E)

> > 0.130 2007

The 'How To' Documents

Breakpoints – CLSI approach

- 1. MIC distributions
- 2. ECOFFs
- 3. Resistance mechanisms and genes
- 4. Pre-clinical PK-PD
- 5. Clinical PK-PD (protein binding)

Grey = nice to have, not required

6. MIC versus clinical outcomes

Breakpoints – EUCAST approach

- 1. MIC distributions
- 2. ECOFFs
- 3. Resistance mechanisms and genes
- 4. Pre-clinical PK-PD
- 5. Clinical PK-PD (protein binding)

Grey = nice to have, not required

6. MIC versus clinical outcomes

Breakpoints – CLSI vs EUCAST Why can they differ?

- Test media may be different
 - e.g. for streptococci
- PK-PD targets (cutoffs) may differ
 - Stasis versus 1 log₁₀ kill
- Acceptable target attainment rates in Monte Carlo simulation differ

Furgean Society of Clinical Microbiology and Infectious Disease

– CLSI, typically 90%, EUCAST typically 97.5%

CO_{WT}

CO

Breakpoints – VAST approach

- 1. MIC distributions
- 2. ECOFFs
- 3. Resistance mechanisms and genes
- 4. Pre-clinical PK-PD
- 5. Clinical PK-PD (protein binding)
- 6. MIC versus clinical outcomes -

Setucation Setucation Setucation

Tebniary social

VETo2-A3

Development of *In Vitro* Susceptibility Testing Criteria and Quality Control Parameters for Veterinary Antimicrobial Agents; Approved Guideline—Third Edition

The decontent addresses the sequend and sectorindexed for a sector of appropriate interpretation strategies and probability deviated gradience for service between processing influeaders.

A public in plant without a ferring strength and provident provident for the providence of the second providence of the second strength and the

Table C9b: Suggested Decision Table with 3 Cut-off Values Available Including CO_{CL} as a Supportive Parameter

Ranking of Cutoffs	Suggested Breakpoint	Comments
WT > PD > CL	PD	Could accept CO_{WT} as breakpoint if CO_{WT} only 1 dilution higher than CO_{PD}
WT > CL > PD	CL	Could accept CO_{WT} as breakpoint if CO_{WT} only 1 dilution higher than CO_{CL}
PD > WT > CL	WT	CO_{WT} preferred. CO_{PD} gives a "confidence or safety factor" for breakpoint to be higher than the observed CO_{CL}
PD > CL > WT	CL	CO _{CL} is acceptable as it is below CO _{PD}
CL > WT > PD	WT	CO _{PD} being lower than the other two cut-off values raises some concerns. Therefore, CO _{WT} is preferred over CO _{CL}
CL > PD > WT	PD	CO _{PD} may be the preferred choice.
WT = PD > CL	WT = PD	$CO_{WT} = CO_{PD}$ increases confidence that CO_{WT} would be appropriate, even though it exceeds CO_{CL}
CL = WT > PD	CL = WT	$CO_{CL} = CO_{WT}$ is acceptable
PD = CL > WT	PD = CL	$CO_{PD} = CO_{CL}$ is acceptable
WT > PD = CL	PD = CL	Could accept CO_{WT} as breakpoint only if it is 1 dilution higher than $CO_{PD}=CO_{CL}$
CL > WT = PD	WT = PD	$CO_{WT} = CO_{PD}$ is acceptable
PD > WT = CL	WT = CL	$CO_{WT} = CO_{CL}$ is the more conservative approach. Might consider CO_{PD} if only one dilution higher than the other cutoffs.
WT = PD = CL	WT = PD = CL	All cut-offs the same

Abbreviations: CL, clinical cutoff value (CO_{CL}); PD, pharmacodynamic cutoff value (CO_{PD}); WT, wild type cutoff value (CO_{WT}).

EUCAST EUCAST UNCOMMITTEE ON ANTIMICROBIAL SUSCEPTIBILITY TESTING

Breakpoints – Veterinary issues

- So many species!
 - Dogs, cats, cattle, pigs, horses, chickens......
- Lack of PK-PD targets
- Lack of PK-PD for
 - single dose products
 - medicated feeds
 - Intramammary preparations
- Lack of MIC vs outcome data for generic agents

ropean Society of Clinical Microiology and Infectious Diseases

Breakpoints -- VetCAST approach

United Kingdom, 1 Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark, ^I Wagerlingen Bioveterinary Research, Lelystad, Netherlands, [©] National Reference Laboratory on Antimicrobial Resistance in. Animals, Leivstad, Netherlands,

Breakpoints -- VetCAST approach

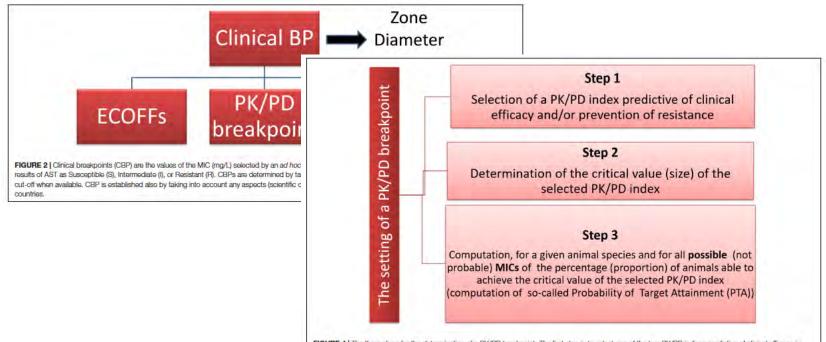


FIGURE 4 | The three steps for the determination of a PK/PD breakpoint. The first step is to select one of the two PK/PD indices predictive of clinical efficacy, i.e., either the time for which plasma concentration remains above the MIC during the dosage interval (T > MIC) or the ratio of area Under the plasma Concentration curve over the MIC (*fAUC/MIC*); the second step is to determine the size of the selected index required to ensure clinical and bacteriological efficacy. The third step is to determine, using Monte Carlo Simulation, the highest possible MIC for which a given percentage of animals in the target population (e.g., a prediction interval of 95%) is able to achieve the selected PK/PD index.

CO_{WT}

COPD

CO

Breakpoints -- VetCAST approach

- 1. MIC distributions
- 2. ECOFFs
- 3. Resistance mechanisms and genes
- 4. Pre-clinical PK-PD
- 5. Clinical PK-PD (protein binding)
- 6. MIC versus clinical outcomes -

Susceptible -- standard dosing regimen (S)

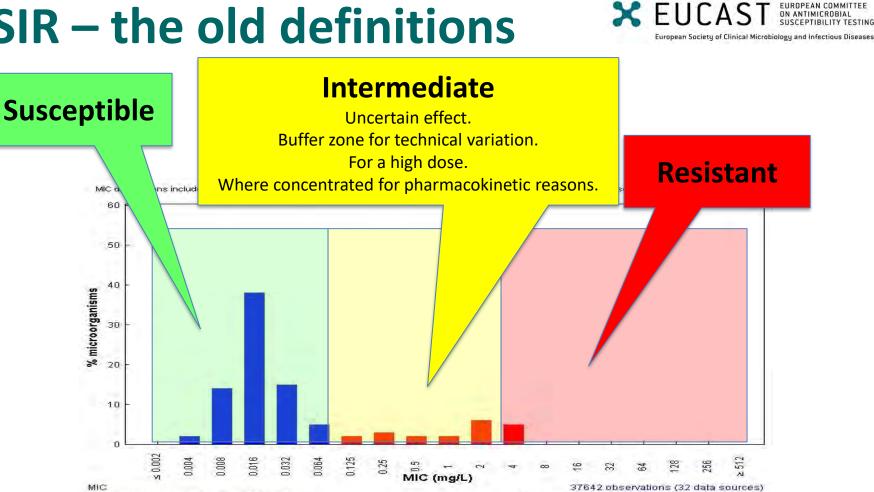
S - Susceptible, standard dosing regimen: A microorganism is categorised as *Susceptible, standard dosing regimen*,* when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.

* Exposure is a function of how the mode of administration, dose, dosing interval, infusion time, as well as distribution, metabolism and excretion of the antimicrobial agent will influence the infecting organism at the site of infection.

Susceptible -- Increased exposure (I)

I – Susceptible, increased exposure: A microorganism is categorised as *Susceptible, Increased exposure** when there is a high likelihood of therapeutic success because exposure to the agent is increased by adjusting the dosing regimen or by its concentration at the site of infection.

* Exposure is a function of how the mode of administration, dose, dosing interval, infusion time, as well as distribution, metabolism and excretion of the antimicrobial agent will influence the infecting organism at the site of infection.

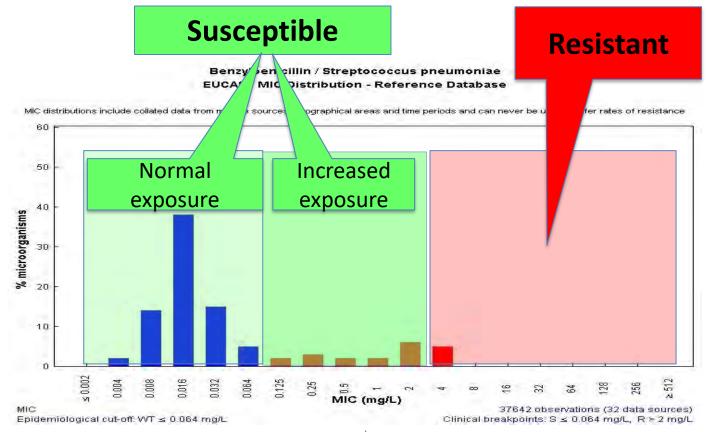

Resistant (R)

R - Resistant: A microorganism is categorised as *Resistant* when there is a high likelihood of therapeutic failure even when there is increased exposure*.

* Exposure is a function of how the mode of administration, dose, dosing interval, infusion time, as well as distribution, metabolism and excretion of the antimicrobial agent will influence the infecting organism at the site of infection.

SIR – the old definitions

Epidemiological cut-off: WT ≤ 0.064 mg/L



Clinical breakpoints: S ≤ 0.064 mg/L, R > 2 mg/L

www.eucast.org

SIR - new definitions 2019

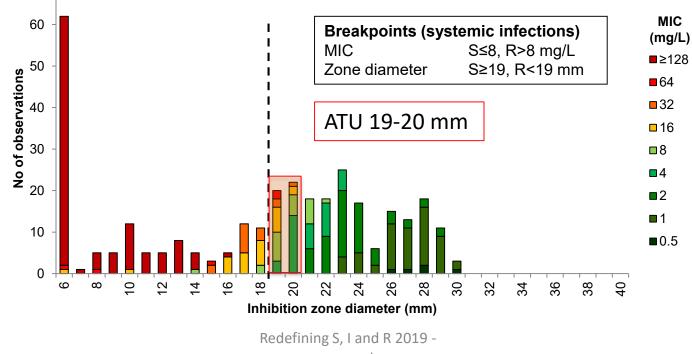
www.eucast.org

Area of Technical Uncertainty (ATU)

- EUCAST's ability to detect areas where the technical uncertainty is such that it seriously affect the predictive value of antimicrobial susceptibility testing (AST) has improved.
- In 2019 we introduce the term "ATU" in susceptibility testing where a <u>warning</u> is needed to alert the laboratory to the uncertainty of the AST result.
- The warning affects the laboratory, not the clinician, and the laboratory needs a strategy to (1) ascertain the correctness or (2) to report the uncertainty of the result.

Redefining S, I and R 2019 www.eucast.org

To ascertain correctness or uncertainty of AST results.


The warnings are typically in the form of a defined **MIC or inhibition zone interval** (overlap between susceptible and resistant organisms) where interpretation is uncertain. The warning is between the AST system and the laboratory and the laboratory needs to decide how to react to the warning.

Amoxicillin-clavulanic acid 20-10 µg vs MIC Enterobacterales, 325 isolates

MIC with fixed concentration of clavulanic acid at 2 mg/L

70

www.eucast.org

Take home message

Learn to love the numbers

What can we learn from One Health evaluation of interdisciplinary AMR research projects?

Liza Rosenbaum Nielsen, DrVetSci

Professor in Veterinary Preventive Medicine Department of Veterinary and Animal Sciences on behalf of the NEOH consortium

18 April 2019, Utrecht, ICOHAR conference

UNIVERSITY OF COPENHAGEN

Funded by Horizon 2020

Integrated approaches

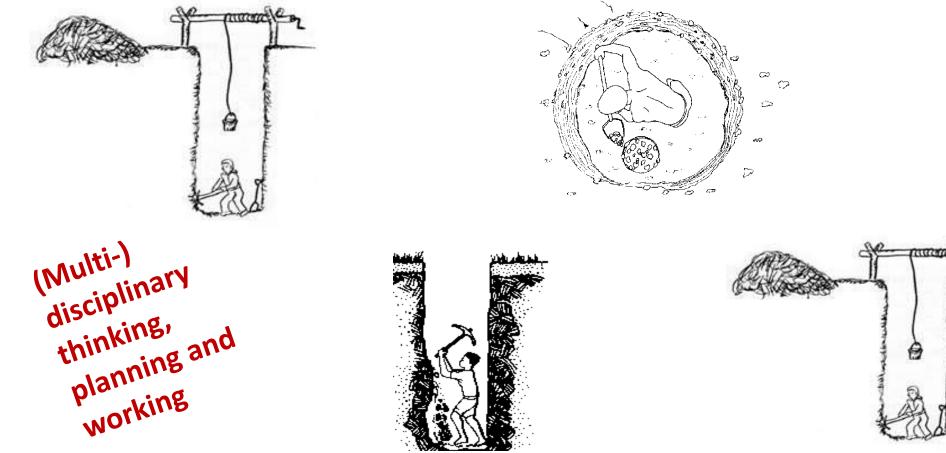
geningen Academia

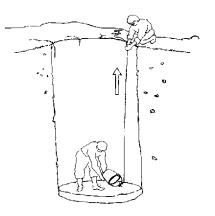
A handbook for the evaluation of One H

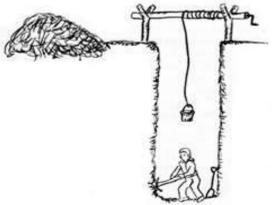
to health

Simon R. Roop

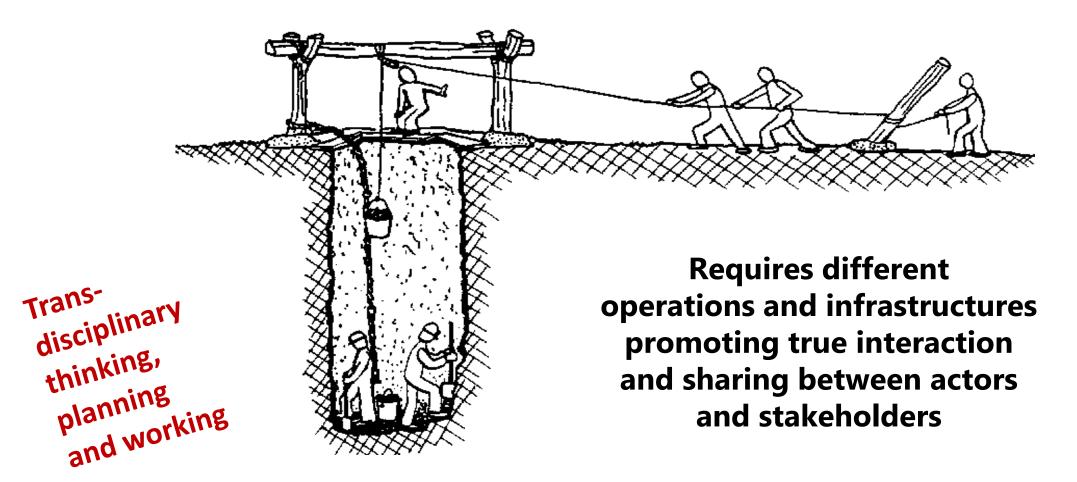
Thanks to two keynote speakers at ICOHAR


Professor Lloyd Reeve-Johnson (AUS):


- ✓ **Complexity economics** vs. classical economic view on health provision
- ✓ **Integrate** intervention in human, animal and environment simultaneously
- Key attributes in successful OH initiatives: inclusiveness, absence of hierarchy, adaptive thinking, agreed measureable end-points etc.
- ✓ One Health specialisation to develop understanding of multiple aspects of health (clinics, microbiology, epidemiology, health economics.....)


Professor Paul Flowers (UK): AMR is a biopsychosocial problem

- Psychosocial and sociocultural mechanisms spread through societies just like genes coding for AMR or resistant microorganisms do
- ✓ AMR is a systemic, complex problem -> requires systems thinking to tackle
- ✓ Focus on the intersections between disciplines and sectors allow time
- ✓ Professionalise **training** on systems approaches

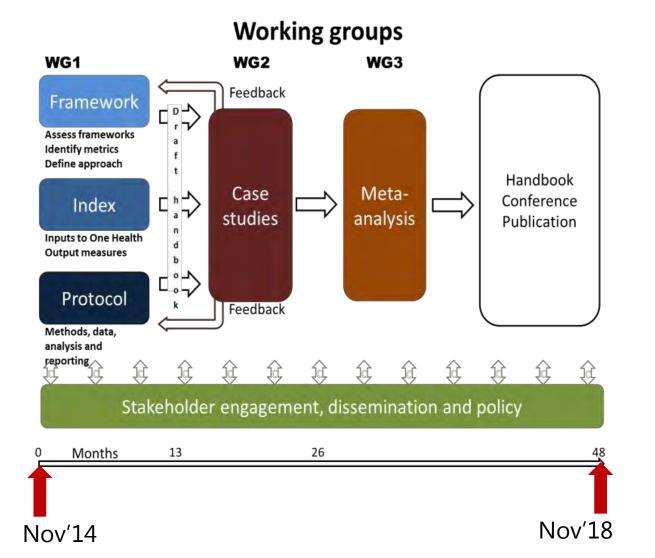

Rather than (only) digging more and deeper to gain new knowledge....

..... One Health initiatives need to (also) focus on (how to) bringing the knowledge into play

What is NEOH?

Network One Health consortium

~250 people ~29 countries 4-year project, 2014-2018



Leader: Barbara Häsler, RVC, London

What has NEOH done?

Activities

MC-meetings

WG-meetings

One training school/year

Short term scientific missions (grants)

Workshops

Stakeholder meetings

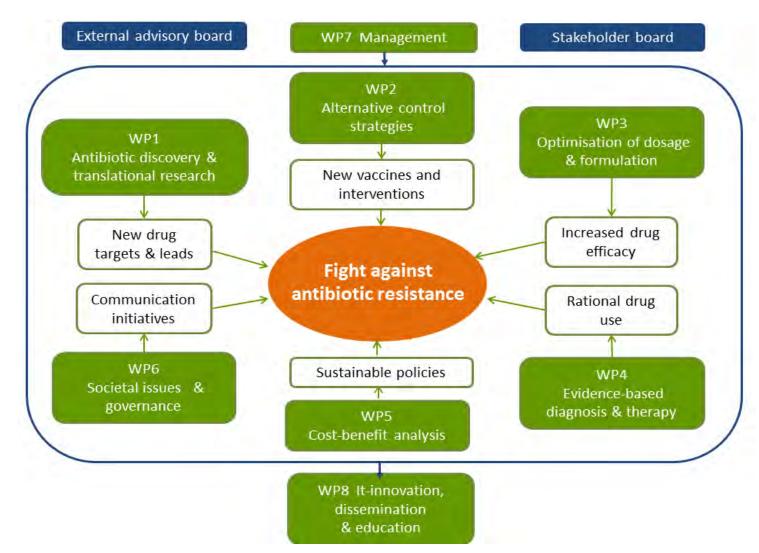
Final conference Sept'2018

Publications

(handbook, protocol, case studies, journal papers, conference talks and posters, flyers, films.....)

Special topic in Frontiers

'Concepts and experiences in framing, integration and evaluation of One Health and EcoHealth'

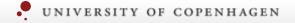

- ✓ Framework description paper
- ✓ 8 case studies exemplifying use of framework two on research projects
- ✓ Other papers on the One Health approach

<u>https://www.frontiersin.org/research-topics/5479/concepts-and-experiences-</u> <u>in-framing-integration-and-evaluation-of-one-health-and-ecohealth</u>

UC-Care: a One Health initiative - Research project

University of Copenhagen Research Centre for Control of Antibiotic Resistance

2012-2016


University funding for ambitious cross-faculty research 4 faculties, 14 departments

4.3 mill euro

Mainly PhDs and postdocs funded

One annual plenary seminar with scientific presentations

Evaluation of UC-Care – based on final report

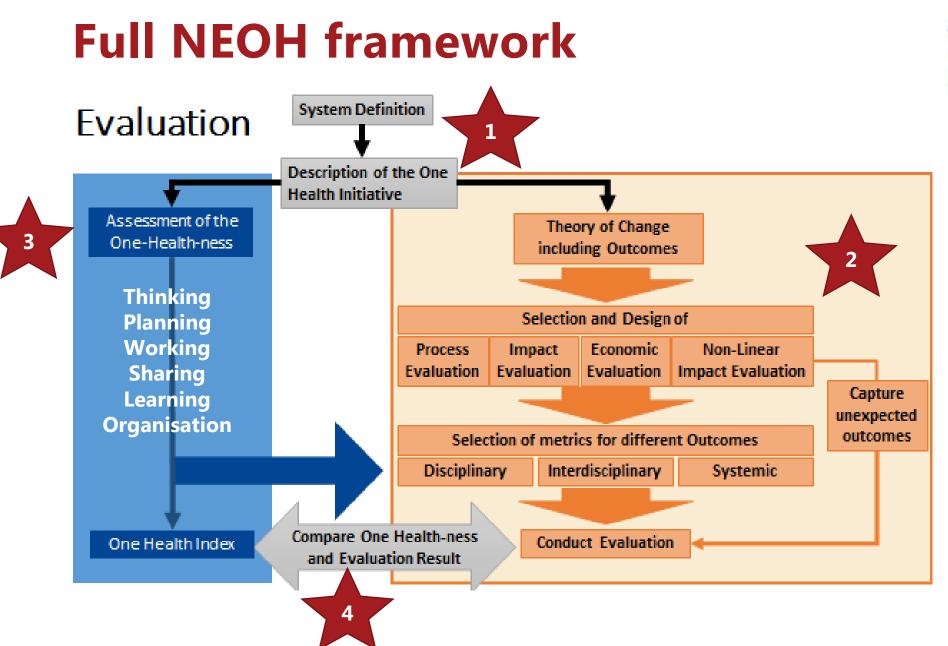
- **Excellence** in research: scientific discoveries and achievements
- Publications (quantity, ranking) >120 peer-reviewed journal papers plus books, conference proceedings, presentations etc.
- Capacity building: Students (21 PhD's), 12 Postdocs, new PhD course, joint med-vet mandatory course module (2¹/₂ days)
- New tools or products (yes), patents (yes) plus continued research (33M+ euro)
- **Collaboration**: e.g. international (yes), industry (yes: pharma, farming)
- Effect on further research or other stakeholders: YES: professionals, legislation
- Societal impact: Ministerial Council members, guidelines on use of AM
- **Public outreach**: yes Euro Science Open Forum stand, debate meetings and panels, public events, focus groups, farmer meetings, newspaper articles on AMR

IN CONCLUSION A VERY SUCCESSFUL RESEARCH PROJECT!

CAN WE LEARN MORE?

EVALUATION OF ONE HEALTH USING THE NEOH APPROACH

One Health initiatives


e.g. development projects, educational programmes research projects , cross-sectorial and governance campaigns, surveillance, control programmes

OH initiatives have common, identifiable <u>operating principles</u> i.e. characteristic **thinking, planning and working**

<u>supported by infra-structures</u>: **sharing, learning and systemic organisation**

NEOH-tools for operations and infrastructure evaluation

	Bad Fundanciy	Wohd Uppertink	NewTool) (Ingel)	Cathanistan Jinkee Celli		- 2.0	start - Ar Ar + Santa Trata - Tray	
	2	- 25						
8	C	D	E	F	G	н	1 2	K
	-	_						_
Drive	rs	E	voluti	on of One	Healt	h	Outcomes	
	One Health Operations							
Social	Economic Clicbally Common Arms. Transdscription				Handblick Weithann			
Econor				risciplinary				
		 Multisectorial Financing +Teamwork 			StargiferOwn(ta)			
Environ	omental	•Mult	tple scales.		+Parti	opation	Ethicity options &	
			10	1.1	1.1			
			1000	and the set				
				1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		-		
		100	3					
		Sharing						
		•Knowledge	+Vinit	ILISCIC Memory	+Hoh Ca	intrainitivity.		
		+Etg#						
	Supporting Infrastructures							
	_		ouppo	and mussel				
	Drive Social Econor	B C Drivers Social Economic Environmiental	B C D B C D B C D Brivers Social Economic Cite Multi Environmental Sharing -Outo -Star -St		Name Name Name Image: Name Name Image: Name Name Image: Name Image: Name Image: Name <td< td=""><td>Number Number Number Number B C D E F G Evolution of One Healt Drivers Social Disclarity -Social Evolution of One Healt Drivers Disclarity -Social Evolution of One Healt Disclarity -Social Disclarity -Social Planning -Social Environmental Planning -Social Planning -Social Bitaring -Social Environmental Planning -Social P</td><td>Note Note Note</td><td>Name Name Name</td></td<>	Number Number Number Number B C D E F G Evolution of One Healt Drivers Social Disclarity -Social Evolution of One Healt Drivers Disclarity -Social Evolution of One Healt Disclarity -Social Disclarity -Social Planning -Social Environmental Planning -Social Planning -Social Bitaring -Social Environmental Planning -Social P	Note Note	Name Name

Handbook Excel-tool

Interviews

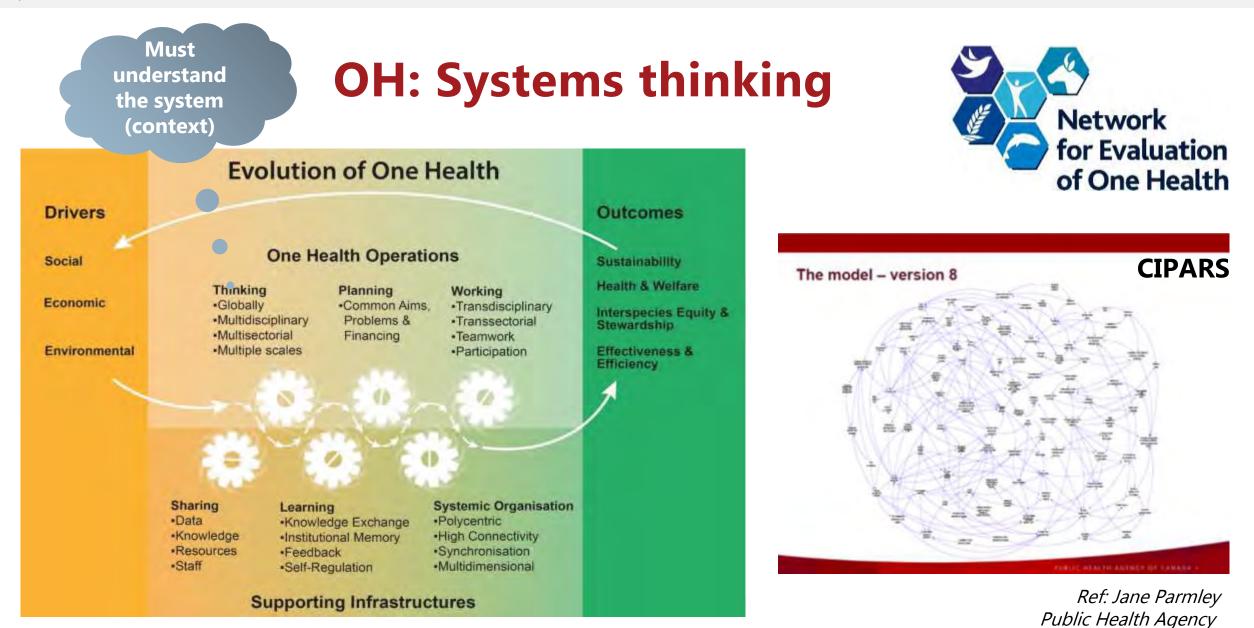
Study proposals

🛚 💶 🕨 📕 Info-sheet / Thinking / Planning / Working / Sharing / Learning / Syst. Organisation / OH-Index Ratio / 💱

External evaluation of UC-Care by Anaïs Léger from SAFOSO + ECVPH Trained for One Health evaluation in NEOH

Funding proposal, publications and internal documents, mid-term evaluation report

1 hour semi-structured interviews with key consortium members



Focus group meetings with PhDs and Postdocs in UC-Care

Online questionnaire for external participants and stakeholders

UNIVERSITY OF COPENHAGEN

of Canada, 2018

Rüegg et al. (2017) A Blueprint to Evaluate One Health, Frontiers of Public Health

One Health thinking

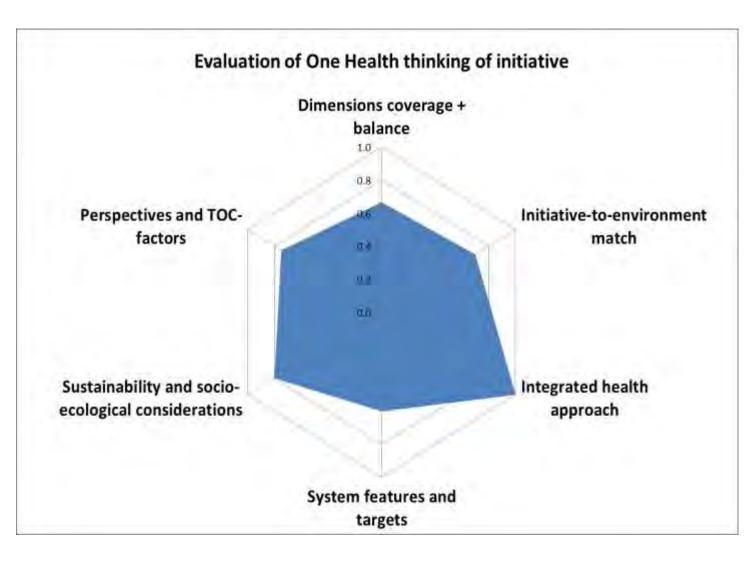
Systems thinking – is there an understanding of the context? What feature of the system is targeted by the initiative?

Dimensions and scales in system and initiative – do they match?

 \rightarrow Integrated approach to health?

Development over time, delayed effects, feedback loops considered?

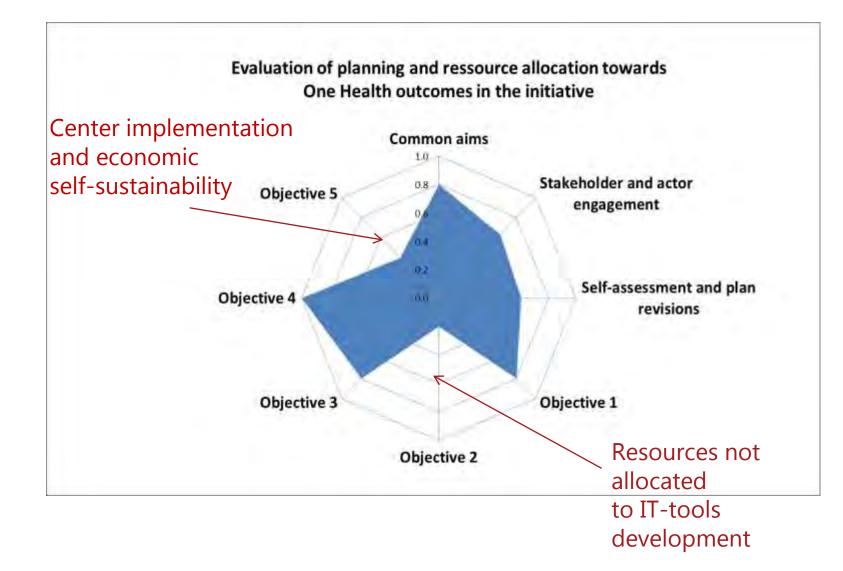
The **three pillars of sustainability** considered?


 \rightarrow Ecosystem/environmental, economic and social Hierarchies in socio-ecological systems acknowledged and used? **Beliefs** about evidence, values about health, cultural grounding considered? IT TAKES <u>TIME</u> TO DEVELOP

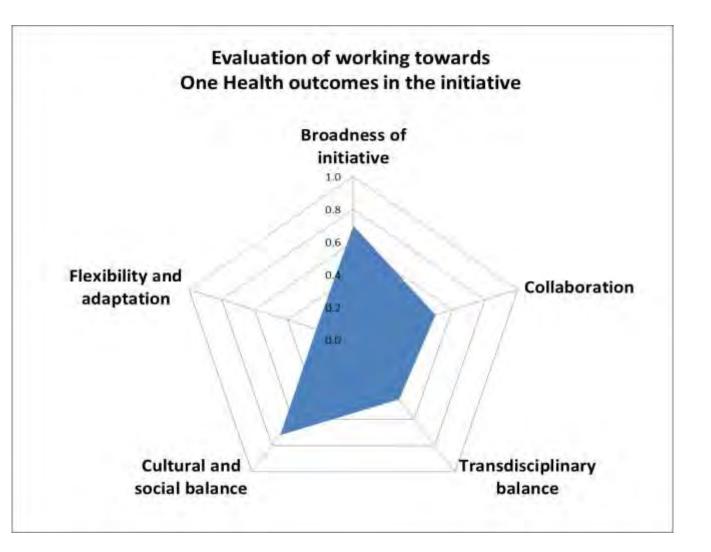
All essential **stakeholders**' **perspectives** considered?

SYSTEMS THINKING!

One Health thinking in UC-Care?

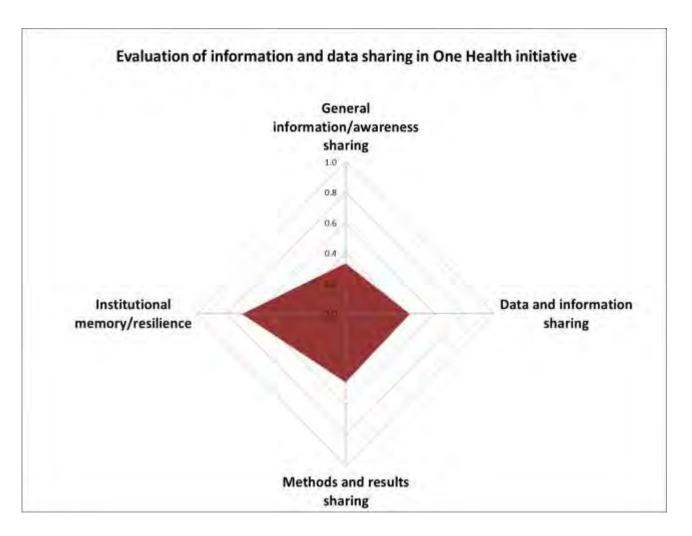


Qualitative assessment comments provided in Excel tool and published with the paper


an Victoritização an	2	1 martine and the second secon
	A One Health Evaluation of the University of Copenhagen Research Centre for Control of Antibiotic Resistance	
	ana dan' menena ila manjarahan kanan 'ana ana Panan'	
	In the second s	

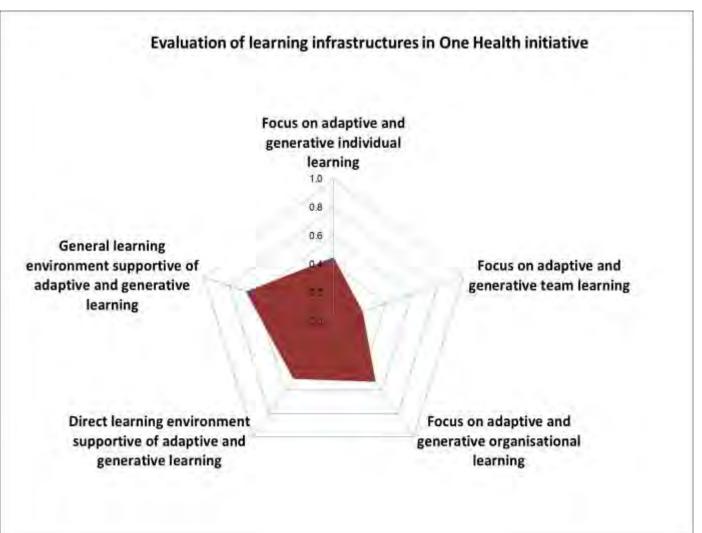
NEOH-evaluation of One Health operations - PLANNING

NEOH-evaluation of One Health operations - WORKING



Most resources tied in PhD's and Postdocs with fixed objectives

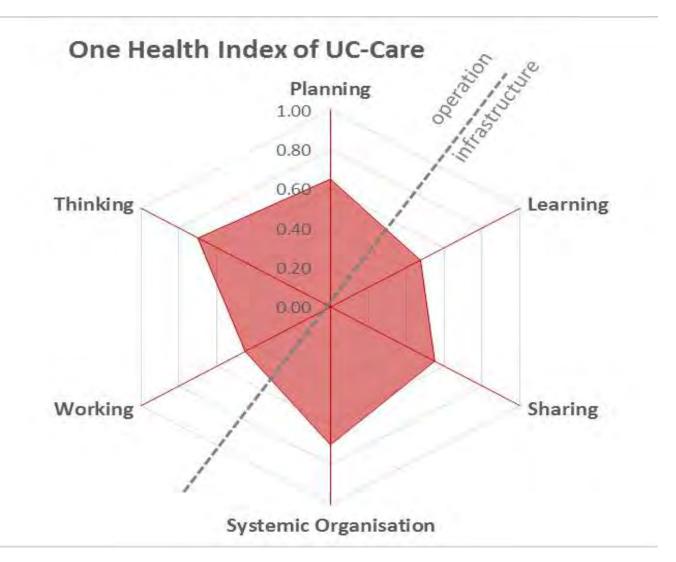
No resources for adaptive activities + sharing and learning activities within the consortium – little collaboration between work packages E.g. staff exchange


Socioeconomic research and public outreach / implementation under-prioritised (lack of funding)

NEOH-evaluation of One Health infrastructure: SHARING

NEOH-evaluation of One Health infrastructure: LEARNING

NEOH-evaluation of One Health infrastructure – **SYSTEMIC ORGANISATION (LEADERSHIP)**



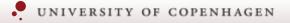
Gender imbalance Teams ok within work packages not between WPs / across consortium

Early career investigators not interacting OH perceived as 'only for senior scientists'

NEOH-evaluation of One Health-ness: UC-CARE

In conclusion: UC-Care was a very successful interdisciplinary project

However, evaluating One Health operations and infrastructure led to insights not provided by conventional research evaluation.


Missed opportunities and potentials? Innovation? Impact in the long term?

One Health Index	0.34
One Health Ratio	1.1

What can we learn from OH evaluation of interdisciplinary research projects?

- ✓ Sharing essential for learning within and out of initiative IMPACT
- ✓ **Adaptive** planning and shared leadership CHALLENGE FOR ACADEMIA?
- ✓ Reflection: External evaluation vs. internal/self-evaluation LEARNING
- ✓ Evaluation is a learning experience in itself FUTURE PLANNING
- ✓ Systems thinking takes time to get used to and to do RARELY FUNDED
- Easier to think about characteristics of the initiative than to think about how the initiative fits and targets elements in its' context -> ONE HEALTH!
- ✓ The NEOH framework and tools facilitate more holistic evaluation than more traditional research evaluation – ADAPT ACADEMIA?

to health

THANK YOU FOR LISTENING

WANT TO JOIN NEOH?

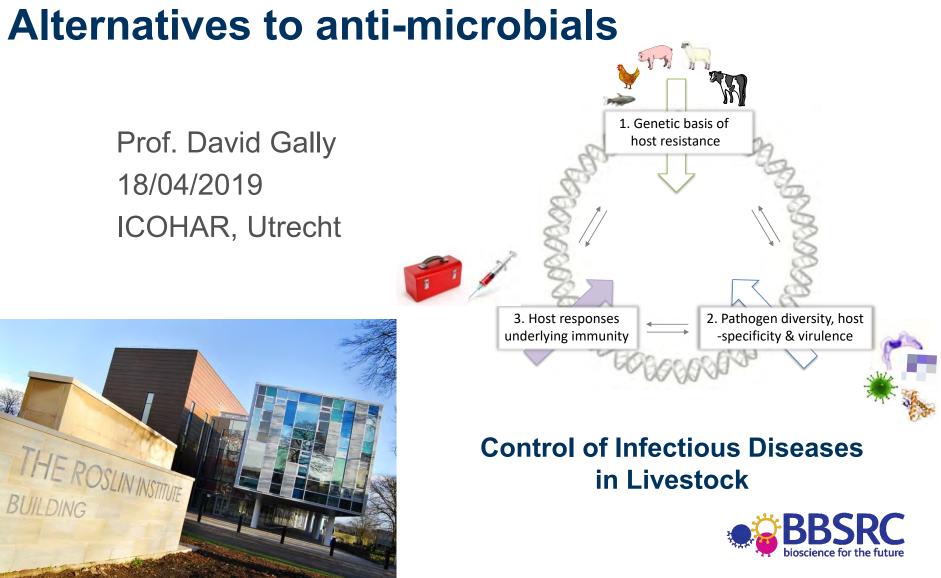
NOW: NETWORK FOR ECOHEALTH & ONE HEALTH

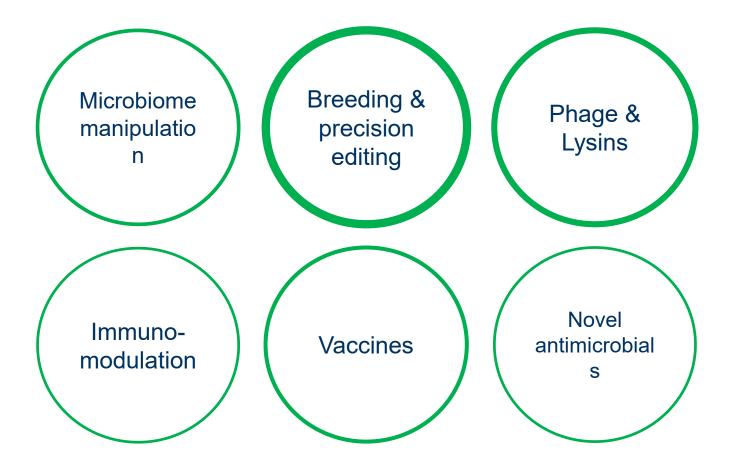
EUROPEAN CHAPTER OF ECOHEALTH INTERNATIONAL

HTTP://NEOH.ONEHEALTHGLOBAL.

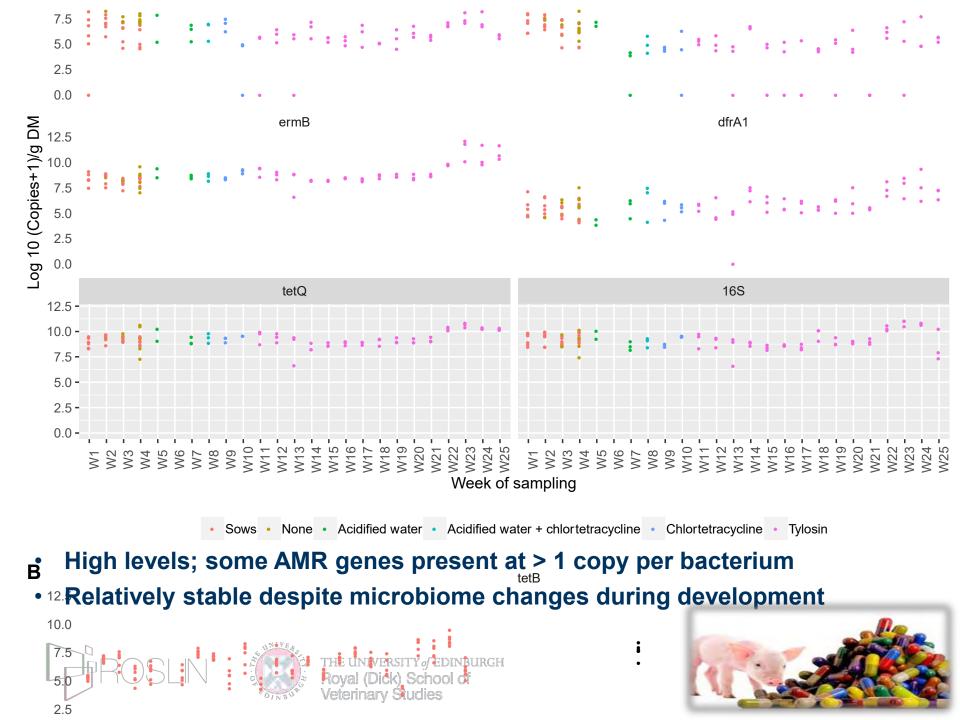
NET/CONTACT-AND-HOW-TO-JOIN/

Working groups:


Theoretical dimension of One Health & EcoHealth Gender issues in One Health Transdisciplinarity in health sciences Education, training and capacity building



THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

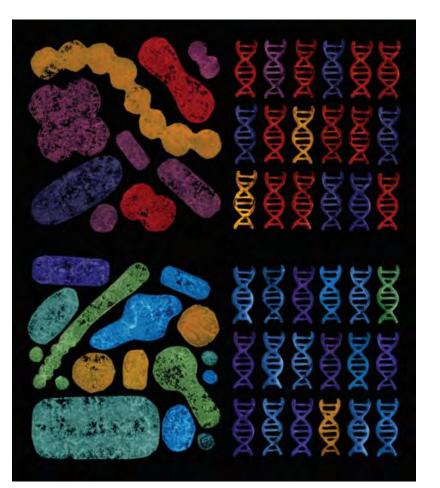

Alternatives to existing anti-microbials

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

Main issues

- Pressure to reduce or even eliminate antimicrobial use.
- In example system; reduce use > disease.
- The antibiotics still work.
- Break the pattern: High health status.
- Pathogens are still the driver for use:

Biosecurity, Epidemiology, Accurate diagnosis Targeted treatments

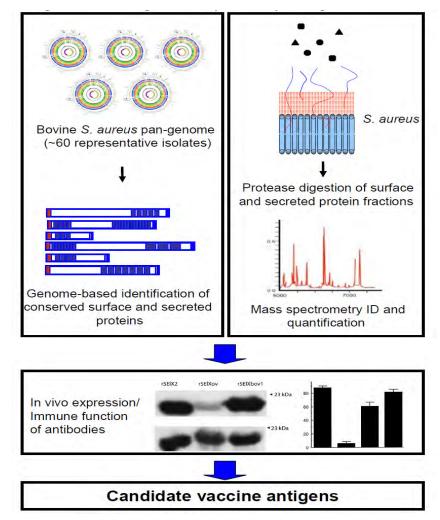


Microbiome manipulation

- Altered diets: additives, preand pro-biotics to manipulate the microbiome
- Provide resilience to disease and yet improve feed conversion?
- Could a 'low AMR flora' be introduced after birth?
- Interactions with animal genetics and local environments
- Need the data then
 interrogate it

Vaccine development in food-producing animals

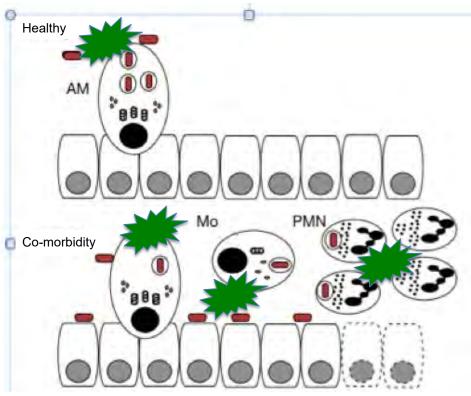
- Chickens: E. coli, IBDV, C. perfringens, Eimeria, IBV.
- Swine: S. suis, H. parasuis. P. multocida, M. hyopneumoniae, A. pleuropneumoniae, PRRSv, SIV. E. coli, L. intracellularis, Brachyspira spp, Rotaviruses
- Aquaculture: *Aeromonas* spp, *Pseudomonas* spp, *Streptococcus* spp, *Vibrio* spp.
- Cattle: Mastitis, respiratory disease complex organisms, lumpy skin disease virus



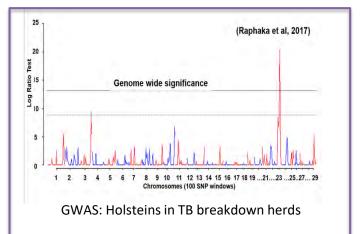
From Hoelzer *et al* 2018. Vet Res: 49:64

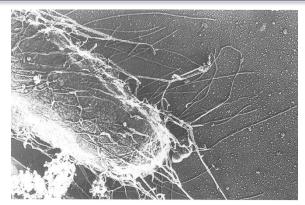
Vaccines: opportunities & hurdles

- Epidemiology and WGS.
- Autogenous vaccines.
- Live vectors to stimulate
 immunity
- Poor knowledge of immunity in some production species,
- Toolbox needs
- Species-specific adjuvants
- 'Marked' DIVA vaccines & diagnostics



Immuno-modulation


- Enhance the hosts (innate) response
- Augment responses to aid pathogen clearance & reduce pathology.
- Enhance macrophage microbicidal mechanisms

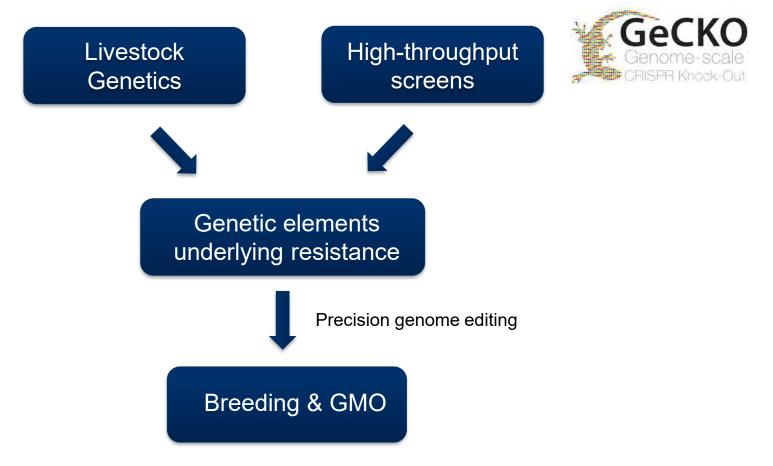


- Restrict negative consequences of excessive microbicidal generation
- Repurposed drugs targeting specific pathways

Breeding for resistance to infectious diseases

- BovineTB: Sire index used
- Swine resistance to Enterotoxigenic *E. coli* (adhesins)
- Avian resistance to Campylobacter and Eimeria
- Ovine resistance to parasites
- Extensive opportunities in aquaculture

Atlantic salmon susceptible



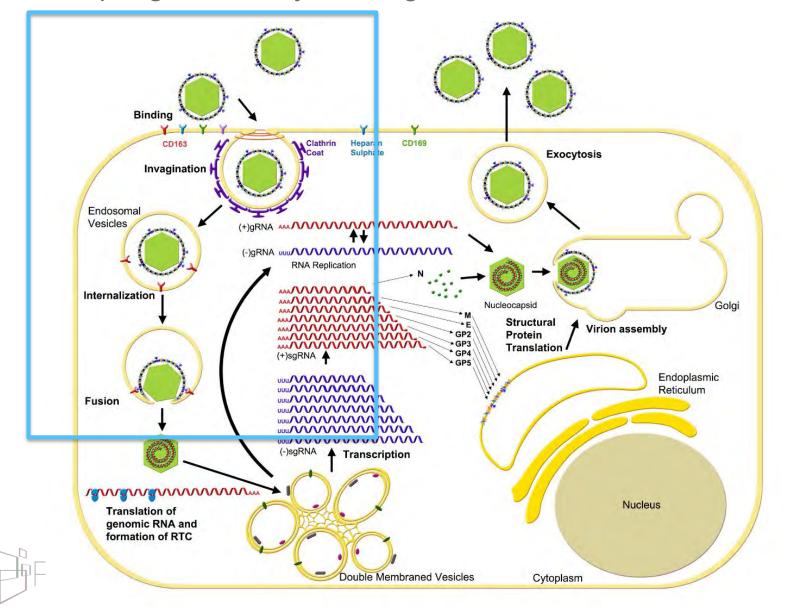
Coho salmon resistant

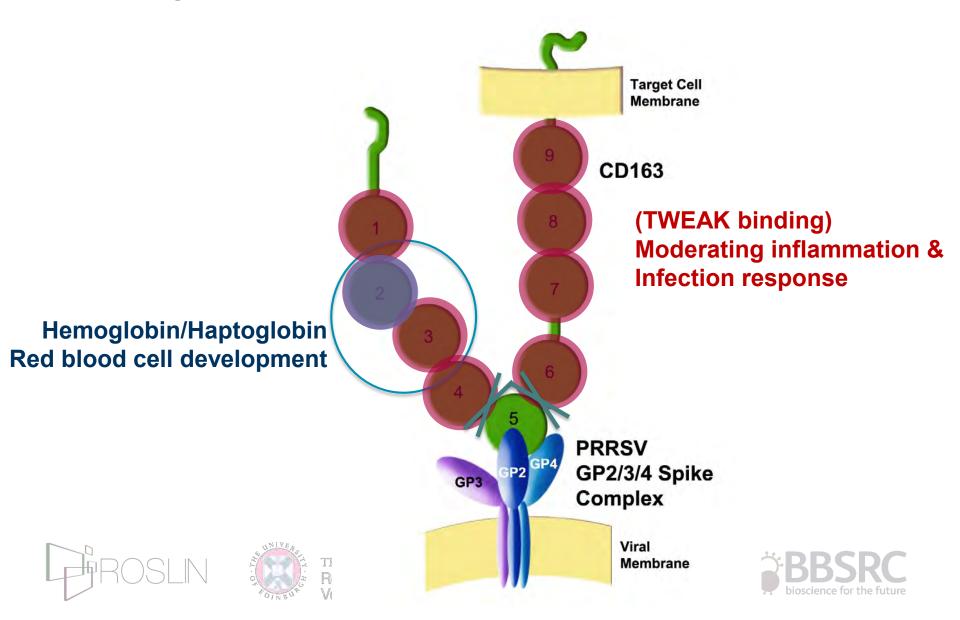
Host-pathogen Genome-Wide Screens

Genome wide Crispr KO libraries

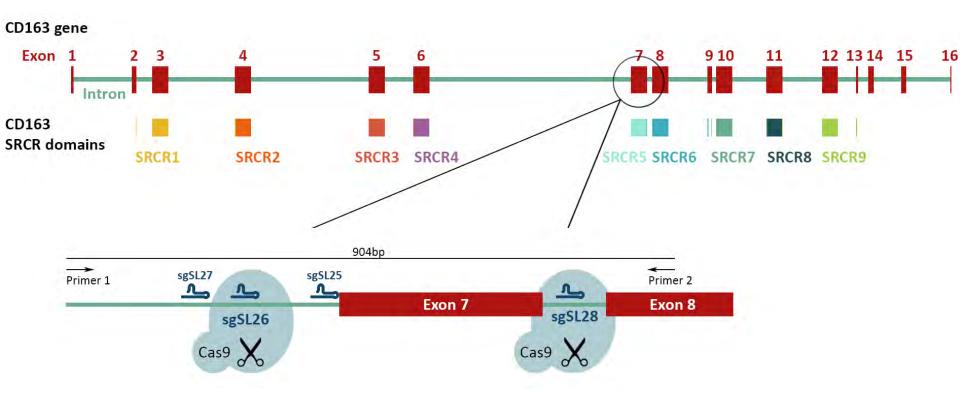
Editing for disease resistance in pigs Porcine Reproductive and Respiratory Syndrome

- Symptoms: inappetence, fever, lethargy, respiratory distress
 Decreased growth rate / efficiency
- Mainly affects pre-weaned piglets
 - Diarrhea, severe respiratory distress
 - Fatality rate: 40-100% (strain dependent)
 - and pregnant sows
 - Displacement of placenta
 - Complete abortion or death and mummification in utero
 - \rightarrow Loss of animals / Food waste in the production chain
- Strong immunomodulation during infection
 - Increased susceptibility to infection with other pathogens




PRRSV Replication Cycle

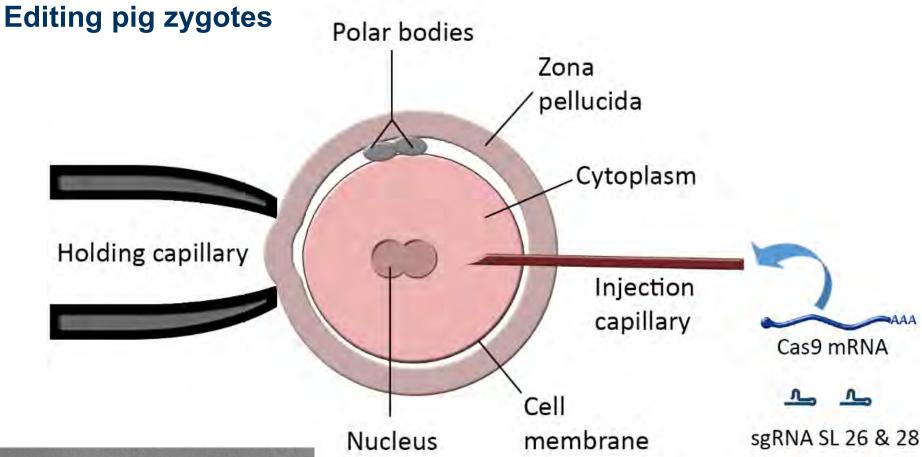
In macrophage / monocyte lineage host cells


Interaction of PRRSV with CD163

and biological function of CD163

Excising domain 5 from the pig genome

using genome editors

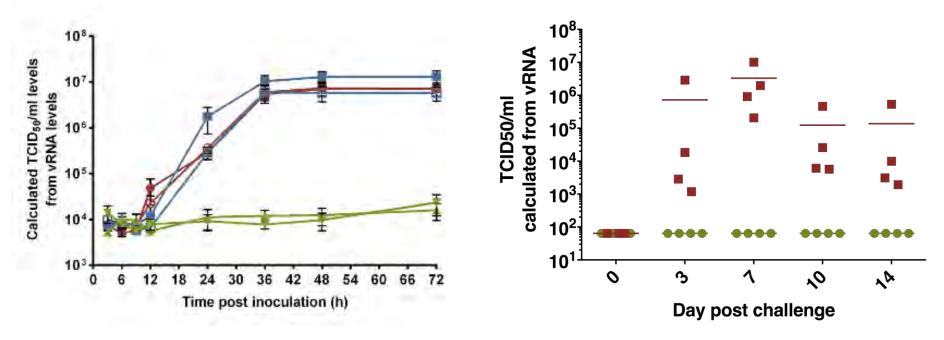




THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

Microscope image of microinjection in pig zygote

e UNIVERSITY of EDINBURGH yal (Dick) School of terinary Studies



In vitro resistance in pigs

replication of PRRSV-1 in macrophages

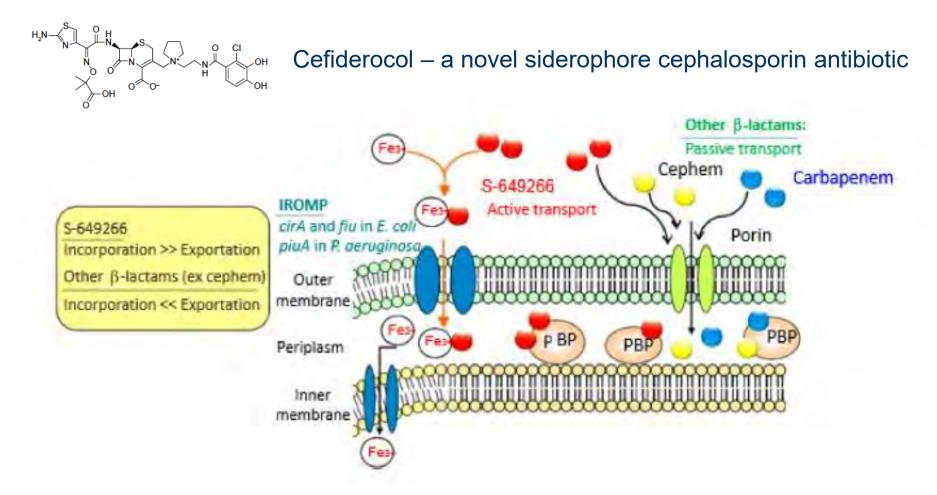
functions

In vivo resistance in pigs replication of PRRSV-1 in pigs: serum levels


- Pigs lacking domain 5 of CD163 are resistant to PRRSV infection
- CD163 is still expressed and maintains it's main biological

Pigs lacking domain 5 grow and breed normally: the pigs are

Targeted killing of pathogens


- Bespoke approaches that are enabled by accurate identification of the pathogen
- Real-time diagnostics informing different types of treatment
- Trojan horse anti-bacterials
- Anti-virulence/pacification strategies
- Phage therapy revisited based on prediction of phage activity from WGS

Trojan Horse Antibiotics: siderophore conjugates

Tillotson. 2016 Infectious Diseases: Research and Treatment 2016:9 45–52. Carvalho & Fernandes. *Front Microbiol*. 2014; 5: 290. PMID: 24971080 THE UNIVERSITY of EDINBURGH

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies



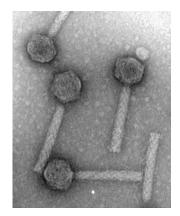
Anti-virulence compounds

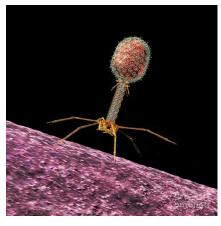
Specific pathogen Defined virulence interaction factor

Identified inhibitor e.g. Aurodox

Activity in vitro & in vivo

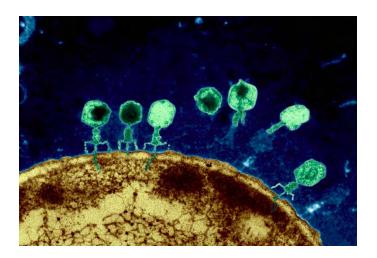
Thanks to Andrew Roe & Rebecca McHugh, University of


Glasgow



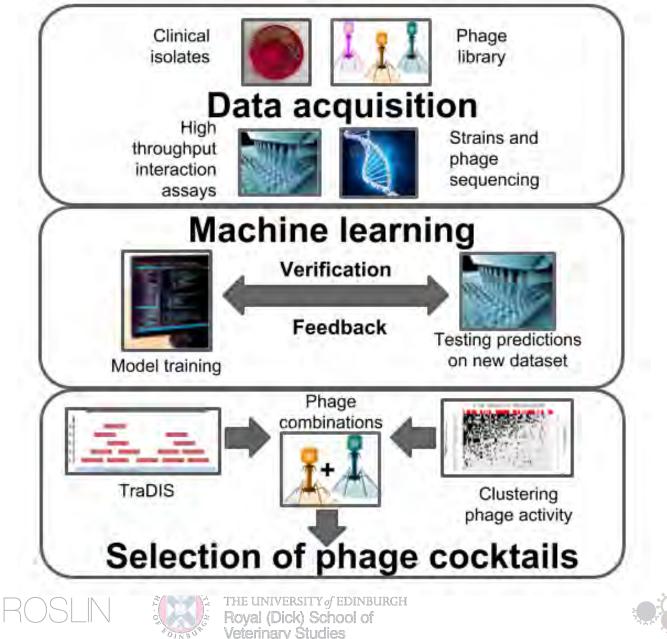
Alternatives to conventional antibiotics

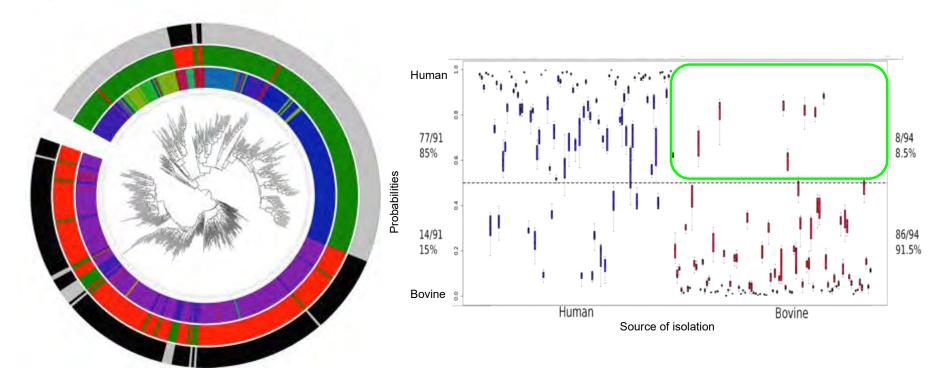
- Antibodies
- Probiotics
- Lysins
- Wild Bacteriophages
- Engineered phages
- Immune stimulation
- Vaccines
- Antimicrobial peptides
- Host/innate defense peptides
- Antibiofilm peptides


Czaplewski, Bax, Clokie, et al. (2016). Alternatives to antibiotics-a pipeline portfolio review. Lancet Infectious Diseases

Phage treatment of bacterial infections

The **biology** - a complex and continually evolving predator-prey relationship between a potentially infinite number of phages and bacteria


The **economics** - an 'open source' product that can be easily copied with minimal know-how, tough to standardise & regulate



Predictive phage therapy workflow

Accuracy of prediction: T4 phages on *E. coli* O157

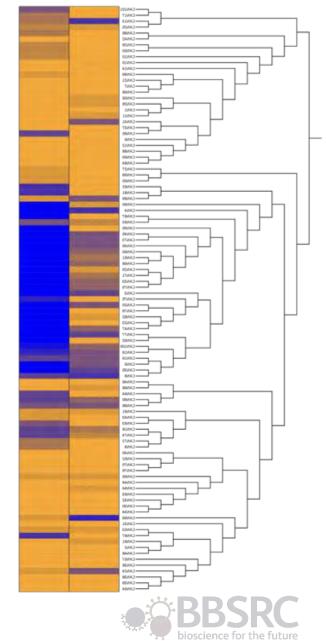
427 *E. coli* O157 isolates. Inner ring is phage type.The middle ring phage resistance (red) or susceptibility (green)The outer ring shows the SVM prediction: resistant- black;, susceptible-grey.

94-97% accurate for 6 phages

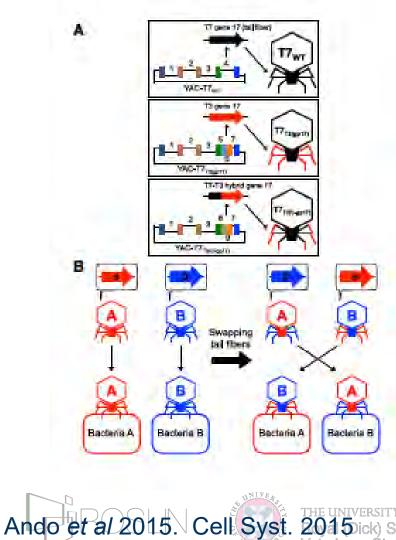
Canine chronic UTIs

Targeting MDR chronic UTIs associated with *E. coli*

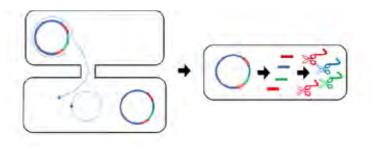
Local epidemiology of isolates


TraDIS for mechanisms

Training set – ex vivo?



A P


Modified Phage and targeted CRISPR

Phage tail switching

23;1(3):187+

CRISPR-delivery into bacte

CRISPR gene + guides transferred into bacteria by conjugation or phage (phagemids)

Target AMR or virulence factors

Nemesis Bioscience Cambridge UK) BBSRC

Summary

- Targeting infectious disease
- Major gains from system management
- Fundamental understanding of pathogen & host interactions, basic immunology & epidemiology
- Vaccines & adjuvants
- High throughput screens are powerful approaches for the identification of key pathogen and host determinants
- Breeding or manipulation for resistance/resilience
- Computational tools for complex datasets analysis
- Combined treatments to match accurate (genomebased) diagnostics

Acknowledgments

PRRSv resistance

Christine Tait-Burkard

- Alex Brown
- Seema Jasim
- Elle McLuskey ۲
- Marie O'Shea
- Alan Archibald
- Simon I illico
- **Bruce Whitelaw**
- Tahar Ait-Ali •
- Tanja Opriessnig
- Chris Proudfoot
- Tim King
- **David Davies**
- Eddie Clutton

GECKO libraies

Finn Grey

Bruce Whitelaw

- **Oliver Lin** •
- Stephen Chiweshe
- Abraham Lee
- Kenny Baillie
- Paul Digard
- Tim Regan
- **Bob Dalziel**
- Spring Tan

Funding NERC Wellcome Trust MRC **BBSRC**

Jolinda Pollock

AMR pig farm

Alex Corbishley

- Mike Hutchings
- Nadejda Lupolova
- Geoffrey Mainda
- Barend Bronsvoort,
- Laura C. Duggan

Phage research

Alison Low (Tidswell) Nadejda Lupolova

Transmission of CMY-2-producing *Escherichia coli* ST405 between humans and companion animals in South Korea

<u>W. Song</u>¹, J.S. Hong², H.-M. Park³, J.Y. Oh³, J.-C. Chae⁴, J.-I. Han⁵ ¹Department of Laboratory Medicine, Hallym University College of Medicine, ²Department of Laboratory Medicine, Yonsei University College of Medicine, ³Department of Veterinary Internal Medicine, Konkuk University College of Veterinary Medicine, Seoul, ⁴Division of Biotechnology, ⁵College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea

Antimicrobial-resistant (AMR) Enterobacteriaceae are an emerging problem in human and veterinary medicine. We collected the microorganisms from rectal swab of 431 companion animals (361 dogs and 70 cats), 198 feces of humans (93 staffs and 105 guardians), and 384 environmental samples in 36 veterinary hospitals and 14 households for 2 years (2017 - 2018) in South Korea. The samples were enriched and selected on CHROMagar ESBL®. Bacterial identification and antimicrobial susceptibility testing were performed by MALDI-TOF MS and disk diffusion method, respectively. The presence of extended-spectrum beta-lactamase (ESBL) and AmpC genes was tested by PCR and DNA sequencing. The strains were assessed for their genetic relatedness by multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The total of 267 cefotaximenonsusceptible Escherichia coli was recovered. Of these organisms, the most common genotypes were CMY-2-like [29.6%, n=79/267 (57 dogs, 8 cats, 7 humans, and 7 environments)]. The eleven CMY-2-producing E. coli isolates were classified into sequence type (ST) 405 by MLST which were recovered from humans (n=4), companion animals (n=6), and environment (n=1) with more than 86% similarity on PFGE. Notably, when performed PFGE with four known CMY-2-producing E. coli ST405 collected from blood sample in human patients, they showed also close relationship with the 11 isolates. The results indicate active transmission and dissemination of AMR E. coli among humans and companion animals. Therefore, a One Health approach integrating human and companion animal surveillance data is essential to understand the root of antimicrobial resistance and develop effective prevention and control strategy.

Evaluating Antimicrobial Stewardship Policy from a One Health Perspective: A Conceptual Framework for Quantitative Evaluation

<u>N. Naylor</u>, J. Lines, J. Waage, G. Knight London School of Hygiene & Tropical Medicine, London, United Kingdom

Background: Antimicrobial resistance is an issue that requires urgent cross-disciplinary action. Evaluating the full impact of new control measures, such as antimicrobial stewardship (AMS), requires a One Health perspective with multiple angles to account for interacting complexities. To inform the design of future evaluations we performed a literature search to determine what quantitative evaluations for interventions related to issues that potentially impact human health, agriculture and the environment (such as climate change) have been utilised previously. Using this, we propose a new framework of quantitative evaluation of AMS.

Methods: WebofScience, EconLit and Google were searched with combinations of "one health", "economic", "evaluation", "health", "agriculture" and "climate change" in August 2018, to collate previous evaluations. Literature reviews on AMS impact within human health and agriculture, respectively, were consulted to extract relevant outcomes needed from future AMS evaluations. **Results:** 1244 unique abstracts were retrieved from the structured literature search. After two rounds of review (title/abstract and full text), 36 previous evaluations were included. The most commonly utilised methods included general equilibrium or systems approaches. Proposed outcomes include epidemiological measures, human morbidity and mortality measures, intervention cost to individual sectors and productivity measures. The proposed framework links together mathematical epidemiological, microeconomic and macroeconomic impact models, to provide the impact of AMS interventions on the aforementioned outcomes. A long time-horizon (100 years) is recommended. **Conclusion:** Quantitative evaluations of AMS policy, utilising the proposed framework, will help stakeholders across the One Health system have the information needed to efficiently tackle the issue of antimicrobial resistance.

Comparison of antimicrobial susceptibility in staphylococci from first-time canine pyoderma cases versus staphylococci from cases submitted for routine diagnostics

<u>E.M. Broens</u>¹, M. Gonggrijp², M. Biesheuvel², J. van Hout², M.A.M. van Dijk¹ ¹Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, ²GD Animal Health, Deventer, The Netherlands

Pyoderma is a common condition in dogs caused by staphylococci and often treated with antimicrobials. For a good empirical choice, data on antimicrobial resistance in staphylococci from pyoderma cases is needed. Most resistance data are obtained in a passive way from routine diagnostic laboratories. Submissions to these laboratories might be biased towards samples from recurrent cases possibly affecting antimicrobial resistance prevalence.

The aim of this study was to assess whether the prevalence of antimicrobial resistance in staphylococci from first-time canine pyoderma cases differs from the prevalence in staphylococci from canine pyoderma cases submitted to routine diagnostic laboratories.

From February till August 2018, companion animal veterinarians were requested to submit samples from first-time canine pyoderma cases before antimicrobial treatment ('active monitoring') to the Veterinary Microbiological Diagnostic Centre (VMDC) from Utrecht University for bacteriological examination and determination of minimal inhibitory concentrations (MICs). Samples from canine pyoderma cases submitted to the VMDC for routine diagnostics ('passive monitoring') during the study period were used for comparison.

Active monitoring resulted in 58 staphylococci isolates, passive monitoring in 148 staphylococci isolates. MICs of actively and passively obtained staphylococci showed significant differences in resistance prevalence for four of the nineteen antimicrobials tested: chloramphenicol (17.2% vs. 31.7%), clindamycin (15.5% vs. 33.1%), kanamycin (17.2% vs. 41.5%) and erythromycin (17.2% vs. 38.7%).

This study shows that the prevalence of resistance for clinically relevant antimicrobials (e.g. clindamycin is the first choice for the treatment of canine pyoderma according to Dutch guidelines) might be overestimated when data from routine diagnostics are used.

Disclosure: This pilot study was part of the VETMAP project funded by the Dutch Ministry of Agriculture, Nature and Food Quality.

Colistin susceptibility profiles of *E. coli* from intensive and natural pig farms in Thailand <u>P. Amavisit¹</u>, P. Ketkhao², S. Thongratsakul³, P. Poolperm³, C. Poolkhet³

¹Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University Bangken Campus, Bangkok, ²Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, ³Faculty of Veterinary Medicine, Kasetsart University, Kampangsaen Campus, Nakhon Pathom, Thailand

In Thailand, pig farms have different farming systems for example the differences of health management programs, and the use of antimicrobials. Colistin was used in pig farms in several countries for more than two decades. Recently WHO was reclassified colistin as a very high important human medicine because it is a last resort treatment option for multidrug resistant bacterial infection. In this study *E.coli* collected from healthy pig feces and farm environmental samples of four pig farms that had different farming system, were tested for colistin minimum inhibitory concentration (MIC) and amplified for plasmid mediated colistin resistance genes, *mcr-1* and *mcr-2*. Comparison of the resistant rates, a common intensive farm (Farm A) had significantly higher rate than an intensive farm without using colistin (Farm N) (*P*< 0.05). However the resistant rate of Farm A was significantly lower than Farm L that was an intensive farm with low biosecurity system. Interestingly the rates of resistances between Farm A and Farm S (small scale natural farming without using vaccine and antimicrobial) were not different. Colistin resistant rates of *E. coli* from Farm A, N, L and S were 58.1%, 14.3%, 84.6% and 41.8% respectively. In each MIC levels, the detection of *mcr-1* were not significantly different (*P*>0.05).

Detection and molecular characterization of SHV beta-lactamases-producing *E. coli* from German livestock and meat

G. Zhao¹, J.A. Hammerl², B.-A. Tenhagen², S. Schmoger², M. Grobbel², A. Käsbohrer^{2,3}, <u>A. Irrgang²</u> ¹China Animal Health and Epidemiology Center (CAHEC), Qingdao, China, ²Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany, ³University of Veterinary Medicine/Institute for Veterinary Public Health, Vienna, Austria

Resistance of bacteria to 3rd generation cephalosporins mediated by beta-lactamases (ESBL, pAmpC) is a public health concern. In livestock, CTX-M-1 is the most common ESBL in Germany, but in poultry production SHV beta-lactamases are also widespread. In this study, *E. coli* isolates obtained within the German monitoring on zoonosis in 2016 and 2017 were screened for the presence of *bla*_{SHV} genes. The enzyme variants were determined by PCR sequencing. Further molecular characterization was conducted for selected isolates (PFGE, phylogenetic groups, plasmid characterization). Next generation sequencing was performed for the six *bla*_{SHV-2} isolates.

More than 1500 isolates were screened and the presence of a *bla*_{SHV}-variant was confirmed for 161 isolates. Of these 91% (n=147) were obtained from poultry production and meat, the other 9% originated from pigs and calves from livestock. The SHV-12 beta-lactamase was most frequent (155/161, 96%). Of these, 44 isolates were further investigated. A phylogenetic relationship of the isolates was not observed by PFGE analysis. Nevertheless, in S1 nuclease restriction revealed that the gene was harbored on a 40 kb plasmid in half of the isolates. In contrast, for 3 of the 6 SHV-2-isolates' PFGE, whole genome sequencing and SNP-analysis indicated a clonal spread. These belonged to sequence type 533. The *bla*_{SHV-2} gene in all six isolates was harbored on IncF plasmids. In conclusion, the spread of *bla*_{SHV-12} producing *E. coli* within the German food chain is probably mainly based on plasmid transmission. SHV-2 was found only sporadically with a clonal spread of ST533 isolates.

Engaging medical, pharmacy, and veterinary students in antimicrobial resistance communication research

<u>C. Primeau^{1,2}, C. Carson², J. McWhirter¹, S. McEwen¹, J. Parmley²</u> ¹*Population Medicine, University of Guelph, ²Public Health Agency of Canada, Guelph, ON, Canada*

Introduction: A significant driver of antimicrobial resistance (AMR) is antimicrobial use (AMU) in human and veterinary medicine. Therefore, education and awareness among antimicrobial prescribers and dispensers is critical. Both human and veterinary health professionals have important roles to play and studies have shown that engaging stakeholders prior to developing communication materials can increase relevance, awareness, and dissemination of research findings.

Objectives: To explore medical, pharmacy, and veterinary student perceptions and understanding of factors associated with emergence of AMR, and to identify key messages, knowledge translation and transfer (KTT) methods, and dissemination strategies for effective communication of AMR information to future antimicrobial prescribers.

Aims: To help inform messaging used in future KTT and communication activities to promote positive behavioural change and enhance awareness of AMR among medical and veterinary health professionals.

Methods: Beginning in November 2018, focus groups were conducted with medical, pharmacy, and veterinary students in Ontario, Canada. A semi-structured format using standardized open-ended questions and follow-up probes was followed. Thematic analysis was used to identify and analyze patterns within the data.

Results: Preliminary analyses showed that students believe AMR to be an important global issue, and the main drivers include prophylactic AMU in animals and treating without confirmation of diagnoses. Students felt that although infographics provide easily digestible information, KTT materials such as fact sheets are more effective at providing sufficient information without overwhelming target audiences.

Conclusions: This research may help inform future communication materials and develop tailored KTT tools for dissemination of important AMR information. **Disclosure:** Nothing to disclose

The National Antimicrobial Resistance Monitoring System (NARMS): a one health system in the United States

<u>G. Tyson</u>, H. Tate, C. Kabera, P. McDermott Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States

NARMS is a One Health collaborative program that tracks antimicrobial resistance in bacteria from food animals, retail meats, and human patients. Data from NARMS are combined to assess changes in resistance of foodborne pathogens resulting from antibiotic use in food animal production. These data are used in risk assessment for the approval of antimicrobials in food animals by the FDA, as well as to attribute human infections to their animal and food sources. NARMS comprises a large group of federal and state experts in microbiology, epidemiology, biostatistics, genetics, bioinformatics, veterinary medicine, and human medicine. NARMS also works with the Veterinary Laboratory Investigation and Response Network (Vet-LIRN) to monitor antimicrobial resistance in companion animal pathogens. Other future enhancements designed to meet the goals of a One Health approach are being planned. These include the addition of animal feed, seafood and other commodities, as well as resistance in food animal pathogens, the periodic testing of minor food animal species, and an environmental component. Whole-genome sequencing is now a routine process in NARMS, making it possible to monitor resistance at the allelic and nucleotide level. NARMS publishes interactive displays to make these complex datasets accessible to a variety of stakeholders, including food producers, academic researchers, other governmental agencies, and the public at large. **Disclosure:** Nothing to disclose

Treatment outcomes of multi-drug resistant tuberculosis and associated factors among patients at Iganga and Mbale treatment centres, Uganda: a retrospective cohort study <u>D.R. Zemei¹</u>, E. Buregyeya², S. Kisaka³

¹School of Public Health, College of Health Sciences, ²Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, ³Department of Epidemiology and Biostatistics, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda

Introduction: The emergence of multidrug resistant tuberculosis (MDR-TB) threatens the existing efforts to eliminate tuberculosis due to the complex treatment thereof. The study aimed to describe the treatment outcomes, determine the factors associated with unsuccessful treatment outcomes and explore facilitators and barriers of treatment success of MDR-TB patients in Iganga and Mbale treatment centres, Uganda.

Methods: The study was a retrospective cohort analysis of data from medical records of patients at Iganga and Mbale treatment centres for the period June 2013 to May 2018. This data was complemented by qualitative interviews with selected health workers and former patients; these were analysed using thematic analysis. Quantitatively, Modified Poisson regression and mortality risk differences were performed to determine associations between factors and the treatment outcomes of MDR-TB using Stata 13.

Results: Of the 95 patients, 74 (77.9%) had successful outcomes and 21 (22.1%) had unsuccessful outcomes. There were 62% males, 41% were between 30-44 years, 88% had history of tuberculosis treatment and 34% were HIV positive. Only HIV status was likely to be associated with unsuccessful outcomes at bivariate analysis CPR 3.35 (CI 1.4-8.09) and the mortality rate attributable to HIV infection was 60% for five year period. Facilitators of treatment success included good communication and coordination mechanisms, availability of adherence enablers, self motivation and family support whereas barriers included delayed treatment initiation, alcohol consumption and stigma. **Conclusion:** There was high treatment success of MDR-TB patients however the prevalence of unsuccessful outcomes particularly mortality was high and associated with HIV infection. **Disclosure:** Nothing to disclose

Development of a low-cost field based molecular diagnostic device for the detection of poultry pathogens

<u>A.C. Poirier</u>¹, B. Manoharanehru², M. Muhammad³, D.V. Umali⁴, B. Wamadeva², R.M. La Ragione¹ ¹School of Veterinary Medicine, University of Surrey, Guildford, ²Electronic and Computer Engineering, Brunel University London, Uxbridge, ³Biomedical And Life Sciences, Lancaster University, Lancaster, United Kingdom, ⁴College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños, Philippines

Chicken production accounts for 15% of the agricultural output of the Philippines and is growing at a rate of a few percent per annum. One of the key factors affecting the growth of this industry is an inability to rapidly detect disease and control outbreaks. The main poultry disease pathogens are Newcastle disease virus, Infectious Bursal Disease virus, avian Infectious Bronchitis virus, Salmonella spp., Avian Pathogenic E. coli and Mycoplasma gallisepticum and synoviae. Currently, diagnosis relies on a drop in production performance, presence of clinical signs, pathological lesions and serological tests, which can be time-consuming. Therefore, the use of rapid field based molecular testing has the potential to reduce diagnosis time to approximately 1 hour, help to prevent disease spread, facilitate appropriate selection of treatments and thus potentially reduce antimicrobial resistance. A consortium of researchers from the UK (Brunel University London, University of Surrey, and Lancaster University) and from the Philippines (University of the Philippines Los Banos, Cavite State University and University of Eastern Philippines) are currently working on the development of a lowcost handheld molecular diagnostic platform test. The system will consist of a sample preparation device and a small instrument running an isothermal DNA amplification process (LAMP) to rapidly amplify the DNA from faecal/respiratory swabs and tissue samples. DNA amplification will lead to a colorimetric detection integrated into a smartphone application. The application will run the assay, display the results and, enable diagnostic data to be sent to a central database for integrated disease tracking and management systems.

Increased Dissemination and Parallel Evolution of Antimicrobial Resistance in Salmonella enterica serovar Paratyphi B variant Java from Poultry in Latin America and Europe L.R. Castellanos¹, J. Hordijk¹, D.J. Mevius¹, L. van der Graaf-van Bloois¹, F. Duarte², M.T. Acuña², C. Jarquín³, K. Veldman⁴, F.-X. Weill⁵, P. Donado-Godoy⁶, J. Wagenaar¹, A. Zomer¹ ¹Department of Infectious Diseases and Immunology. Faculty of Veterinary Medicine., Utrecht University, Utrecht, The Netherlands, ²INCIENSA, Tres Ríos, Costa Rica, ³Universidad del Valle de Guatemala, Guatemala, Guatemala, ⁴Wageningen Bioveterinary Research, Lelystad, The Netherlands, ⁵Pasteur Institute, Paris, France, ⁶AGROSAVIA, Mosquera, Colombia

Background

Isolates of *Salmonella enterica* serovar Paratyphi B variant Java (here referred as Java) from poultry are known to carry AMR genes and belong to Multi Locus Sequence Type (ST) 28. The objective of this study was to investigate the evolutionary relatedness of Java-ST28 from multiple Latin American (LA) and European (EU) countries.

Methodology

Java-ST28 strains were selected from previous studies from Colombia, Costa Rica, Guatemala and the Netherlands and subjected to whole genome sequencing. Additional genomes were collected from Enterobase. Characterization of AMR was made with ResFinder. Time resolved phylogeny and effective population size (N_e) were inferred using Bayesian Evolutionary Analysis Sampling Trees (BEAST) and Bayesian skyline plot.

Results

A clear phylogenetic distinction was observed between EU and LA Java strains. EU strains exhibited gyrase mutations conferring resistance to fluoroquinolones. In turn, LA strains carried the *qnrB19* gene conferring reduced-susceptibility to quinolones. Resistance to β -lactams was mainly mediated by *bla*_{TEM-1B} in EU and by *bla*_{CMY-2} in LA. Molecular clock was estimated at 1.7 single nucleotide polymorphisms/genome/year [Confidence Interval (CI):1.44-2.0]. Evolutionary separation was observed between strains from EU and LA and dated to 1987 (CI: 1978-1988) with BEAST. *N_e* in EU increased sharply in 1995 (CI: 1992-1998) and in LA in 2005 (CI: 2001-2007).

Conclusions

Java-ST28 from LA and EU form two distinct clades. The estimated years of N_e increase in EU are in accordance with literature reports. The EU and LA clades have acquired resistance to fluoroquinolones and β -lactams independently, indicating parallel evolution of AMR in both regions. **Disclosure:** Nothing to disclose

Methicillin resistant *Staphylococcus aureus spa-*types t003, t586 and t014 common cause of MRSA infection in Czech Republic

<u>J. Tkadlec</u>¹, O. Melter¹, L. Kekrt¹, M. Cabrnochova¹, P. Drevinek¹, T. Bergerova², S. Polivkova³, M. Balejova⁴, M. Hanslianova⁵, L. Havlinova⁶, D. Fackova⁶, K. Neradova⁷, R. Tejkalova⁸, I. Vagnerova⁹, N. Bartonikova¹⁰, M. Krutova¹

¹Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, ²Department of Microbiology, Faculty of Medicine and University Hospital Plzen, Charles University in Prague, Plzen, Plzen, ³Department of Infectious Diseases,, 3rd Faculty of Medicine, Bulovka Teaching Hospital, Prague, ⁴Department of Medical Microbiology, Hospital Ceske Budejovice, Ceske Budejovice, ⁵Department of Medical Microbiology, University Hospital Brno, Brno, ⁶Department of Medical Microbiology and Immunology,, Hospital Liberec, Liberec, ⁷Department of Clinical Microbiology, University Hospital Hradec Kralove,, Hradec Kralove, ⁸Department of Medical Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Brno, ⁹Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, University Hospital Olomouc,, Olomouc, ¹⁰Department of Medical Microbiology, Tomas Bata's Hospital Zlin,, Zlin, Czech Republic

Introduction: Methicillin-resistant *Staphylococcus aureus* (MRSA) is a leading cause of healthcareassociated infections world-wide. The aim of the study was to characterize epidemiological structure of MRSA strains currently circulating in the Czech Republic.

Material and methods: Between September 2017 and January 2018 non-duplicated (single patient) MRSA isolates were collected from 11 hospitals across the Czech Republic. Isolates causing infection or colonizing patients of both healthcare and community origin were characterized. Resistance to oxacillin and cefoxitin was confirmed by disk diffusion method. The presence of genes encoding Panton-Valentine Leucocidin (PVL) and *mecA* gene were detected by PCR. Isolates were assign to the known multilocus sequence type clonal complexes (CC) based on corresponding *spa*-types. **Results:** Total of 441 MRSA isolates were characterized, 78% (n=343) of them belonged to a single clonal complex CC5 represented by *spa*-types t003 (n=136), t586 (n=92), t014 (n=81), t002 (n=20) and other (n=14). *spa*-types belonging to the CC5 were dominant (more than 50% of isolates) in all participating hospitals, with exception of one hospital where t008 (CC8) was one of the top three *spa*-types. Livestock-associated MRSA (CC398) was identified in 10 isolates (Figure 1). Except oxacillin and cefoxitin, the MRSA isolates were most frequently resistant to erythromycin (88.0%), clindamycin (84.8%), and ofloxacin (82.8%).

Conclusion: High prevalence of a limited number of *spa*-types, originating from healthcare-associated CC5 lineage (t003, t586, t014), was found in eleven Czech healthcare facilities suggesting spread and circulation of these strains within and between healthcare institutions in the Czech Republic.

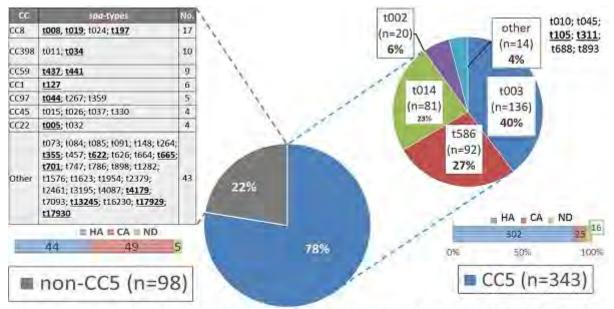


Figure 1. Distribution of MRSA isolates according their corresponding clonal complexes (CCs) and a origin of the infection (colonisation)

HA - Healthcare-associated, CA - Community-acquired, ND - unknown origin.

spa-types of PVL positive isolates (n=38) are underlined.

[Figure 1.]

Disclosure: This study was supported by the Ministry of Health of the Czech Republic, grant nr. 17-30460A (AZV). All rights reserved.

Characterization of new VIM-1 producing *Escherichia coli* from German pig production <u>A. Irrgang</u>¹, N. Pauly², M. Grobbel², A. Käsbohrer^{2,3}, B.-A. Tenhagen², J.A. Hammerl² ¹Biological Safety, Federal Institute for Risk Assessment, ²Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, ³University of Veterinary Medicine /Institute for Veterinary Public Health, Vienna, Germany

Carbapenems are critically important broad-spectrum beta-lactam antimicrobials. Resistance to carbapenems is often mediated by degrading enzymes (carbapenemases). As the genetic information for these enzymes is mostly encoded on mobile genetic elements, horizontal and vertical transmission between bacterial strains is possible.

Within an extended specific monitoring on CPE in food animal production according to Commission implementing decision 2013/652/EU, one isolate (17-AB01027), was detected in faeces of fattening pigs at farm. A second CPE (17-AB02384) was found in caecum content of a fattening pig at slaughter within the monitoring on ESBL/AmpC-producing *E. coli*. Genotype of both isolates was confirmed by PCR sequencing and characterized by PFGE, Southern Blot hybridization, MLST and NGS. Isolate 17-AB01027 was a ST48 *E. coli* of phylogenetic group A, while isolate 17-AB02384 belonged to ST7593 and phylogenetic group B1. Both strains differed substantially from each other and previously described isolates by PFGE analysis and wgMLST. Plasmids from both isolates were conjugative and highly similar to the *Salmonella* Infantis VIM-1 plasmid pSE15-SA01028 (CP026661.1) and the *E. coli* plasmid pRH-R178 (HG530658.1). An additional *bla*_{SHV-12} gene was located on the plasmid of the strain 17-AB02384.

The results of the characterization of the isolates suggest horizontal spread of the VIM-1 carbapenemase within the German pig production and a high transmission potential via plasmid conjugation.

Isolation of a CC133 *Staphylococcus aureus* strain of ruminant origin in a patient with tracheobronchitis and previous consumption of farm cheese

<u>C. Prat</u>^{1,2}, F. Rueda³, A. Lacoma^{1,2}, J. Serra³, R. Ehricht^{4,5}, B. Young⁶, D. Wilson⁷, S. Monecke^{4,5} ¹*Microbiology. Laboratori Clinic Metropolitana Nord, Hospital Universitari Germans Trias i Pujol,* ²*CIBER Enfermedades Respiratorias,* ³*Cardiology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain,* ⁴*Department for Optical Molecular Diagnostics and Systems Technology, Leibniz-Institute of Photonic Technology,* ⁵*Center for Applied Research, InfectoGnostics Research Campus, Jena, Germany,* ⁶*Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital,*, ⁷*Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom*

We report a case of a previously healthy 28-years-old male who presented with ventricular fibrillation out-of-hospital cardiac arrest. He was intubated and admitted to a coronary unit. At day 3, he presented with tracheobronchitis and was empirically treated with cefepime. Culture of endotracheal aspirate showed susceptible *Staphylococcus aureus* prompting a change to cloxacillin. *S.aureus* was still detected at days 9 and 13. The patient was discharged at day 22 with a final diagnosis of arrhythmogenic right ventricular dysplasia. An implantable cardioverter defibrillator was placed.

The sequential isolates were genotyped by microarray and assigned to Clonal Complex133. They were *mecA*-negative and did not carry resistance markers. They harboured leukocidin genes *lukM/lukF-P83* as well as superantigen genes. The beta-haemolysin gene was not truncated, and genes associated with *hlb*-converting phages were absent showing that the strain was not adapted to human hosts. Patient was interviewed afterwards and denied contact to animals but remembered consumption of farm cheese few days prior to admission. A nasal swab at follow-up showed *S.aureus*, but another strain, *mecA*-negative CC398. Isolates underwent whole genome sequencing that confirmed array results and revealed a low level of variation showing two non-synonymous variants of genes encoding DsbA family proteins and transcriptional repressor MraZ.

It is, to our knowledge, the first time that a strain known only from small ruminants was found in a clinically infected human, most likely after food-borne transmission. Molecular findings showed that the strain was not adapted to human hosts but was able to cause infection and to persist. **Disclosure:** Nothing to disclose

Putting away the muddy wellies: Taking a Behavioural Approach to Antimicrobial Stewardship with vets and farmers in a UK context as part of One Health <u>C. King</u>, R. Laidlaw, L. Gozdzielewska, L. Price, P. Flowers *Glasgow Caledonian University, Glasgow, United Kingdom*

Background

Antimicrobial resistance (AMR) is an increasing concern in human and animal health. Theoretically informed antimicrobial stewardship (AMS) interventions within veterinary medicine and farming may be influential in reducing the consequences of AMR for both animal and human health as part of a One Health approach to AMR.

Research aims

This research study set out to: identify AMS behaviours and the barriers and enablers of these behaviours; and to generate evidence based recommendations to support vets and farmers to develop AMS behaviours.

Methods

The research used qualitative methods. Eleven vets and 17 farmers took part in semi-structured interviews. AMS behaviours and their related barriers and enablers were identified using thematic analysis techniques. Psychological behavioural theories (Theoretical Domains Framework and the Behaviour Change Wheel) were used to generate recommendations.

Findings

The overall behavioural domain identified was vets' and farmers' roles in preventative veterinary medicine and farming. Vets talked about 'putting away the muddy wellies' to illustrate this shift in focus from treatment to health planning and prevention. Factors relating to professional identity, economics, and engagement were identified as enablers, while factors relating to resources, knowledge, skills, beliefs and motivations were identified as barriers to behaviour change.

Discussion

The intervention recommendations of the research included a focus on prevention in education for vets and farmers and working with vets to look at alternative business models based on preventative services rather than medicines sales. The recommendations have relevance for vets and farmers and wider stakeholders such as government, agricultural advisors, supermarkets, and consumers. **Disclosure:** Nothing to disclose

A systematic review and meta-analysis of the health and healthcare system burden due to resistant *Escherichia coli* infections in humans

<u>M.C. MacKinnon</u>¹, J.M. Sargeant^{1,2}, D.L. Pearl¹, R.J. Reid-Smith³, C.A. Carson³, E.J. Parmley³, S.A. McEwen¹

¹Department of Population Medicine, ²Centre for Public Health and Zoonoses, University of Guelph, ³Canadian Integrated Program for Antimicrobial Resistance Surveillance, Public Health Agency of Canada, Guelph, ON, Canada

The objectives were to evaluate whether the measures of health or healthcare system burden increase in humans with *E. coli* infections that are resistant to third/fourth/fifth generation cephalosporins or quinolones, or are multidrug resistant when compared to those with susceptible infections.

The protocol was registered with PROSPERO (CRD42018111197). The population of interest was humans with confirmed *E. coli* infections. Resistance to third/fourth/fifth generation cephalosporins or quinolones, or multidrug resistance were the exposures of interest. Included studies had a comparator group without the exposure of interest. The outcomes of interest for health burden were mortality and treatment failure, and for healthcare system burden were length of hospital stay (LOS) and costs. Included studies were analytic observational study designs. Data related to the characteristics of the study and participants, and results for the health and healthcare system outcomes were extracted. Mortality and LOS outcomes will be synthesized by meta-analyses and sources of heterogeneity will be explored using subgroup meta-analyses.

The literature search retrieved 26,038 articles and after duplicates were removed there were 14,759 articles for primary screening. There were 543 articles for secondary screening and 83 articles were included in the systematic review: 65 articles addressed resistance to third/fourth/fifth generation cephalosporins, 21 articles addressed resistance to quinolones, and 11 articles addressed multidrug resistance. The complete results of the systematic review and meta-analysis will be presented.

The current evidence for the health and healthcare system burden from resistance in human *E. coli* infections will be synthesized by the systematic review and meta-analysis. **Disclosure:** Nothing to disclose

Moxifloxacin-resistant *Clostridium difficile* ribotypes 001 and 176 (027-like) drive hospital epidemiology of *Clostridium difficile* infections in Slovakia

M. Krutova¹, A. Soltesova², A. Plankaova², O. Nyc¹, P. Drevinek¹

¹Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic, ²Department of Clinical Microbiology, Alpha Medical, Roznava, Slovakia

Background and aims

Recently, an increase in the incidence of *Clostridium difficile* infections (CDI) was reported in several Slovakian hospitals. In order to obtain valid data on current *C. difficile* epidemiology in Slovakia (a *C. difficile* typing service is unavailable in Slovakia) we aimed to perform a CDI surveillance study and to characterize *C. difficile* isolates.

Methods

Between April and December 2018, fourteen Slovakian hospitals (Figure 1) submitted stool samples and epidemiological data of patients with laboratory-confirmed CDI to the Motol University Hospital, Prague, Czech Republic. In *C. difficile* isolates, a capillary-electrophoresis ribotyping was performed according to the new consensus protocol (Fawley et al., PONE, 2015). The antibiotic susceptibility of the isolates to metronidazole, vancomycin and moxifloxacin was determined by agar dilution method.

Results

A total of 142 *C. difficile* isolates were cultured from 146 stool samples. The most prevalent PCR ribotypes (RTs) were 001 (n=66, 46.5%) and 176 (n=46, 32.4%). A total of 121 (85.2%) of isolates were resistant to moxifloxacin (>4 mg/L). Of them, 112 (92.6%) belonged to epidemic RTs 001 and 176 (027-like), (p=0.00001). A reduced susceptibility to metronidazole (>2 mg/L) was observed in 8 isolates (RTs 001 and 176).

Conclusions

We revealed a dramatic proportion of moxifloxacin-resistant *C. difficile* strains that were responsible for causing CDI in fourteen Slovakian hospitals. Our findings call for an urgent reduction in prescriptions of fluoroquinolones and the implementation of effective CDI surveillance in healthcare settings in Slovakia.

[Figure1: Geographical distribution of participating hospitals in Slovakia with number of isolates.]

Establishment of multi-sectoral joint project to One Health approach against Antimicrobial Resistance in Republic of Korea

<u>E.C. Choi</u>, J.W. Noh, Y.G. On, H.I. Cheun, C. Park, K.J. Lee Division of Antimicrobial Resistance, National Institute of Health, Cheongju-si, Republic of Korea

Introduction: In today's international society, the persistent occurrence and spread of Antimicrobial resistance(AMR) is a public health problem that threatens and causes serious social and economic problems. WHO, OIE and FAO have emphasized a new approach to health policy by introducing the concept of "One Health", and strongly urged strategic cooperation in the field of AMR. Accordingly, advanced countries in the world are emphasizing AMR to the approach of One Health.

Objectives: Since antimicrobials are used not only in human but also in ecosystem such as agriculture, livestock, fisheries, food, environment, etc., a multi-disciplinary R&D studies are needed to reduce and to prevent the spread of AMR.

Aims: In addition, due to the spread of AMR throughout the whole field, integrated research and comprehensive management of ministries are required through cooperation among government ministries that manage each field.

Methods: In line with this, Republic of Korea has been planning the "Multi-sectoral joint project to One Health approach against AMR" since 2016, and conducting the "One Health AMR research project" as a pilot studies such as: companion animals-surroundings-guardians, livestock-barn-workers, and human-hospital-river environment from 2017 to 2019.

Results: Significant results have been derived and analyzed for the interrelationship researches among the fields through antimicrobial susceptibility tests and various genetic analyses. **Conclusions:** It is expected to become an important R&D project for the management of AMR in Republic of Korea.

Risk factors for puerperal infection: a systematic review and meta-analysis

P. Li¹, Y. Li¹, Y. Li², X. Li³, M. Sun¹

¹Hospital infection control, ²Laboratory of microbiology, ³Obstetrics, Provincial People's Hospital, School of Clinical Medicine, Henan University, Zheng zhou, China

OBJECTIVE To provide evidence for decision-making and further research on prevention of puerperal infection through identifying the risk factors of puerperal infection. **METHODS** The results from 19 selected studies on risk factors of puerperal infection were analyzed quantitatively by meta-analysis. **RESULTS** gestational hypertension (OR =3.54), gestational diabetes (OR =2.70), anemia (OR =2.13), multipara (OR =1.19), caesarean section (OR =2.12), prolonged labor (OR =2.62), premature rupture of membranes (OR =3.40), soft birth canal injury (OR =5.84), forceps or head pull (OR =2.41), placenta (OR =3.50) and postpartum hemorrhage (OR =2.49) have significant association with puerperal infection. **CONCLUSIONS** To prevent puerperal infection, we suggest that strengthen health education for pregnant women and treat basic diseases actively before the delivery, obey aseptic techniques strictly to avoid the soft birth canal injury during labor, and closely monitor the uterine contractions and the amount of postpartum bleeding after delivery.

Key words: Puerperal infection; Risk factors; Meta-analysis

Dose optimization of Enrofloxacin in Broiler Chicken against Salmonella Enteritidis by Integrating Pharmacokinetic and Pharmacodynamic Profiles

J. Kang, A. Hossain, H.-C. Park, Y. Kim, K.-J. Lee, <u>S.-W. Park</u> Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea

It is crucial to optimize the dose of fluoroquinolones for controlling their resistance and attaining clinical success. It was intended in this study to optimize the dose of enrofloxacin against Salmonella Enteritidis in chicken by assessing its pharmacokinetic/pharmacodynamic (PK/PD) indices. The antibacterial activities of enrofloxacin against S. Enteritidis were evaluated. After administering 10 mg/kg body weight (b.w.) of enrofloxacin to broiler chickens of both sexes by intra-venous (IV) and per-oral (PO) routes, blood samples of different periods were drawn and enrofloxacin concentrations in serum were quantified. The integration of PK and PD data was done to calculate PK/PD indices. The elimination half-lives (t1/2), time required to reach peak concentration (Tmax), peak concentration (Cmax) and area under curve (AUC) after administering enrofloxacin by PO and IV routes were 25.84±1.40 h, 0.65±0.12 h, 3.82±0.59 µg/mL and 20.84±5.0 µg.h/mL, and 12.84±1.4 h, 0.22±0.1 h, 6.74±0.03 µg/mL and 21.13±0.9 µg.h/mL, respectively. Enrofloxacin's bioavailability was 98.6±8.9% after administering by PO route. The MICs of enrofloxacin were (0.0625?1) µg/mL against S. Enteritidis strains, and the MIC50 was 0.50 µg/mL. The Cmax/MIC50 were 7.64±0.2 and 13.48±0.7, and the 24 h AUC, (AUC0-24)/MIC50 were 41.68±0.1 and 42.26±0.3 correspondingly, after administering the drug through PO and IV routes. The data of this study indicate that the application of 50 mg/kg b.w. of enrofloxacin to chicken through PO and IV routes with a dosing interval of 24 h can effectively cure S. Enteritidis infection, which demonstrated the 5-times increase of the recommendeddosage of enrofloxacin in chicken.

Antimicrobial susceptibility monitoring of veterinary pathogens and zoonotic and commensal organisms throughout Europe - The CEESA programs <u>H. Moyaert</u>, F. El Garch, A. de Jong, U. Klein, H. Marion

CEESA, Brussels, Belgium

Antimicrobial resistance is a global concern for both animal and human health. Programs to monitor antimicrobial susceptibility among veterinary pathogens as well as zoonotic and commensal bacteria are therefore essential.

The antibiotic susceptibility monitoring programs of the Executive Animal Health Study Center (CEESA) are an ongoing collaboration among veterinary pharmaceutical companies for over two decades. CEESA conducts two types of monitoring: the European Antimicrobial Susceptibility Surveillance in Animals (EASSA) program collects zoonotic and commensal bacteria at slaughter from healthy food-producing animals, and the target pathogen programs (VetPath, MycoPath and ComPath) collect bacterial isolates from diseased animals prior to antibiotic treatment. The latter programs are the only longstanding pan-European projects in veterinary medicine where antibiotic susceptibility data for a large variety of target pathogens are generated.

All CEESA projects apply uniform sample collection and bacterial isolation and identification to species level in various European countries. A single central laboratory for each subprogram conducts quantitative antibiotic susceptibility testing to determine the Minimal Inhibitory Concentrations to a range of commonly used, licensed antibiotic compounds. Data are primarily used by member companies in registration and renewal dossiers but the programs also contribute to scientific research such as characterisation of ESBL/AmpC, and also quinolone, colistin and meticillin resistance determinants (*qnr, mcr* and *mecA*).

The standardised methodology of the CEESA programs makes these robust and valuable tools to address food safety concerns and to support responsible use of antibiotics in the field by giving the veterinarian information on resistance patterns in target pathogens. **Disclosure:** Several of the authors are full-time employees of veterinary pharmaceutical companies.

38

Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle across Europe, 2015-2016: VetPath results

<u>H. Moyaert</u>¹, U. Klein¹, S. Simjee¹, A. de Jong¹, S. Haag-Diergarten¹, P. Butty¹, T. Villa¹, P.-J. Serreyn¹, M. Rose¹, B. Truszkowska¹, M. Youala¹, I. Morrissey², F. El Garch¹ ¹VetPath Study Group, Brussels, Belgium, ²IHMA Europe Sarl, Monthey/VS, Switzerland

VetPath is a pan-European antimicrobial susceptibility monitoring programme collecting pathogens from diseased cattle, pigs and poultry before antibiotic-treatment initiation.

In total, 281 isolates from cattle with respiratory disease were tested. Lung samples or nasopharyngeal/nasal swabs were collected from animals with acute clinical signs in eight countries during 2015-2016. *Pasteurella multocida, Mannheimia haemolytica* and *Histophilus somni* were isolated by standard methods and MIC values of 21 antibiotics were determined in a central laboratory by broth micro-dilution as per CLSI standards. MIC_{50/90} values are reported; results were interpreted using CLSI clinical breakpoints (VET08, 2018) where available.

P. multocida (n=155) isolates were fully susceptible to ceftiofur (100%) and susceptibility was >95% for enrofloxacin (98.1%), penicillin (98.1%), tulathromycin (98.1%), danofloxacin (97.4%), gamithromycin (97.4%) and florfenicol (96.8%). Spectinomycin and tetracycline susceptibility was 91.6% and 88.4%, respectively. Susceptibility of *M. haemolytica* (n=91) was as follows: ceftiofur 98.9%, spectinomycin 96.7%, florfenicol 94.5%, tulathromycin 93.4%, gamithromycin 89.0%, penicillin 89.0%, enrofloxacin 87.9%, tilmicosin 85.7%, danofloxacin 81.3% and tetracycline 78.0%. *H. somni* (n=35) were fully susceptible (100%) to ceftiofur, enrofloxacin, florfenicol, gamithromycin, penicillin, spectinomycin, tetracycline, and tulathromycin. For antibiotics without CLSI breakpoints such as amoxicillin, cefquinome, colistin, doxycycline, marbofloxacin and trimethoprim/sulfamethoxazole, MIC₉₀ ranged from 0.008 to 2 mg/L for all three pathogens. For tiamulin, tylosin and lincomycin MIC₉₀ ranged from 32-128 mg/L with broad but unimodal MIC distributions, except for *H. somni* where MIC₉₀ was 0.5-4 mg/L.

In conclusion, for those antibiotics where the results could be interpreted using clinical breakpoints, the antimicrobial susceptibility generally remains around 90% or higher. **Disclosure:** Several of the authors are full-time employees of veterinary pharmaceutical companies

Susceptibility to florfenicol and oxytetracycline of the intracellular pathogen *Piscirickettsia* salmonis isolated from the Chilean salmon industry

S. Contreras-Lynch¹, C.D. Miranda², P. Olmos¹

¹Departamento de Salud Hidrobiológica, Instituto de Fomento Pesquero, Puerto Montt, ²Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile

Intensive salmon farming in Chile favours the development of infectious diseases and consequently the use of antimicrobial agents for the treatment of bacterial infections has increased. The most important bacterial pathology in Chilean salmon farms is caused by the intracellular pathogenic species Piscirickettsia salmonis, responsible for 95% of administered antimicrobials. The main aim of the study was to determine the susceptibility of Chilean isolates of P. salmonis to the antimicrobials mostly used in the Chilean salmon industry. A number of 35 isolates of P. salmonis were recovered from Chilean salmon farms with confirmed outbreaks of Piscirickettsiosis occurred from December 2016 to May 2018. Species identity of isolates was confirmed by PCR, and their Minimum Inhibitory Concentration (MIC) values for florfenicol and oxytetracycline were determined using a standardized broth micro-dilution method. Isolates were categorized as fully susceptible wild type (WT) or non-fully susceptible non-wild type (NWT) to the assayed antibacterials, using previously stated epidemiological cut-off values. An important percentage of reduced susceptibility to florfenicol was detected, observing that 42.9% of the total assayed isolates were categorized as non-wild type (NWT). Otherwise, most of the assayed isolates were highly susceptible to oxytetracycline, of which only 5.7% were categorized as NWT. The increase in the number of florfenicol non-wild type isolates of *P. salmonis* prompts the urgent need of the implementation of a continuous surveillance program of antimicrobial resistance of this pathogen in the Chilean salmon farming industry.

Antimicrobial Resistance Patterns of *Salmonella* Isolated from Chickens at slaughterhouses in NE, Thailand

F. Suksawat¹, S. Angkititrakul², D. Phongaran³, C. Soikum³

¹Veterinary Medicine, Khon Kaen University, ²Khon kaen University, ³Khon Kaen University, Khon kaen, Thailand

The objective of this study is to determine the prevalence and antimicrobial resistance pattern of *Salmonella* spp. isolated from chickens at slaughterhouses in northeast of Thailand. During 2015-2016, all samples were isolated and identified by ISO 6579:2002. A total of 604 rectal swab samples were collected and isolated for the presence of *Salmonella* spp. *Salmonella* spp. was detected in 109 of 604 (18.05%) samples. The most prevalent serovars were *Salmonella* Kentucky (22.94%), Give (20.18%) and Typhimurium (7.34%). In this study, 66.97% of the isolates were resistant to at least one antimicrobial drug and 38.39% were multidrug resistant. The highest resistances were found in Nalidixic acid (49.54%), ampicillin (30.28%), tetracycline (27.52%), amoxicillin (26.61%), ciprofloxacin (23.85) and norfloxacin (19.27%). The results showed high prevalence of *Salmonella* spp. in chickens and antimicrobial resistance patterns. Prevention and control of *Salmonella* contamination in chickens impact on health and wellness of both chickens and consumers.

Prevalence and antimicrobial resistance of *Salmonella* **spp. isolated from pigs at NE, Thailand** <u>S. Angkititrakul¹, S. Klaengair¹, D. Phongaran¹, A. Ritthipanun²</u>

¹Khon Kaen University, Khon kaen, ²Khon Kaen University, khon Kaen, Thailand

The objective of this study is to determine prevalence and antimicrobial resistance pattern of *Salmonella* spp. isolated from pigs in slaughterhouses in northeast of Thailand. During 2015-2016, all samples were isolated and identified by ISO 6579:2002. A total of 699 samples of rectal swab were collected and isolated for the presence of *Salmonella* spp. *Salmonella* spp. was detected in 275 of 699 (39.34%) samples. 24 serovars were identified in the 275 isolates. The most prevalent serovars were Rissen (36.97%), *S. enterica* ser.4,5,12:i: (25.35%) and Typhimurium (21.33%). In this study, 76.30% of the isolates were resistant to at least one antimicrobial drug, and 38.39% were multidrug resistant. The highest resistances were found in ampicillin (69.20%), tetracycline (66.35%), sulfamethoxazole/trimethoprim (35.55%) and chloramphenicol (9.00%) The results showed high prevalence of *Salmonella* spp. in pigs and high antimicrobial resistance among the isolates, and indicated the need for monitoring program to control *Salmonella* contamination and reduce the dissemination of antimicrobial resistance in pig supply chain.

Low-level β-lactam resistance in Dutch and Danish methicillin-resistant *Staphylococcus pseudintermedius* is associated with clonal complexes

<u>A. Wegener</u>¹, P.P. Damborg², L. Guardabassi², B. Duim¹, J.A. Wagenaar¹, E.M. Broens¹ ¹Faculty of Veterinary Medecine | Infectious disease and imunology, Utrecht University, utrecht, The Netherlands, ²University of Copenhagen, Copenhagen, Denmark

Methicillin-resistant *Staphylococcus pseudintermedius* (MRSP) is increasingly isolated from dogs and incidentally causes infections in humans. Screening for methicillin resistance is done by oxacillin (OXA) MIC testing. Applying EUCAST's MRSA expert rule, OXA-resistant isolates must be reported resistant to all β -lactams. This study aims to identify possible associations between β -lactam resistance levels and MRSP clones.

MICs of OXA, amoxicillin/clavulanic acid (AMC) and cephalothin (CEP) were determined in 92 canine *mec*A-positive *S. pseudintermedius* isolates from the Netherlands (n=50) and Denmark (n=42) by broth microdilution. Clonal complexes (CC) and SCC*mec* type were determined, using standard MLST and PCR methods for Danish isolates and whole genome sequencing for Dutch isolates.

The dominant clones were CC71 SCC*mec* II-III (n=37), CC258 SCC*mec* IV (n=36), followed by CC45 (n=11), and independant sequence types (n=8). CC71 displayed higher MICs for all β -lactams tested. OXA MICs were $\geq 2 \mu g/ml$ in all CC71 isolates, whereas other isolates mostly (80%) displayed MICs of 0.5 or 1 $\mu g/ml$. Similarly, most CC71 isolates had AMC MIC > 1 (84%) and CEP MIC > 2 (68%), whereas high MIC values were rare among other isolates.

Non-CC71 isolates containing SCC*mec* IV, V and non-typeable STs were associated with low-level βlactam resistance. This finding may be of clinical relevance since MICs for CEP and AMC are usually below the clinical breakpoint. Clinical studies are warranted to evaluate whether some MRSP infections can be cured using these first line agents, avoiding second line antimicrobials with higher toxicity (e.g. rifampicin; chloramphenicol) or last resort human drugs (e.g. vancomycin). **Disclosure:** Nothing to disclose

Mobilome and resistome analysis of multidrug-resistant *Escherichia coli* isolates from human urinary tract infections

<u>M. Getino</u>, A. van Vliet, A. Fivian-Hughes, R. La Ragione School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom

Introduction: Urinary tract infections (UTIs) are one of the most common clinical presentations in health care facilities worldwide. The most frequent aetiology of UTIs is *Escherichia coli*, a widespread bacterium often carrying multiple genes responsible for resistance to antibiotic treatment. These genes are commonly encoded by mobile elements that can be transferred to a wide range of pathogenic and commensal bacteria.

Objectives: The main objective was to study the most prevalent genetic elements involved in antimicrobial resistance (AMR) transmission in uropathogenic *E. coli* (UPEC) isolates.

Aims: The ultimate aim was to understand how AMR genes are transmitted in order to help treat bacterial infections.

Methods: A collection of 245 UPEC strains were isolated from three different hospitals in the South England area and genotypically characterised by multiplex PCR for the presence of genes conferring resistance to β -lactams (*blaTEM/SHV/OXA/CTX-M/AmpC*) and colistin (*mcr-1/-2*). A panel of 94 isolates was sequenced to further analyse the presence of mobile AMR determinants.

Results: The panel of isolates was mainly composed of multidrug-resistant isolates and particularly resistant to extended-spectrum β -lactam antibiotics. Most of the isolates (78%) were positive for one or more β -lactam resistance genes, while all of them were found to be negative for the colistin resistance genes. The bioinformatics analysis of the 94 sequenced *E. coli* isolates will provide additional information, including phylotype, serotype, virulence traits, metal resistance genes, mobility genes, and plasmid content.

Conclusions: Detailed molecular analysis of multidrug-resistant isolates is essential to understand the genetic basis of AMR transmission. **Disclosure:** Nothing to disclose

Antimicrobial resistance in selected respiratory pathogens of veal calves: a pilot study towards a nationwide representative monitoring system

<u>M. Gonggrijp</u>, J. Simons, A. Heuvelink, J. van Hout, G. van Schaik *GD Animal Health, Deventer, The Netherlands*

Introduction:

A pilot study was conducted with the aim to setup a representative monitoring system of antimicrobial resistance (AMR) in *Mannheimia haemolytica* (MHA) and *Mycoplasma* species (MYC) isolates from veal calves in the Netherlands.

Methods:

Veterinarians were requested to submit nasal swabs from veal calves meeting inclusion criteria of the study (2-8 weeks of age and clinical signs of respiratory disease). In total 3-5 calves per farm, originating from 35 different farms were sampled ('active' monitoring). In addition, samples were collected from respiratory tracts of veal calves with relevant pathological findings that were submitted for post-mortem examination to GD Animal Health ('passive' monitoring). Samples of active and passive monitoring were submitted for bacteriological examination and AMR testing by broth microdilution. The results of the AMR of the passive monitoring were compared with the results of the active monitoring.

Results:

A high response in actively submitted nasal swabs was observed. Furthermore it was found that with 3-5 calves sampled per farm median three MYC isolates and one MHA isolate were obtained per farm (and on 13 farms no MHA isolates). Comparing results from actively and passively obtained samples, it was concluded that for some antimicrobials the prevalence of resistant MYC isolates in the passive monitoring was overestimated. However, when these overestimations are well described, the use of samples of both active and passive monitoring have an added value because the increase in number of samples results in a more precise estimation of the AMR of the majority of tested antimicrobials-pathogen combinations.

Keeping pace with selection pressure: the ever-evolving antimicrobial resistance in zoonotic pathogen Campylobacter

Q. Zhang

Veterinary Microbiology and Preventive Medcine, Iowa State University, Ames, IA, United States

Campylobacter is a zoonotic pathogen and a significant concern for One Health. In response to antibiotics used for animal production and human medicine, Campylobacter constantly evolves by acquiring new antibiotic resistance mutations and determinants. Our recent work revealed the rapid rise of fluoroguinolone resistance in ruminant (bovine and sheep) *Campylobacter* in the United States. which is mediated by clonal expansion of dominant genotypes and is possibly driven by fluoroquinolone usage. As a result of response to the selection pressure from florfenicol, Campylobacter has acquired a novel cfr variant [cfr(C)] that confers resistance to five different classes of antibiotics. Comparative genomics suggested that Campylobacter acquired cfr(C) from a Grampositive source. Interestingly, the spread of cfr(C) is also driven by expansion of a predominant Campylobacter genotype. Historically, macrolide resistance in Campylobacter is mediated by mutations in 23S rRNA and has been relatively low in prevalence. However, erm(B), which mediates high-level resistance to macrolides, has recently emerged in Campylobacter. The erm(B) gene is horizontally transferable between Campylobacter species and threatens the utility of macrolide antibiotics. Additionally, a potent multidrug efflux pump variant, named RE-CmeABC, has been recently discovered in Campylobacter. RE-CmeABC is much more potent than the typical efflux pump in conferring resistance to multiple antibiotics and mediates exceedingly high-level resistance to fluoroquinolones .These examples illustrate the extraordinary ability of Campylobacter to evolve in response to antibiotic selection pressure and underscore the need for innovative measures to curb the development and spread of antibiotic-resistant Campylobacter.

A multicentre survey on ESBL-producing Escherichia coli provides no evidence of the human pandemic ST131 clone circulating in food producing animals in Italy, in 2016-2018 E. Mazzolini¹, M. Cerquetti², F. Agnoletti³, A. Agodi⁴, G. Alborali⁵, A. Mazzariol⁶, P. D'agaro⁷, A. Camporese⁸, F. Auxilia⁹, P. Lanzafame¹⁰, L. Putignani¹¹, A. Franco¹², N. Bosco¹, M. Giufrè², C. Moschioni³, M. Barchitta⁴, V. Baldo⁵, M. Arghittu⁹, R. De Rosa⁸, R. Koncan⁷, V. Carfora¹², C. Thoma⁶, S. Pane¹¹, S. Brusaferro¹³, CCM 2015 One-Health ESBL-producing Escherichia coli study group ¹Department of Epidemiology, Istituto Zooprofilattico Sperimentale Delle Venezie, Udine, ²Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, 3Department of Diagnostic, Istituto Zooprofilattico Sperimentale Delle Venezie, Treviso, ⁴Dipartimento G.F. Ingrassia, Università Degli Studi Di Catania. Azienda Ospedaliera Universitaria 'Policlinico Vittorio Emanuele' Catania. Catania. ⁵Department of Diagnostic, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia Romagna, Brescia, ⁶Microbiologia Dipartimento di Diagnostica e Sanità Pubblica, Università Degli Studi Di Verona, Verona, ⁷Dipartimento di Scienze Mediche Chirurgiche e Della Salute, Università Degli Studi Di Trieste, Trieste, ⁸Presidio Ospedaliero S. Maria Degli Angeli, Azienda per L'assistenza Sanitaria N.5 'Friuli Occidentale', Pordenone, 9Ospedale Maggiore Policlinico Di Milano Laboratorio Di Microbiologia, Fondazione IRCCS Ca' Granda, Milano, ¹⁰Microbiologia E Virologia Ospedale S.Chiara, Azienda Provinciale per i Servizi Sanitari Provincia Autonoma Di Trento, Trento, 11 Unità Di Microbiologia, Parassitologia, Virologia e Unità Di Ricerca Metagenomica, Ospedale Pediatrico Bambino Gesù, ¹²National Reference Laboratory for Antimicrobial Resistance. Istituto Zooprofilattico Sperimentale Lazio E Toscana, Rome, ¹³Dipartimento Area Medica, Università Di Udine, Udine, Italy, Udine, Italy

Between 2016 and 2018 508 ESBL-producer Escherichia coli from human urine and blood samples were selected by systematic sampling from all isolates of the microbiology laboratories of 12 hospitals in six Italian Regions. These strains were compared to 445 ESBL-producer E. coli isolates from bovines, swine and poultry of industrial herds of the same geographical area. ESBL-producer E. coli isolates from clinical animals represent an at-risk sampling thus it has to be considered the worst scenario for antimicrobial resistance. The research question was whether food producing animals intensively reared are colonised with ESBL-producer E. coli clones affecting humans and circulating in human care units. We compared the phylogenetic group, the MLST type, the beta-lactamases genes and the colistin resistance attributable to mcr-1 and mcr-2. Results supported current knowledge of human ESBL-producer E. coli mostly (393, 77.4%) belonging to B2 phylogenetic group and largely (321, 87.5%) classified within the successfully pandemic ST131 clone, whereas fewer (19, 4.3%) animal isolates were classified in this group. Four B2 ST131 human isolates were mcr-1 and blacTX-M1 group carriers. One B2 ST131 poultry isolate carried both mcr-1 and bla_{SHV-12}, yet not bla_{CTX-M}. The remaining 36 animal isolates mcr-1-carryers belonged to clones other than ST131. So far, in our reference population there is no evidence of food producing animals being colonised by the human ST131 pandemic clone.

Acuitas Resistome - a rapid molecular typing tool for detection of multidrug resistant Gramnegative bacteria and infection control in Veterinary Hospitals.

F. Zendri¹, C. McGowan¹, V. Schmidt^{1,2}, D. Shelton³, D. Timofte^{1,2}

¹Institute of Veterinary Science, University of Liverpool, ²Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom, ³OpGEN, Copenhagen, Denmark

Background: Hospital-acquired infections associated with multidrug-resistant Gram-negative (MDR-GN) bacteria are an emerging concern in veterinary healthcare settings, especially in intensive care units (ICUs).

Methods: To understand the molecular epidemiology of MDR-GN isolates in two veterinary hospitals (Equine and Small Animal Hospitals), we performed a six month pilot study during which faecal and environmental samples were obtained from selected patients admitted to our ICUs, during the first and after 48 hours from admission. In total, 317 MDR-GN were collected and analysed using the Acuitas Resistome Test (OpGen, Denmark) a PCR-based microfluidic array assay which screens for 50 antimicrobial resistance genes, including those encoding production of extended spectrum beta-lactamase (ESBLs), TEM/SHV/OXA or AmpC beta-lactamases and carbapenemases. Combining organism identification and antimicrobial susceptibility data to genotyping results, unique 'Acuitas Lighthouse Profiles' were generated that can be used for typing the isolates and tracking transmission events.

Results: The most prevalent MDR-GNs isolates circulating in both the Small animal and the Equine Hospital consist of *Pseudomonas aeruginosa* and *Enterobacter cloacae* (21.8% each), *Klebsiella pneumoniae* (15%), *Acinetobacter baumannii* (14%) and *Escherichia coli* (12%), all harbouring a combination of genes encoding for beta-lactamases and ESBLs. One important finding is the identification of isolates carrying transmissible resistance to last resort antimicrobials (i.e. carbapenems) within the hospital environments, represented by three *Acinetobacter* spp harbouring *bla*_{OXA-23} and *E. coli* with *bla*_{OXA-48}.

Conclusion: The findings from this project will rapidly inform infection control policies in our hospitals to prevent transmission of nosocomial infections associated with these pathogens. **Disclosure:** Nothing to disclose

In vitro horizontal gene transfer in staphylococci: Transduction of *tet(M)* but not *fusB* and *fusC* from MRSP into MSSP

<u>S.-M. Frosini</u>¹, A. Loeffler¹, R. Bond¹, A. McCarthy², J.A. Lindsay³ ¹*Clinical Science and Services, Royal Veterinary College, Hatfield,* ²*MRC Centre for Molecular Bacteriology and Infection, Imperial College London,* ³*Institute of Infection and Immunity, St George's, University of London, London, United Kingdom*

The emergence of methicillin-resistant *Staphylococcus pseudintermedius* (MRSP) as a multidrugresistant canine pathogen with zoonotic potential has renewed concern over transmission of resistance genes amongst staphylococci.

This study investigated whether the antibiotic resistance genes *tet(M)*, *fusB*, *fusC*, located on small mobile genetic elements (plasmids or transposons), can be transduced by phage between different *S*. *pseudintermedius* and *S*. *aureus* (SA) isolates.

Phage were induced from each donor using UV light. Transduction experiments were performed in triplicate for 101 donor-recipient combinations (Table 1) using sub-inhibitory bottom agar (0.3mg/L tetracycline; 0.03mg/L fusidic acid) and selective top agar (30mg/L tetracycline; 16mg/L fusidic acid). Up to nine transductant colonies were selected from any plate. Successful transduction was confirmed through PCR of transductants (for staphylococcal species-specific *nuc, mecA* and *fusB/fusC/tet(M)*).

In 3/96 *fusB*, 12/153 *fusC* and 6/54 *tet(M)* experiments at least one transductant was recovered and confirmed for the expected species and methicillin-resistance. For *tet(M)*, all transductants carried the desired gene, confirming transfer between the MRSP donor and three different MSSP recipients. Transduction was also confirmed for *tet(M)* into the hyper-recipient control isolate MSSA RN4220 from MRSA (COL) as the donor but not from any of the potential *S. pseudintermedius* donors. No transductants were found to carry *fusB* or *fusC*. Growth of *fusB* and *fusC*-negative colonies after transduction experiments may be due to spontaneous chromosomal mutation, as described in SA.

This is the first description of resistance gene transduction between MRSP and MSSP. Although found at low frequency *in vitro*, more frequent occurrence is likely *in vivo*.

isolates used as	Gene of interest	Bacterial type	Species originally derived from	Number isolates used
Donor	fusB	MRSP	Cartine	2
	fusC	MRSP	Canine	3
	tet(M)	MRSP	Canine	1
		MRSA	Human	1 (COL)*
Recipient	jµs₿	MSSP	Canine	4
	fusC.	MSSP	Canine	5
	tet(M)	MSSP	Canine	7
	fusB/fusC	MRSA	Human	2
	fusB / fusC / tet(M)	MSSA	Canine	3
		MRSA	Human	5
		Restriction- deficient MSSA	Human	1 (RN4220)
		Restriction- deficient MSSA	Human	1 (NE567)

Table 1: Staphylococcus pseudintermedius and 5. aureus isolates used for attempting transduction of fusB, fusC and tet(M).

MRSP: methicillin-resistant Staphylococcus pseudintermedius; MSSP: methicillin-sensitive S. pseudintermedius; MSSA: methicillin-sensitive S. aureus; MRSA: methicillin-resistant S. aureus. "Only used for transfer into restriction-deficient MSSA RN4220.

[Table 1]

Disclosure: Source of funding: Both this study and SMF were supported by a Biotechnology and Biological Sciences Research Council Industrial CASE studentship in partnership with Dechra

50

Veterinary Products Limited (DVP) (BB/K011952/1). Conflicts of interest: DVP have previously collaborated with and funded teaching, clinical, and research activity at the RVC. **Acknowledgements:** The authors thank Dorina Timofte, Vanessa Schmidt, Merja Rantala and Thomas Gronthal for providing some of the isolates.

Antibiotic residues in drinking water and vegetables-Potential human health risk

<u>N. Hanna</u>, C. Stålsby Lundborg, A.J. Tamhankar *Karolinska Institutet, Stockholm, Sweden*

Objective: To assess a primary human health risk of exposure to antibiotic residues via drinking water and vegetables consumption. Methods: Environmental samples (drinking water, and edible parts of vegetables) were collected in twelve villages in Shandong province in eastern China. High performance liquid chromatography-tandem mass spectrometry was used to determine the concentration of antibiotic residues. Threshold of Toxicological Concern (TTC) decision tree approach based on Cramer classification will be applied for prior screening and primary risk assessment. Hazard quotients (HQ) for each mixture component HQ_i toxicological = Exposure individual substance (mg/kg body weight per day)/ TTC value_{individual substance} (mg/kg body weight per day). Exposure = C * IngR/ BW, TTC values will be obtained by dividing the respective TTC values for the appropriate Cramer class for classes I, II and III by 60 (adult body weight in kilograms). HImixturedw = HQA + HQB + HQC + HQD ... + HQJ. HImixture v = $HQ_A + HQ_B + HQ_C + HQ_D ... + HQ_J HI \ge 1$ is identifies as a potential risk and higher-tier assessment would be needed. A hazard index (HImixturedw+v) for the mixture in drinking water and vegetables as sum of multi-pathway HImixturedw+v = HImixturedw + HImixturev. For the risk of gut microbiota disruption, the methodology will be based on microbiology ADI by using this equation: ADI_{microbiology} = No Observed Adverse Effect Concentration (NOAEC) * Mass of Colon Content (220 g/day)/ Fraction of oral dose x 60 kg person. Exposuredw = C * IngR*EF*ED/ BW*AT. HQi resistance development = Exposuredw / ADImicrobiology... Disclosure: Nothing to disclose

Emergence of carriage of CTX-M-15 in faecal *Escherichia coli* in horses at an equine hospital in the UK; increasing prevalence over a decade (2007-2017)

<u>C.M. Isgren</u>¹, T. Edwards², G.L. Pinchbeck¹, E. Winward¹, D. Timofte^{1,3}, T.W. Maddox⁴, P.D. Clegg⁴, N.J. Williams¹

¹Institute of Infection and Global Health, University of Liverpool, Neston, ²Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, ³Institute of Veterinary Science, University of Liverpool, ⁴Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Neston, United Kingdom

Background: The global spread of the *bla*_{CTX-M-15} gene amongst human and animal isolates is widely reported but there are limited reports of *bla*_{CTX-M-15} in horses. The aims of the study were to investigate the changes over time in the epidemiology of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli within a single equine referral hospital in the UK. Methods: Faecal samples were collected from hospitalised horses in 2007 and 2017 and processed using selective media and standard susceptibility laboratory methods. A novel real-time PCR (RT-PCR) with melt curve analysis was used to distinguish between blacTX-M-1 and blacTX-M-15 within CTX-M-1 group. Results: In 2007, 457 faecal samples from 103 horses were collected, with ESBL-producing E. coli identified in 131 samples (28.7%, 95% CI 24.6-33.1). In 2017, 314 faecal samples were collected from 74 horses with ESBLproducing E. coli identified in 157 samples (50.0%, 95% CI 44.5-55.5) There were 135 and 187 nonduplicate ESBL-producing isolates from 2007 and 2017, respectively. In 2007 only 12.6% of isolates belonged to CTX-M-1 group, all carrying blacTX-M-1, whilst in 2017, 94.1% of isolates were CTX-M-1 group positive and of these 39.2% and 60.8% of isolates carried blacTX-M-1and blaCTX-M-15 respectively. In addition, doxycycline resistance amongst isolates increased from 39.3% in 2007 to 92.0% in 2017. Conclusions: RT-PCR proved reliable and cost-effective to distinguish between blacTX-M-1 and blacTX-M-15. Furthermore, its use in this study demonstrated the emergence of faecal carriage of CTX-M-15 in hospitalised horses, with an increase in prevalence of ESBL-producing E. coli as well as increased antimicrobial resistance to doxycycline.

Extended Spectrum β Lactamase -producing *Enterobacteriaceae* (ESBL-E) colonization in hospitalized and healthy farm horses

<u>A. Shnaiderman-Torban^{1,2}</u>, S. Navon-Venezia³, Z. Dor³, Y. Paitan^{4,5}, H. Arielly⁵, W. Abu Ahmad⁶, G. Kelmer², M. Fulde⁷, A. Steinman¹

¹Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, ²Department of Large Animal, Veterinary Teaching Hospital, Koret School of Veterinary Medicine- Veterinary Teaching Hospital, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rishon LeZion, ³Department of Molecular Biology, Faculty of Natural Science, Ariel University, Ariel, ⁴Department of Clinical Microbiology and Immunology, Sackler faculty of medicine, Tel Aviv university, Tel Aviv, ⁵Clinical Microbiology Lab, Meir medical center, Kfar Saba, ⁶Hadassah Braun School of Public Health and Community Medicine, Hebrew University, Jerusalem, Israel, ⁷Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany

Background: Animals, including horses, may serve as zoonotic reservoir for multidrug resistance. We aimed to investigate prevalence, molecular characteristics and risk factors of ESBL-producing *Enterobacteriaceae* (ESBL-E) colonization in different equine cohorts.

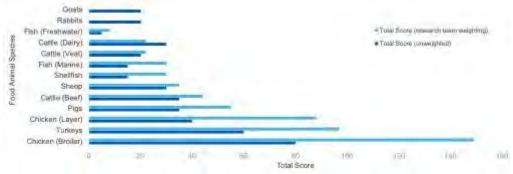
Methods: A prospective study (Oct 2015-Sep 2018) was performed sampling three cohorts: (i) onadmission horses in the Koret-School of Veterinary Medicine- Veterinary Teaching Hospital (n=168); (ii) farm horses, originating from 13 different farms (n=192); (iii) Horses hospitalized for ≥72 hours resampled from cohort (i) (n=86). Enriched rectal swabs were plated onto CHROMagarESBL plates and ESBL-production was confirmed (EUCAST). Identification and antibiotic susceptibility were determined (Vitek-2). CTX-M ESBL genes were identified (PCR). Medical records and owners' questioners were reviewed for risk factor analysis (SPSS).

Results: ESBL-E colonization rate increased from 20% (n=34/168, 95% CI 14-27%) on admission, to 78% (n=67/86, 95% CI 68-86%) during hospitalization (p< 0.0001). Overall, 145 bacteria were isolated. The main species were *E.coli* (51%, 74/145), *Enterobacter* sp. (19%, 28/145) and *Klebsiella pneumoniae* (15%, 22/145). The main gene was CTX-M-1 (75%). Resistance rates were: Trimethoprim-sulfa-89%, quinolones-25%, gentamicin-75%, amikacin-8%, with no resistance to carbapenems. Within farm horses, colonization rate was 21% (n=40/192, 95% CI 15-27%), with 48 bacteria isolated. The major species was *E. coli* (79%, 38/45) and the major gene- CTX-M-1 (95%). Resistance rates: Trimethoprim-sulfa-90%, quinolones-6%, gentamicin-75%, and 100% susceptibility to amikacin and carbapenems. Risk factors for ESBL-E colonization in farms: Sex (Stallion, OR=4.18), younger-age (OR=0.899), previous hospitalization (OR=1.752) and antibiotic treatment (OR=10.624). **Conclusions**: We demonstrated the potential zoonotic reservoir of ESBL-E in equine clinics and farms.

A comparative exposure assessment of antimicrobial resistance arising from food-producing animals in Canada

<u>C. Primeau^{1,2}, B. Chapman^{1,2}, C. Carson²</u> ¹Population Medicine, University of Guelph, ²Public Health Agency of Canada, Guelph, ON, Canada

Introduction: Antimicrobial resistance (AMR) transmission routes are complex, and evidence suggests the transfer of resistant bacteria or resistance genes from animals can contribute to AMR in humans. Although it is challenging to determine the exact contribution of AMR from the food chain to human health impacts, policy makers and other stakeholders are interested in identifying the food-producing species that significantly contribute to resistant human infections.


Objectives: To generate a semi-quantitative assessment comparing human exposure to resistant *Salmonella, E. coli, Enterococcus,* and *Campylobacter* spp. from 13 domestically produced food animals in Canada.

Aims: To provide evidence-based recommendations to prioritize areas for future surveillance, research and mitigation efforts in Canada.

Methods: Food animals were selected based on the quantity consumed and produced in Canada. Scientific and social criteria were developed, weighted, and scored to rank the species. Scientific criteria included antimicrobial use, frequency of recovery and resistance of the bacterial species, human consumption rates, and projections for AMR and consumption trends. The social criteria included public perception, and stakeholder perception and will. The results provide a summary of the weighted scientific and social criteria for each of the selected food-producing species.

Results: Preliminary results indicate chicken, turkeys, and pigs were ranked highest in terms of human exposure to resistant bacteria. These species also had the fewest data gaps, suggesting that research is lacking in other food-producing species.

Conclusions: This assessment provides rapid and transparent comparisons for prioritizing future public health efforts, and also highlights important data gaps in the AMR literature.

[Figure 1: The preliminary ranking of food animal species' contribution to AMR in humans in Canada.]

57 SODAPOP: A Mnemonic Tool for the Selection of Antimicrobial Therapy

<u>S. Cole</u>, S. Rankin Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States

Antimicrobial resistance in bacterial pathogens has dictated a need for veterinarians to practice "antimicrobial stewardship." Veterinary educators lack effective tools to teach stewardship but mnemonic tools have been shown to be effective tools to teach complex processes. SODAPOP is a tool designed to integrate case-based learning of antimicrobial selection into the veterinary curriculum. SODAPOP suggests that students consider the source and organism before they decide to treat. Susceptible **a**ntimicrobials are considered with regard to **p**atient contraindications. The **o**ptions are weighed and a plan formulated. To evaluate the efficacy of SODAPOP, an intervention study was performed with veterinary students during a clinical rotation. A pre-survey evaluated (1) perceived barriers to antimicrobial selection, (2) confidence in antimicrobial selection and (3) quality of antimicrobial choice and plan. Participants then viewed an instructional video on the concept of SODAPOP. The post-survey re-evaluated (1) confidence in antimicrobial selection, (2) views on SODAPOP as a tool and (3) quality of antimicrobial choice and plan. The top factor identified as a barrier to antimicrobial selection was lack of knowledge about distribution and tissue penetration of drugs (86%, 26/30). Pre-intervention the weighted (0= no confidence, 4= very confident), average confidence levels were 1.73, 2.16 and 1.5 for urinary tract, skin and respiratory infections respectively. Post-intervention these levels increased 2.23, 2.63 and 2.13 respectively (p<.001). 28/30 (93%) of students agreed or strongly agreed that SODAPOP was a useful tool. This study showed that SODAPOP is a valuable tool and proposes an approach for integration into the veterinary curriculum. **Disclosure:** Nothing to disclose

Plasmid similarities indicate a genetic link between ESBL in livestock and the general Dutch population: A Whole Genome Sequencing story

M. Visser, M. van Selst, A. van Hoek, C. Dierikx, E. van Duijkeren

Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

The prevalence of carriage of Extended Spectrum β -Lactamase and AmpC β -lactamase producing *Escherichia coli* (ESBL-E) in the general Dutch population is approximately 5%. Over the past years, transmission of ESBL-E between animals and humans via direct contact has been reported. Moreover, transmission via the food chain was suggested. The contribution of livestock to ESBL-E carriership and human infections, however, remains unclear. To get a better understanding of this contribution 310 ESBL-E isolates obtained from livestock (broilers, laying hens, pigs, and goats), farmers and individuals from the general Dutch population were sequenced and analysed. Clonal as well as horizontal gene transfer through plasmids was studied.

Isolates selected had either a *bla*_{CTX-M-1} (189), *bla*_{CMY-2} (96), *bla*_{SHV-12} (19), or *bla*_{TEM-52} (6) gene. Whole genome sequencing (WGS) was performed. Plasmids were reconstructed and assigned to a plasmid (sub)type. Genes of plasmids with the same (sub)type were compared to establish plasmid similarities. More than 60% of the *bla*_{CTX-M-1} carrying plasmids belonged to Incl1-ST3 obtained from different hosts (all hosts except goats), which confirms the important role of ST3 in the dissemination of this ESBL gene. Furthermore, the analysis suggests that ESBL-gene carrying plasmids were highly similar between isolates obtained from different farms, different farm animals and farmers, but also between farmers and individuals in the population at large, and more importantly, livestock and humans in the community at large. When investigating possible transmission events of ESBL-E it is important to study horizontal plasmid transmission in addition to *E. coli* clonal transmission.

Correlation Between Antimicrobial Use and the Isolation of Antimicrobial Resistant Non-Uropathogenic *Escherichia coli* Strains from Companion Animals

S.C. Rankin, CTRC grant number UL1-RR-024134

School of Veterinary Medicine | Pathobiology, Universitry of Pennsylvania, Philadlelphia, PA, United States

The importance of antimicrobial resistant (AR) E. coli urinary tract infections (UTIs) in dogs and cats cannot be understated. We previously described the correlation between phylogroup, virulence gene association and patient clinical characteristics of *E. coli* isolates from UTIs and the majority (66.6%) were not classified as uropathogenic E. coli (UPEC). The aim of this study was to understand the association between clinical characteristics, E. coli pathotype and AR. AR was compared to the measured clinical characteristics and was positively associated with current antimicrobial therapy (p< (0.0005); previous antimicrobial therapy (p< 0.0005) or previous hospitalization (p=0.034) within the three months prior to the positive culture. AR was compared to E. coli pathotype and UPEC was negatively associated with the presence of AR (p=0.034) and the presence of one or more AR genes (p=0.001). A lack of pathotype identification was positively associated with the presence of AR (p< 0.0005) and with the presence of one or more AR genes (p< 0.0005). The results identified some preliminary associations between pathotype, AR and certain clinical characteristics, and include some associations of concern between administration of antimicrobials, hospitalization, and the presence of AR genes. UPEC isolates were negatively associated with previous antimicrobial therapy and the presence AR, yet current and previous antimicrobial therapy were both positively associated with the presence of AR. This was not necessarily unanticipated, but strongly emphasizes the association between the use of antimicrobials and the isolation of antimicrobial resistant ExPEC, non-UPEC, strains from animals currently, or recently, exposed to antimicrobials. **Disclosure:** Nothing to disclose

Comparison of genotypic characteristics of ESBL-producing E. coli from animals and patients <u>Y. On</u>, J.W. Noh, E.C. Choi, J. Choi, C. Park, K.J. Lee

Division of Antimicrobial Resistance, Center for Infectious Diseases Research, National Institute of Health, Korea centers for disease Control and Prevention, Cheongju-si, Republic of Korea

Introduction: The main issue of current antimicrobial resistance(AMR) management is surveillance and management of "One Health" concept. ESBL producing E. coli is frequently found in animals and humans, and is a threat to public health due to limited selection of therapeutic antimicrobials. **Objectives:** In this study, we analyzed the share and distribution of AMR genes of ESBL E. coli from

patients and animals to present the scientific basis of AMR bacteria control. Aims: Genetic analysis of ESBL E. coli isolated from humans and animals has been used to compare

the share of AMR genes and host-specific genes. **Methods:** We compared E. coli with ESBL related genes from animals and patients. Specimens of livestock and companion animals were analyzed by comparing 140 pig-derived strains, 97 dogs and cats-derived strains, and 627 strains isolated from patient's blood specimens.

Results: The CTX-M-1 group and the CTX-M-9 group were analyzed 123 strains and 113 strains, respectively, of 236 livestock and companion animals. Subtypes of major bla genes were distributed in the order of CTX-M-55, CTX-M-14, CTX-M-15. These were analyzed as 36.7%, 29.7% and 12.3%, respectively. The subtype of the major bla genes in the patient-derived strains were CTX-M-15, CTX-M-14 and CTX-M-27. These were analyzed as 35.2%, 20.4% and 11.1%, respectively.

Conclusions: This analysis confirmed the distribution pattern of AMR gene and host-specific AMR genes between livestock and companion animals. These results indicate the importance of public health surveillance of ESBL E. coli and require continued surveillance and research. **Disclosure:** Nothing to disclose

Antibacterial resistant bacteria associated to larval culture of the red cusk eel *Genypterus chilensis* fed with untreated and treated live feed

L. Hurtado^{1,2}, R. Rojas^{1,2}, S. Contreras³, C. Miranda^{1,2}

¹Departamento de Acuicultura, Universidad Católica del Norte, ²Centro AquaPacífico, Coquimbo, ³Instituto de Fomento Pesquero, Puerto Montt, Chile

The use of antibiotics to treat live feed used in fish larval culture of red cusk eel Genypterus chilensis is frequent due to low larval survival rates mainly because of bacterial infections. The main aim of the study was to evaluate the occurrence of antimicrobial resistant bacteria in a commercial culture of G. chilensis larvae. Samples of red cusk eel larvae fed with untreated and florfenicol-treated (20 µg/mL during 2 h) rotifer and Artemia cultures, currently used as live feed in a commercial hatchery located in northern Chile were collected at 6, 18 and 32 d of culture. Total and antibacterial-resistant culturable counts of reared larvae were performed by a spread plate method using Plate count agar added with 2% NaCl alone and containing 30 µg/mL of florfenicol or oxytetracycline, respectively. Larval cultures exhibited high levels of total culturable counts and Vibrio spp. along the sampled period $(7.70 \times 10^5 \pm 4.92 \times 10^5 \text{ CFU/g to } 2.17 \times 10^7 \pm 1.19 \times 10^7 \text{ CFU/g, and}$ 5.08×10⁵ ± 2.28×10⁵ CFU/g to 5.46×10⁶ ± 1.84×10⁶ CFU/g, respectively). Percentages of resistance to florfenicol and oxytetracycline ranged from 5.48% to 16.27% and 11.18% to 20.23%, respectively. The high prevalence of antibiotic resistant bacteria in reared fish larvae prompts the need of developing proper management strategies to prevent future drug therapy failures, as well as results suggest that administered antibiotic therapy is not efficient to significantly reduce the levels of vibrios after 32 d of larval culture (Study supported by grant 1171772 of CONICYT, Chile). Disclosure: Nothing to disclose

Conceptualising Antimicrobial Resistance Surveillance Systems

C.R.R. George¹, M.M. Lahra²

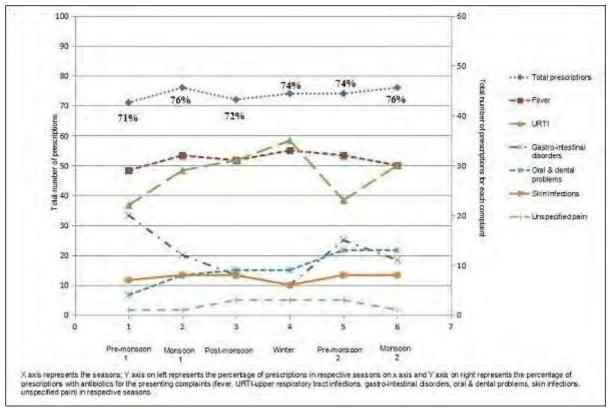
¹NSW Health Pathology - Microbiology, Newcastle, ²WHO CC for STI and AMR; NSW Health Pathology - Microbiology, Randwick, NSW, Australia

<u>Introduction</u>: Antimicrobial resistance (AMR) surveillance is the keystone of efforts to identify, monitor, and respond to emerging AMR threats. Worldwide, innumerable surveillance systems are in use, ranging from local to global. Many systems focus solely on humans whereas others integrate One Health attributes. With their widespread and increasing use, there is value in assessing the core concepts that underpin AMR surveillance systems.

<u>Objectives</u>: The objective of this assessment was to examine a broad range of approaches to AMR surveillance, and identify common philosophical elements that underscore their application. <u>Methods</u>: Approaches towards AMR surveillance were considered with visits to numerous centres involved in AMR surveillance located across North America and Europe. Centres visited included intergovernmental organizations, government organizations, and non-profit organizations. AMR surveillance was considered across the local through global context. A One Health approach was utilised that considered the human, animal, agricultural and environmental components of surveillance. Approaches utilised in resource wealthy versus resource constrained locations were also considered. <u>Results</u>: Descriptors that capture key philosophical elements of AMR surveillance include being: accessible, actionable, adaptable, archivable, attainable, comparable, contextual, defined, descriptive, distributed, equitable, ethical, evaluable, fail-safe, harmonic, independent, integrated, interconnected, interoperable, maintainable, manageable, measurable, perceptive, positive-sum, predictive, prescriptive, regulated, representative, responsive, scalable, secure, structured, sustainable, tangible, transparent, unbiased, and, in summation, useful.

<u>Conclusions</u>: This analysis establishes a broad-based framework for conceptualising elements underpinning AMR surveillance systems. There is value in further work exploring how these theoretical underpinnings structurally translate into the practicalities of ideal and functioning surveillance systems. **Disclosure:** This work was funded via a Fellowship awarded by the Winston Churchill Memorial Trust (Australia).

Surveillance of antibiotic prescribing by informal healthcare providers: A "missing link" in onehealth approach for antibiotic stewardship in rural India


<u>S. Khare^{1,2}, M. Purohit^{1,3}, M. Sharma^{1,4}, A.J. Tamhankar^{1,5}, C.S. Lundborg¹, V. Diwan^{1,2}, A. Pathak^{1,6,7} ¹Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden, ²Department of Public Health and Environment, ³Department of Pathology, ⁴Department of Pharmacology, ⁵Indian Initiative for Management of Antibiotic Resistance, Department of Environmental Medicine, ⁶Department of Pediatrics, Ruxmaniben Deepchand Gardi, Medical College, Ujjain, India, ⁷Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala Universitet, Uppsala, Sweden</u>

Introduction: In low and high middle income countries, areas with weak healthcare system are predominantly served by the informal healthcare providers (IHCPs). IHCPs constitute the majority of active healthcare providers in rural India; prescribe allopathic medicines, including antibiotics, without formal training. Surveillance of antibiotic prescription practices of IHCPs can provide crucial information in one-health approach.

Aim: To explore the antibiotic prescription patterns of IHCPs for common illnesses in rural Ujjain, India, by repeated follow-ups.

Method: A repeated cross-sectional study. Prescriptions to outpatients by IHCPs were collected over 18 months (April 2014-September 2016) for six seasons (2-pre-monsoons, 2-monsoons, 1-post-monsoon, 1-winter), in customized prescription pads provided to them.

Results: A total 15322 prescriptions for 323 different combinations of presenting complaints were analysed. Overall, 74% prescriptions contained antibiotics. Total 11336 prescriptions contained 15472 antibiotics prescribed either singly or upto five antibiotics. Antibiotics were prescribed more frequently to children-81% than to adults-71% (odds ratio-2.20, 95% confidence interval-1.95 to 2.49; p< 0.001) and during the monsoon (76%). Antibiotic prescribing for presenting complaints analysed was: injuries-89%, oral and dental problems-88%, fever-87%, upper respiratory tract infections-81%, skin infection-79%, gastro-intestinal disorders-60% and unspecified pain-30%. Fluoroquinolones (ofloxacin) and third-generation cephalosporin (cefotaxime) were the commonly prescribed antibiotic class. **Conclusions:** Study results reveal high, unindicated and inappropriate antibiotic prescribing for common illnesses in children and adults, mostly broad-spectrum antibiotic prescribing, that warrants immediate and coordinated efforts to reduce unnecessary antibiotic prescriptions by IHCPs and therefore forms an essential missing link in one-health approach for antibiotic stewardship.

[Relative distribution of % of total antibiotic prescriptions by season & presenting complaints]

Temperature-associated trend of the antibiotic resistance of bacteria

<u>J.W. Yang</u>, S. Bae, C. Park, K.J. Lee Division of Antimicrobial Resistance, National Institute of Health, Cheongju, Republic of Korea

Seasonality was demonstrated for gram-negatives infections in bloodstream diseases, peaking in the summer correlated with increasing temperatures. On the other hand, it has been reported that resistance rate of gram-positive infection is lowered when the temperature increases. To date there has been no investigation whether it is seasonality of antibiotic resistance in both community and hospital-associated cases. In this study, we analyzed the trend of antimicrobial resistance of bacteria (*S. aureus, E. coli* and *K. pneumoniae*) isolated from bloodstream on a temperatures. From May 2016 to December 2017, we collected blood isolates from the eight general hospitals

participating in the Korea-Global Antimicrobial Resistance Surveillance System. Antimicrobial susceptibility test was performed according to CLSI guideline. We confirmed Class A, B, D ß-lactamase and Extended-spectrum ß-lactamase (ESBL) by PCR and sequencing.

A total of 5,109 blood isolates (1,106 *S. aureus*, 2,884 of *E. coli* and 1,119 of *K. pneumoniae*) was collected and community-acquired (CA) were more than twice as much as hospital-associated (HA). In this study no significant seasonal variations were observed for the isolation rates of bacteria in HA. In the case of cefoxitin, HA-*S. aureus* showed no difference in temperature, but in CA, the resistance rate was decreased with increasing temperature. Gram-negative bacteria were increased in both HA and CA as the temperature increased. ESBLs producing gram-negative bacteria were also increased with increasing temperature.

Although there are some other mechanisms that support the association between resistance and temperature, differences in temperature-associated resistance rates in CA suggest a link between them.

Patients with sore throat look for advice rather than antibiotics: a survey across 13 countries A. van der Velden¹, A. Sessa², A. Altiner³, A.C.C. Pignatari⁴, A. Shephard⁵

¹University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands, ²Italian College of General Practitioners, Florence, Italy, ³Rostock University Medical Center, Institute of General Practice, Rostock, Germany, ⁴Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil, ⁵Reckitt Benckiser Healthcare Ltd, Slough, United Kingdom

Introduction: Sore throat (pharyngitis) is typically a self-limiting condition where antibiotics can be prescribed inappropriately due to uncertainty about patient need, perceived patient pressure, and diagnostic uncertainty.

Objectives: To evaluate the behaviour, experience, and needs of people with sore throat and their reasons for visiting a healthcare professional (HCP).

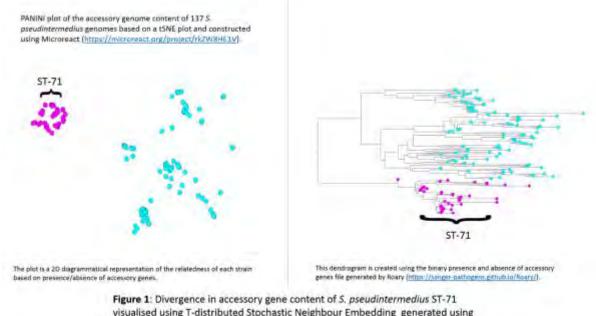
Aims: This insight from multiple countries can inform doctors and could help improve their prescribing decisions.

Methods: 5196 adults from 13 countries (~400 per country) who had experienced sore throat in the previous year voluntarily completed a questionnaire on their experience of sore throat, contact with HCPs, and treatment practices.

Results: A notable proportion of patients sought HCP advice for sore throat with 30% contacting a general practitioner and 14% a specialist doctor/consultant. The most common reasons for visiting a doctor were to learn about treatment options (90%), gain an explanation of how serious the problem was (87%), identify the cause (85%), get pain relief (83%), and learn likely recovery times (83%). 55% of patients visited the doctor to seek antibiotics, but this varied widely between countries. Antibiotics were the third most common main treatment for sore throat (12% overall), ranging from 5% in the UK to 21% in Saudi Arabia.

Conclusions: The main reasons for patients with sore throat consulting doctors relate to the cause of sore throat, advice on treatments, pain relief, and reassurance, whereas desire for antibiotics was rated much lower. Doctors could use this information to educate on appropriate symptomatic relief and improve their antibiotic prescribing behaviour.

Disclosure: The study was conducted by Incite Marketing Planning, and funded by Reckitt Benckiser, where A. Shephard is an employee. A. Sessa is a general practice doctor and senior partner in his practice in Arcisate, Italy. A. van der Velden, A. Sessa, A. Altiner and A. Pignatari are all members of the Global Respiratory Infection Partnership (supported by Reckitt Benckiser with an unrestricted educational grant).


Genomic signatures associated with methicillin-resistant *Staphylococcus pseudintermedius* lineage ST-71

<u>J. Mehat</u>¹, L. Rhys-Davies¹, C. Black², N. Fitzpatrick^{1,2}, R. La Ragione¹ ¹School of Veterinary Medicine, University of Surrey, GUILDFORD, ²Fitzpatrick Referrals, Goldalming, Surrey, United Kingdom

Staphylococcus pseudintermedius is a common cause of opportunistic canine skin and mucosal infections. Multidrug resistant (MDR) and methicillin-resistant *S. pseudintermedius* (MRSP) lineages, such as ST-71, have disseminated globally in the last decade and present significant treatment challenges. Furthermore, the treatment of MRSP infections in animals carrying methicillin-resistant *Staphylococcus aureus* (MRSA) may give rise to additional transferable resistances that compromise treatment efficacy of MRSA in humans. The aim of this study was to elucidate the genetic basis for the success of ST-71 as an opportunistic pathogenic lineage, beyond the acquisition of antimicrobial resistance (AMR) genes.

Preliminary analysis of *S. pseudintermedius* isolates from a UK referral vet practice demonstrated that the majority of isolates belonged to ST-71 clonal complex. Analysis of the accessory genomes of these isolates and 138 publically available *S. pseudintermedius* genome sequences using t-distributed stochastic neighbour modelling revealed a distinct cluster of genomes that show considerable divergence in accessory genome content (**Figure 1**). This cluster comprised almost exclusively of ST-71 genomes. Using a genome-wide association study we have identified genetic features associated with this ST-71 cluster, that potentially engender the success of this lineage.

These findings will enable the development of a rapid test that could be used for the detection of MDR-MRSP genotypes from clinical samples. This will facilitate more pragmatic treatment of canine soft tissue infections, thereby reducing a significant reservoir of AMR genes with potential to disseminate into *S. aureus* lineages causing human disease.

PANINI.

[Figure 1: Divergence in accessory genome content of ST-71]

Survey on ESBL-producing Escherichia coli in Italian dogs

F. Agnoletti, <u>R. Brunetta</u>, I. Drigo, E. Tonon, S. Deotto, L. D'Este, A. Barberio, M. Cocchi, M. Ustulin, M. Corrò, D. Dellamaria, K. Trevisiol, E. Mazzolini

Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro (Padova), Italy

Colistin-resistant *Escherichia coli* carrying extended-spectrum β -lactamases (ESBL-producing *E. coli*) pose a serious risk of therapy failure in humans and strict surveillance of animal ESBL-producing *E. coli* reservoirs is of importance for risk mitigation. Close cohabitation of humans with pets favors transmission of *E. coli* from dogs to humans and vice versa.

Aim of our study was to describe the occurrence of β -lactamases encoding genes (*bla*) and mobile colistin resistance genes (*mcr*) in *E.coli* isolates from dogs. In 2016-2017, 303 dogs were selected by systematic sampling among carcasses or faecal samples submitted to the Istituto Zooprofilattico Sperimentale delle Venezie's laboratories. Presumptive ESBL-producing *E. coli* were detected by cefotaxime selective media, identified by MALDI-TOF MS and ESBL-production was confirmed by antimicrobial susceptibility testing (broth microdilution).

One isolate per dog was further investigated for ESBL, AmpC and colistin resistance genes and classified according to the phylogenetic group and multilocus sequence type (ST). Among selected dogs 15% (45/303) harbored ESBL-producing *E. coli*. No carbapenem-resistant isolates were detected. 28% of *E. coli* isolates displayed several associations of *bla* types (Table 1). Almost 20% of dog isolates belonged to B2 and D phylogenetic groups, which are the most represented in human ESBL-producing *E. coli*. One isolate carrying *bla*_{CTX-H-15} and displaying fluoroquinolones resistance, yet colistin susceptible, belonged to the human pandemic clone ST131 O25:H4. Three isolates carried *mcr-1*. 14/45 strains (31.1%) were multidrug resistant, the extended-spectrum

cephalosporins/quinolones/sulfonamides/trimethoprim pattern mostly detected (five isolates). Our results highlight companion dog harboring *E. coli* clones that may threaten human health.

Phylogenetic group	Number of isolates (%)	Sequence type	β-lactamases types (number of isolates)
A	15 (33.3)		CTX-M-15/TEM-1 (7) TEM-1/CMY-2 (3) TEM-1 (2) SHV-12 (1) CMY-2 (1) CTX-M-1 (1)
B1	15 (33.3)		CTX-M-15 (6) CMY-2 (3) SHV-12 (2) TEM-1 (1) CTX-M-15/TEM-1 (1) SHV-12/TEM-1 (1) CTX- M-1/SHV-12 (1)
B2	2 (4.4)	28, 131	CTX-M-15 (2)
B2	1 (2.2)	12	CMY-2 (1)
B2	1 (2.2)	429	TEM-1/CMY-2 (1)
С	2 (4.4)		CTX-M-15 (1) CMY-2 (1)
D	5 (11.1)		CTX-M-15 (4) TEM-1(1)
E	2 (4.4)		CTX-M-15 (1) TEM- 1/CMY-2 (1)
F	2 (4.4)		CTX-M-15 (1) CTX-M- 15/TEM-1 (1)

[Table 1: Phylogenetic groups, sequence types (ST), β -lactamases types detected in the 45 ESBLproducing Escherichia coli isolated from Italian dogs]

Using a One Health approach to unravel Mycobacterium leprae transmission

<u>M. Tió-Coma</u>¹, J.C. Roy², C. Avanzi³, K. Alam², T. Pieters⁴, J.H. Richardus⁵, A. Geluk¹ ¹Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands, ²The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh, ³Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, ⁴Utrecht Institute for Pharmaceutical Sciences, Utrecht, ⁵Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands

Despite decades of availability of adequate treatment for leprosy, *Mycobacterium leprae* transmission is unabated as shown by the stable number of new cases over the last decade. To investigate potential routes of transmission, we determined the presence of *M. leprae* in: i) leprosy patients, ii) their household contacts (HC), iii) soil samples, iv) red squirrels, v) armadillos.

M. leprae DNA was isolated from slit skin smears (SSS) and nasal swabs (NS) of index cases and their associated HC. For all isolation sources, presence of *M. leprae* DNA was determined by RLEP PCR/qPCR. Genotype and antimicrobial resistance (AMR) was determined by Sanger sequencing or whole genome sequencing (WGS).

M. leprae was identified in SSS and NS of leprosy patients as well as healthy HC. Presence of *M. leprae* in HC is higher in NS (~29% positivity) than SSS (~19% positivity) whilst in patients the percentage of RLEP PCR positivity is higher in SSS. *M. leprae* was also present in 16.0% of soil from houses of leprosy patients (Bangladesh), in 10.7% of soil from armadillos' holes (Suriname) and in 5% of soil from the habitat of lepromatous red squirrels (British Isles). In tissue form squirrels from Belgium and The Netherlands as well as armadillos from Suriname, *M. leprae* was not detected. Importantly, a new subtype of *M. leprae* was identified in patients from Bangladesh which is related to subtype 1A. Genotype 1D was also identified in Bangladesh. Currently, in our sample set AMR to dapsone, rifampicin or ofloxacin has not been identified.

Effect of sub-minimal inhibitory concentrations of fluoroquinolones on bacterial antibiotic resistance development and mutagenesis: a systematic literature review

C. Ching¹, E. Orubu¹, V.J. Wirtz², M.H. Zaman¹

¹Department of Biomedical Engineering, Boston University, ²Department of Global Health, Boston University School of Public Health, Boston, MA, United States

Background: Fluoroquinolones are among the most widely used classes of antibiotics in both the human and veterinary sector. Studies show that while fluoroquinolone resistance is increasing, its drivers are not fully understood. Substandard fluoroquinolones (poor quality drugs often containing sub-therapeutic doses) are likely to contribute to antimicrobial resistance (AMR) acquisition and its spread; however, this relationship remains poorly understood.

Aim: To understand the potential effects of medicine quality on AMR, we performed a systematic literature review to synthesize evidence on AMR development and mutagenesis in bacteria following exposure to sub-standard and sub-minimal inhibitory concentrations of fluoroquinolones.

Methods: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we searched primary literature and reviews in English between 1975 and 2018 using PubMed and established keywords. Study selection was performed independently by two reviewers. Data extracted included bacteria analyzed, drug and concentrations, treatment conditions, key findings and study bias risk.

Results: Forty-six papers were relevant. The most studied fluoroquinolone and bacteria were ciprofloxacin and *Escherichia coli, Pseudomonas aeruginosa* and *Staphylococcus aureus,* respectively. Over half (27/46) of the publications reported an experimental link between sub-lethal drug levels and AMR acquisition among clinical and environmental bacterial isolates. **Conclusions:** The data implicates changes in selective pressure, mutation rate and different stress responses as drivers of AMR. The data also identifies gaps in knowledge regarding medicine quality and AMR. As the prevalence of substandard medicines and AMR increases, future studies which directly test the impacts of different aspects of medicine quality on AMR are needed. **Disclosure:** Nothing to disclose

Antimicrobial resistance prevalence in young harbour seals (*Phoca vitulina*) stranded in the Netherlands and antibiotic treatment effect on their gut microbiome during subsequent rehabilitation

<u>A. Rubio-Garcia¹</u>, J.W. Rossen², J.H. van Zeijl³, R. Sigrid², G.C. Silvia², M.L. van Putten², A.W. Friedrich², J.A. Wagenaar⁴, A. Zomer⁴

¹Veterinary and Research Department, Sealcentre Pieterburen, Pieterburen, ²Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, ³Izore Center for Infectious Diseases, Leeuwarden, ⁴Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands

Every year young sick harbour seals (*Phoca vitulina*) with critical health status are admitted for rehabilitation at the Sealcentre Pieterburen.

In this study, we aimed to investigate the prevalence of antimicrobial resistance (AMR) in bacteria isolated from the rectum of harbour seals admitted to the Sealcentre. Moreover, we analyzed the gut microbiome composition of the seals before and during rehabilitation to reveal the influence of antibiotic (AB) therapy and the rehabilitation process on their commensal gut flora.

During summer 2015 and winter 2015-2016, rectal swabs were collected from 200 harbour seals at admission, during rehabilitation and before release. If the seal received AB treatment, samples were taken before and after treatment. The swabs collected at admission were streaked onto different selective media to screen for clinically relevant AMR bacteria. From all swabs collected, DNA was isolated and amplicon sequencing was performed using Illumina Miseq 2x300bp on 450 bp of the 16S V3-V4 region. Reads were analyzed using Mothur. α - and β -diversity were determined using Shannon and Unifrac, respectively. Whole genome sequencing was applied to AMR bacteria isolated from seals to compare their genetic relatedness with those found in humans and to identify AMR genes. We observed a low prevalence of ESBL-producing *E. coli* (2%) and MRSA (0.5%) in stranded young harbor seals. The isolated bacterial strains are closely related to those found in humans and livestock and contain the same resistance genes. The effect of AB treatment on the seal gut microbiome is extensive, however it is transient.

Understanding the perception and knowledge on antimicrobial usage and antimicrobial resistance among pet owners in Selangor, Malaysia

<u>R. Mansor</u>, M.B. Sadiq, N.S. Mat Ghazali, S.S. Syed Hussain, P.A. Megat Abdul Rani, S.Z. Ramanoon *Universiti Putra Malaysia, UPM Serdang, Malaysia*

The emergence of antimicrobial-resistant organisms isolated from companion animals (i.e., dogs, cats, and "pocket pets") has resulted to subsequent implications for public health and use of veterinary drugs is suspected to be one of the major drive in the development of antimicrobial resistance (AMR). This survey involving pet owners in Selangor, Malaysia was conducted to assess their level of knowledge and perception towards antimicrobial usage in pets and AMR. A questionnaire comprised of five sections: the demographic characteristics, general management, assessment on knowledge and perception on antimicrobial usage and AMR was developed and distributed to a total of 90 pet owners. This study revealed that majority of the respondents had sufficient knowledge on certain aspects of antimicrobial usage in pets with 99% (34/90) of them adhered to veterinarian's direction following antimicrobial prescription. Although statistically insignificant, higher proportion of respondents (48%; 43/90) stopped antimicrobial usage by veterinarian is important (84%; 76/90) and more than 70% of them agreed that AMR occurred when antimicrobials were no longer work in treating sick animals. There was a significant association for both age and education status (p< 0.05) with their level

of perception towards AMR. Though majority of pet owners had fair knowledge and perception on the issue, continuous education and awareness should be provided to increase their knowledge and understand the importance of their roles as pet owners in order to reduce the occurrence of AMR amongst pets and pet owners.

Genetic basis for tetracycline resistance in *Campylobacter jejuni* in broilers and turkeys in Italy <u>P. Alba</u>, P. Di Matteo, C. Buccella, F. Feltrin, S. Lorenzetti, R. Amoruso, L. Sorbara, F. Stravino, T. Tagliaferri, A. Caprioli, A. Battisti

Department of Diagnostics- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale Lazio E Toscana 'M. Aleandri', Rome, Italy

Campylobacteriosis has been the most reported zoonosis causing bacterial gastroenteritis in Europe since 2005. The main reservoir of *Campylobacter jejuni* are poultry. The prevalence of *C. jejuni* resistant to tetracycline in Italy in 2016 was 72.1% and 68.7% in broiler chicken and turkeys, respectively, according to the EU Harmonised AMR Monitoring. The aim of this study was to determine the genetic basis of tetracycline resistance in *C. jejuni* in Italy.

53 *C. jejuni,* phenotypically resistant to tetracycline (MIC> 1mg/L), isolated in the frame of National Monitoring activities (Decision 2013/652/EU) in 2016 from caecal content samples from different epidemiological units of poultry flocks (n=34 broiler chickens, n=19 fattening turkeys), were Whole Genome Sequenced using Illumina technology. "De novo" assembly was performed using SPAdes. Accessory genes and chromosomal mutations conferring resistance were determined using ResFinder 3.0, and MLST and cgMLST, using pubMLST.org.

Two different genes encoding resistance to tetracycline were found: 84.9% (45/53) presented *tet*(O) (10 different variants, according to the non-silent combinations of mutations, which ranged from 5 to 9), and 15% (8/53) harboured a mosaic gene, designated *tet*(O/32/O).

Preliminary results indicated the presence of a rather homogeneous *C. jejuni* population in Italian broilers and turkeys, since 60.3% (32/53) of them belonged to the same ST (ST-2863) and to four cgSTs (cgST-3066; cgST-11302; cgST-19645; cgST-19772). All of them presented *tet*(O), but with different mutations.

This study is the first description of the mosaic tet(O/32/O) gene and of potential important variants of tet(O) in *C. jejuni*.

Monitoring antimicrobial resistance: understanding the mechanisms and drivers of antimicrobial resistance as an integrated One Health approach

<u>P. Poeta</u>^{1,2}, S. Correia^{1,2,3}, V. Silva^{1,2,3}, J.E. Pereira^{1,4}, G. Igrejas^{2,3}, Project NORTE-01-0145-FEDER-030101 "CAREBIO2", funded by the European Regional Development Fund (ERDF) through the NORTE 2020 (Northern Regional Operational Program) and the Foundation for Science and Technology (FCT).

¹Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, ²Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Lisbon, ³Department of Genetics and Biotechnology, Functional Genomics and Proteomics Unit, ⁴CECAV, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal

Antimicrobial resistance is an important health problem in both hospital and community acquired infections. However, resistant organisms exist in water, soil, plants and animals, and can be either part of the normal microbial populations or they can be the result of contamination by anthropogenic sources. Antibiotics are released into the environment and, consequently, increased concentration of antibiotics raises the diversity and the abundance of resistance genes. Research has been conducted in order to understand how the environmental resistome intersects with the resistome of nosocomial bacteria. Major efforts have been made in order to better understand the development, dissemination and persistence of antimicrobial drug resistance. Addressing the rising threat of antimicrobial resistance requires a holistic and multisectoral approach because antimicrobials used to treat various infectious diseases in animals may be the same or similar to those used for humans. Therefore, the assessment of antimicrobial resistance needs to take into account the roles of people, animals and the environment in the emergence, spread and persistence of antimicrobial resistance genes. Monitoring the prevalence of resistance in indicator bacteria in different populations makes it possible to compare the prevalence of resistance and to detect the transference of resistance genes from animals to humans and vice-versa. The frequency of antibiotic resistant bacteria has been shown to be directly proportional to the use of antibiotics. Therefore, integrated approaches to reduce selection pressure and stop antimicrobial resistance transmission on a global scale must be in accordance with the One Health principles and also based on economic evidence.

Occurrence antimicrobial resistance (AMR) of Salmonella and Campylobacter in humans and broiler chicken

L. Molla¹, A. Demo¹, E. Molla², S. D. Alcaine³, J. Boci⁴, A. Hodaj⁵, E. Kuka⁶, F. Sina⁷ ¹Environmental&Health, Public Health Institute, ²Bioinformatic, European University, Tirana, Albania, ³Food and Science, Cornell and Ithaca, NY, USA, Ithaca, NY, United States, ⁴Food Safety and Veterinary Institute, ⁵University Hospital, ⁶Directory of Public Health, ⁷Public Health Institute, Tirana, Albania

Introduction: Foodborne infections represent a significant public health burden. Moreover, antimicrobial resistance (AMR) in *Salmonella* and *Campylobacter* is a growing problem, which is linked to antimicrobial use in food animals. We aimed to get insight on the occurrence and AMR of *Salmonella* and *Campylobacter* isolated from humans with diarrhoea and broiler chicken in Albania as such data can help inform national policymaking on food safety and AMR.

Methods: We conducted a survey during October - February 2016. We included a total of 200 intestinal samples from healthy broiler chicken and 200 samples from human patients with acute diarrhoea.

Results: *Salmonella* and *Campylobacter* were isolated from the diarrhoeal disease cases, and were the etiological agents in 7% and 5% of the cases, respectively. Of the broiler chicken samples, 13% were positive for *Salmonella* and 45% for *Campylobacter*. We observed a high level of multiresistance among the *Salmonella* isolates: 58% of isolates from broiler chicken were resistant to four antimicrobial classes. The *Campylobacter* isolates from both humans and broiler chicken 30% and 23.3%, respectively were resistant to fluoroquinolones. Antibiograms for the *Campylobacter* isolates from humans and broiler chicken showed comparable patterns.

Conclusion: Both *Salmonella* and *Campylobacter* seem to be important causes of diarrhoeal disease among humans in Albania, and broiler chicken seems to be a contributing source of infection. The level of AMR seems high among *Campylobacter* and *Salmonella* from both broiler chicken and humans, which may partly reflect the use of antimicrobial agents in the poultry industry in Albania. **Disclosure:** No conflict of interest

Methicillin-Resistant *Staphylococcus aureus* and *Staphylococcus pseudintermedius* Circulating in dogs, Bangladesh

E.A. Rana, M.Z. Islam, A. Ahad, A. Dutta, P.K. Biswas, H. Barua

Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh

We conducted a cross-sectional study to determine the prevalence and risk factor (s) of S. aureus, S. pseudintermedius, MRSA, and MRSP in dogs. Total 358 swab samples were collected from different body sites of 150 dogs admitted to a university teaching hospital. Standard bacteriological methods were followed for the isolation and identification of S. aureus and S. pseudintermedius, which was further verified through characterizing nuc and pse genes, respectively. The isolates were tested for the susceptibility to a panel of 14 antimicrobials. Isolates displayed resistance to cefoxitin and oxacillin were screened for the presence of the mecA gene to identify MRSA and MRSP. The prevalence of S. aureus and S. psudintermedius in dogs were 16% (95% confidence interval (CI), 11-23%) and 49% (95% CI, 41-57%), respectively. Notably, all staphylococcal isolates showed resistance to ≥3 classes of antimicrobials (multi-drug resistant; MDR). The prevalence of MRSA and MRSP was 46% (95% CI, 30-64%) and 8% (95% CI, 4-15%), respectively. Dogs with dermatitis (odds ratio [OR], 12.24; 95% CI, 3.12 to 57.33; P < 0.001) and with the history of antibiotic use (OR 8.73; 95% CI, 2.23 to 43.10; P < 0.001) more frequently carried MRSA while the presence of otitis (OR 14.22; 95% CI, 1.64 to 103.58; P < 0.008) and oral lesions (OR 9.48; 95% CI, 1.14 to 64.82; P< 0.002) were identified as the significant risk factors for the carriage of MRSP in dogs. To our knowledge, this is the first report of MRSA and MRSP in dogs in Bangladesh. Disclosure: Nothing to disclose

Transmission of Staphylococcus pseudintermedius (SP) to human oncology patients from family pets.

L. Blondeau¹, J. Rubin², H. Deneer¹, R. Kanthan¹, S. Sanche³, J. Blondeau⁴ ¹Pathology and Laboratory Medicine, ²Veterinary Medicine, ³Medicine, University of Saskatchewan, ⁴Microbiology, Royal University Hospital, Saskatoon, SK, Canada

Background: SP is a well known dog pathogen and colonizes dog skin and mucosal surfaces. SP has been recovered from human patients but a clear link to the source has not always been established. We report on 3 human oncology patients with SP infections and compare strains to SP collected from family pets.

Materials and **Methods:** SP isolates identified in the clinical diagnostic laboratory were used to identify patients following which permission and ethics approval was received to collect specimens from family pets. Human specimens were blood, catheter tip, abdominal drainage and hemocath exit site. Specimens from pets (dogs and cats) were collected from the oral cavity and rectum. SP was identified by Matrix assisted laser desorption ionization -time of flight (MALDI-TOF) and Vitek® II. Susceptibility testing was by Vitek II and confirmed by broth micro dilution. Strain comparisons were by antibiograms, MALDI-TOF spectrogram, pulsed field gel electrophoresis and 16s ribosomal sequencing.

Results: One pediatric patient was bacteremic and two adult patients had cathether associated infections - one with positive cultures 16 days apart and the other 33 and 48 days apart. All strains were methicillin-susceptible. Isolates from humans and their pets had identical antibiograms and MALDI-TOF spectrograms. The human-pet paired isolates analyzed by PFGE and 16 s ribosomal sequencing were identical.

Conclusions: We reported on SP infections in human oncology patients including bacteremia, catheter-associated and persistent infections with human SP strains identical to family pet strains. Caution with family pets may be warranted for oncology patients.

Veterinary antimicrobial resistance containment in Bangladesh: A scoping review of policy, regulatory and practice gaps

<u>E.S.F. Orubu</u>¹, M.H. Zaman², V.J. Wirtz³ ¹Institute for Health System Innovation and Policy, ²Department of Biomedical Engineering, ³Department of Global Health, Boston University, Boston, MA, United States

Introduction: The World Health Organization's Global Action Plan (GAP) on Antimicrobial Resistance (AMR) provides guidance to countries on AMR containment using a One-health approach encompassing humans, animals, plants, and the environment. With 164 million people and 404 million terrestrial animals on a landmass of 147 000 square kilometers subject to flooding, Bangladesh has a high communicable disease burden with AMR being a major and growing concern. The aim of this scoping review is to identify current policies and regulations outlined in the Bangladesh's 2017 National Action Plan (BNAP) on AMR containment and corresponding evidence on their implementation.

Methodology: The BNAP was benchmarked against GAP and those of the USA, Bhutan, Pakistan, and Thailand; this was followed by a scoping review to identify evidence on their implementation by review of peer-reviewed and grey literature.

Results: The BNAP aligns strongly with GAP's strategic objectives, particularly infection control and prevention. However, policy and regulatory gaps were identified in the areas of veterinary antimicrobial stewardship including surveillance, veterinary antimicrobial use, veterinary vaccinations, and specifications of targets for the reduction of non-therapeutic antibiotic use. Evidence on extent of inclusion of AMR contents in veterinarian professional curriculum and establishment of reference microbiology laboratories was lacking.

Conclusion: Closing current policy and regulatory gaps can strengthen the BNAP. Findings from this review can support the development of a research agenda for action in containment of AMR in Bangladesh and have implications for other low and middle-income countries with similar veterinary sector.

Antimicrobial use in 44 Dutch companion animal clinics: time trends and seasonality expressed in number of Defined Daily Doses (2012-2015)

<u>N.E.M. Hopman</u>¹, L. Portengen², D.J.J. Heederik², J.A. Wagenaar¹, I.M. van Geijlswijk³, E.M. Broens¹ ¹Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, ²Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, ³IRAS Veterinary Pharmacology and Therapeutics Group, Pharmacy Department, Utrecht University, Utrecht, The Netherlands

Use of antimicrobials in humans and animals promotes selection and dissemination of antimicrobial resistance (AMR). To reduce AMR, responsible use of antimicrobials is needed and should therefore be promoted both in human and veterinary medicine. To optimise antimicrobial prescribing behaviour in Dutch companion animal clinics, insight in current antimicrobial use (AMU) is pivotal. The objective of this cross-sectional study was to describe systemic AMU during a 3-year time period (July 2012-June 2015) using monthly prescription data from 44 Dutch companion animal clinics. Number of Defined Daily Doses Animal (DDDAs) were calculated from prescription data for total, 1st, 2nd and 3rd choice AMU (classification based on Dutch Policy on Veterinary AMU). Aminopenicillins (with and without clavulanic acid) accounted for the majority of DDDAs (38.7% of total AMU (first year) and 39.3% (third year)). Total AMU decreased in the same period from 1.82 to 1.56 DDDA/year. A similar decrease was seen for 2nd and 3rd choice AMU, whereas 1st choice AMU increased over the study period.

Time trends and seasonality in total, 1st, 2nd and 3rd choice AMU were explored using statistical modelling. These models confirmed the decreasing trends in use of 2nd and 3rd choice AMU and the shift towards more 1st choice AMU, which was apparent in the raw data. Strong seasonal patterns were observed in AMU, with highest use between August and October and lowest use in February. Although AMU is changing and decreasing, there is still room for improvement, especially with regards to the classes of antimicrobials used.

Disclosure: This study was funded by ZonMw (Netherlands Organisation for Health Research and Development, The Hague, the Netherlands), project number 205300003.

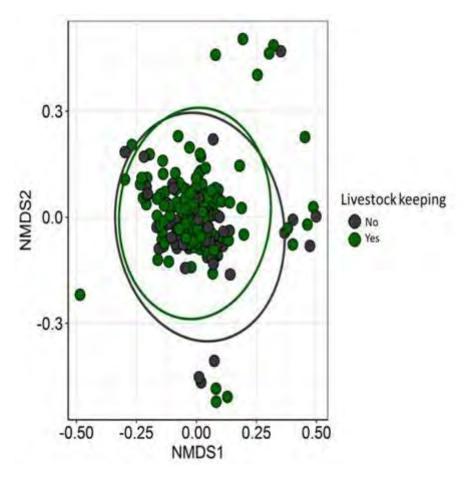
Systematic review of beta-lactamase resistance genes from Nigeria reveals shared genes between animals, humans and environment

B. Awosile

Dept of Health Management, University of Prince Edward Island, Charlottetown, PE, Canada

This systematic review was carried out to identify different beta-lactamase resistance genes reported in published literature from Nigeria and to determine the distribution of the resistance genes between animals, humans and environment. Fifty-six (56) articles were included in this review based on the eligibility criteria. All the beta-lactamases reported were detected from the Gram-negative bacteria. most especially from bacteria of family Enterobacteriaceae (n=53), while others includes Acinetobacter baumannii (n=2) and Vibrio spp. (n=1). Thirty-four (34) different beta-lactamase genes have been detected and reported from Nigeria. Sixteen (16) genes have been detected from animals, 28 genes from humans and 11 genes from the environment. These genes belongs to the narrow-spectrum (blaoxa-1, blaoxa-2, blashv-1, blashv-11, blatem-1, blatem-2 and blaz), AmpC (blaampc, blaact, blacmy, blacco, blaFOX-1, and blaDHA,), extended-spectrum (blaCTXM-1, blaCTXM-2, blaCTXM-14, blaCTXM-15, blaCTXM-27 and blacTXM-55), and carbapenemase (blacXA-23, blacXA-48, blacXA-181, blavIM-1, blavIM-1, blavIM-2, blavIM-5 and blakPc) beta-lactamase resistance genes. Eight (8) genes (blacMY, blact, blach, blactxm-1, blactxm-14, blages, blaoxA-1, and blaoxA-2) were shared between animals and humans, 6 genes (blasHV-1, blasHV-2, blasHV-11, blasHV-12, blayEB-1, and blaNDM-1) were common to both humans and environment while none of the genes was unique to both animals and environment. Three genes including *bla*_{TEM-1}, *bla*_{AmpC} and internationally pandemic *bla*CTXM-15 genes were unique to animals, humans and environment. This study has provided information on the beta-lactamases distribution in Nigeria. This is necessary for better understanding of one health and molecular epidemiology of clinically important beta-lactamases especially the extended-spectrum beta-lactamases and carbapenemases both in Nigeria and globally. **Disclosure:** Nothing to disclose

Genomic epidemiology of interconnected human and livestock resistomes in a developing country urban landscape


D. Muloi^{1,2,3}, M.J. Ward², J.M. Hassell^{3,4}, J. Kiiru⁵, J. Bettridge^{3,4}, T. Robinson⁶, S. Kariuki⁵, B. Wee¹, B. van Bunnik¹, E. Kang'ethe⁷, A.B. Pedersen², E.M. Fèvre^{3,4}, M. Woolhouse^{1,2}

¹Usher Institute of Population Health Sciences & Informatics, ²Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom, ³International Livestock Research Institute, Nairobi, Kenya, ⁴Institute of Infection and Global Health, The University of Liverpool, Liverpool, United Kingdom, ⁵Centre for Microbiology Research,, Kenya Medical Research Institute, Nairobi, Kenya, ⁶Food and Agriculture Organization of the United Nations, Rome, Italy, ⁷University of Nairobi, Nairobi, Kenya

Livestock have been proposed as a reservoir for antibiotic resistant (AMR) bacteria and AMR genetic determinants that may infect humans, yet quantitative evidence regarding their epidemiological role remains lacking. We used a combination of genomics, epidemiology and ecology to investigate patterns of AMR carriage in *Escherichia coli*, regarded as a sentinel organism. We conducted a structured epidemiological survey of 99 households across Nairobi, Kenya and cultured *E. coli* from 315 human and 594 livestock faecal samples.

We detected high rates of AMR gene carriage, 60 different acquired genes and 14 point mutations, and found that 10/74 of the genes were significantly more common in human than in livestock isolates. Further, AMR genes were not associated with host type or household location, and AMR genes frequently co-occurred, potentially enabling the acquisition of multi-drug resistance in a single step. We found that, whilst AMR gene carriage in humans was not directly associated with the presence of livestock in the household (figure 1), the impact of keeping livestock on human AMR gene carriage was instead influenced by livestock-keeping practices, in particular the presence or absence of animal manure in the household.

In conclusion, we did not find any evidence to support the hypothesis that the keeping of livestock is a risk factor for emergence and dissemination of AMR genes to humans in this setting. Our characterisation of AMR patterns in which co-habiting human and livestock populations were systematically sampled provides insight into the broader epidemiology of AMR in complex and interconnected urban environments.

[Human AMR gene assemblage by livestock keeping]

Antimicrobial resistance profiles of *Escherichia coli* isolates from canine and feline urinary tract infections

M. Niculae, E. Pall, C.D. Sandru, R. Pop, M. Spinu

IV Clinics, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania

Introduction: an increasing number of scientific reports underline the elevated level of antimicrobial resistance in both human and veterinary pathogens with *Escherichia coli* as one of the most relevant prototypes of multidrug resistant bacteria.

Objectives: the research evaluated and characterized the antimicrobial resistance profiles of *Escherichia coli* isolates from dogs and cats with urinary tract infections (UTI) referred to the veterinary medical teaching hospital and local clinics.

Aims: this retrospective study was aimed to investigate the percentage and patterns of antimicrobial resistance.

Methods: Urine samples collected during the period 2016 - 2018 from a total number of 150 animals with confirmed UTI were subjected to microbiological processing involving culture on enrichment and selective media, and biochemical properties evaluation and *in vitro* antimicrobial susceptibility testing using Vitek 2 system.

Results: Overall, the determined rates of antimicrobial susceptibility towards the antimicrobials most commonly used in small animals practice were relatively low, and resistance to at least two antimicrobial agents was demonstrated in both canine and feline isolates. Several distinct resistance patterns were established for feline and canine isolates (11 and 9, respectively), notably involving multidrug resistance (MDR) and pandrug-resistance. The highest rates of resistance were recorded towards β -lactams, tetracyclines, and aminoglycosides for cats and tetracyclines, aminoglycosides

and fluoroquinolones for dogs. **Conclusions:** these results emphasize the importance of monitoring antibiotic usage and resistance patterns in the management of *E. coli* associated UTI.

Optimization of lung infection model with carbapenemase producing *Klebsiella pneumoniae* ST258 (KPC-2) for intranasal treatment in neutropenic NMRI mice

L.M. Cavaco^{1,2}, C.B. Hjortkjær², C.K. Rasmussen¹, P.E. Nielsen², C. Vingsbo-Lundberg¹ ⁷Statens Serum Institute, ²ICMM, Copenhagen University, Copenhagen, Denmark

When testing *in vivo* efficacy of new antimicrobial compounds it is important to use clinically relevant models. Various models are available, however the treatment of pneumonia with intranasally administered compounds is challenging considering clinical progression and animal welfare constraints.

We tested a lung infection model in naturally immunodeficient DBA/2 mice and compared that to NMRI mice rendered neutropenic. The clinical scores progressed rapidly during the first 8 hours in DBA/2 mice and then stabilized at 20-24h, while neutropenic NMRI mice had a slower progression of clinical scores

Treatment with gentamicin (70 mg/kg) was performed at 20 or 24 h using intranasal administration under anesthesia , comparing two methods for anesthetizing the mice (Zoletil® mix sc or isoflurane). Fixed anesthesia with Zoletil® mix was found to cause respiratory failure in DBA/2 and low weight NMRI mice, but tolerance was improved using larger NMRI mice. In NMRI mice a reduction of 4 log cfu compared to vehicle treatment was observed, whereas in DBA/2 mice only a 1 log reduction was observed. Isofluorane anesthesia reduced the efficacy of gentamicin in DBA/2 but not in NMRI mice. By optimizing the pneumonia model a better efficacy of the treatment with gentamicin was obtained as well as better control of the disease progression and welfare of the mice. We suggest that this optimized model may be a useful tool to evaluate the effect of novel antimicrobial compounds via the intranasal route.

Global overview on antibiotic use and resistance in E. coli in poultry

<u>N. Roth</u>^{1,2}, A. Käsbohrer³, S. Mayrhofer¹, Z. Ulrike¹, C. Hofacre⁴, K.J. Domig¹ ⁷Department of Food Science and Technology, University of Natural Resources and Life Sciences,

Vienna, Vienna, ²Development, Biomin Holding GmbH, Getzersdorf, ³Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Vienna, Austria, ⁴Poultry Diagnostics and Research Center, University of Georgia, Athens, GA, United States

Poultry is one of the world's fastest growing sources of meat production. The objective of this study was to identify the type and amount of antibiotics used in poultry production and the level of antibiotic resistance in *E. coli* isolated from broilers. Isolate information was obtained from national monitoring programs and research studies published since 2000 and conducted in large poultry producing regions: US, China, Brazil, Poland, United Kingdom, Germany, France and Spain. Qualitative data of registered antibiotics from every country were evaluated. The fluoroquinolones, 3rd generation cephalosporins, macrolides and polymyxins ("highest priority critically important" antibiotics for human medicine according to WHO) are approved for use in large poultry-producing regions, with the exception of fluoroquinolones in US and cephalosporins in the EU. Data on antibiotic resistant *E. coli* is available for most regions but detection of resistance and number of isolates in each study differs among regions. The global harmonized approach in the monitoring of antibiotic use and evaluation of resistances using the same methodology is needed.

Tetracyclines, aminoglycosides, sulfonamides and penicillins are registered for use in poultry in all evaluated countries. The average resistance rates in *E. coli* to representatives of these antibiotic classes are higher than 40% in all countries, with the exception of ampicillin in the US. The resistance rates to fluoroquinolones in the US, where fluoroquinolones are not registered for use, are below 5%, while the average of resistant *E. coli* is above 40% in Brazil, China and EU, where use of fluoroquinolones is legalized.

Do vegetarians less frequently carry ESBL/pAmpC-producing *E.coli/K. pneumoniae* compared to non-vegetarians?

<u>A.P. Meijs</u>, E.F. Gijsbers, P.D. Hengeveld, C. Veenman, A. van Roon, A.H.A.M. van Hoek, S.C. de Greeff, E. van Duijkeren, C.M. Dierikx

Centre for Infectious Disease Control, RIVM, Bilthoven, The Netherlands

Introduction: Extended-spectrum β-lactamase (ESBL) and plasmid-mediated AmpC (pAmpC)producing *Escherichia coli/Klebsiella pneumoniae* (ESBL-E/K) are frequently found on meat products in Dutch retail, especially on poultry.

Aim: To investigated if vegetarians are at lower risk to carry ESBL-E/K compared to persons who consume meat.

Methods: Vegetarians, pescatarians (vegetarians who eat fish) and non-vegetarians (persons who eat meat ≥3 times per week) were asked to send in a faecal sample and a questionnaire to collect information about their diet and risk factors for ESBL-E/K carriage. ESBL-E/K was cultured and multilocus sequence types (MLSTs) were determined. ESBL/pAmpC-genes were analyzed using polymerase chain reaction (PCR) and sequencing. The risk of ESBL-E/K carriage in the three study groups were analysed using multivariable logistic regression.

Results: Prevalence of ESBL-E/K carriage was 8.0% in vegetarians (63/785; 95%Cl 6.3-10.1), 6.9% in pescatarians (27/392; 95%Cl 4.8-9.8) and 3.8% in non-vegetarians (14/365; 95%Cl 2.3-6.3). Multivariable analysis showed an OR for ESBL-E/K carriage of 1.8 for vegetarians (95%Cl 0.9-3.8) and 1.3 for pescatarians (95%Cl 0.6-3.0) compared to non-vegetarians. The predominant MLST was *E. coli* ST 131 and most common ESBL genes were *bla*_{CTX-M-15}, *bla*_{CTX-M-27}, *bla*_{CTX-M-14} and *bla*_{CTX-M-1} in all diet groups. Independent risk factors for ESBL-E/K carriage were travel to Africa/Latin America/Asia (OR 4.4) or South/East Europe (OR 1.7) and rarely/never washing of hands before food preparation (OR 2.2).

Conclusions: Vegetarians and pescatarians do not have a lower risk of ESBL-E/K carriage compared to non-vegetarians, indicating that eating meat is not an important risk factor for ESBL-E/K carriage. **Disclosure:** Nothing to disclose

Prevalence and antimicrobial resistance patterns of *Staphylococcus* spp. isolated from canine pets and their owners in Trinidad

<u>S. Suepaul</u>¹, K. Georges¹, C. Unakal², F. Boyen³, J. Sookhoo¹, K. Ashraph², A. Yusuf¹, P. Butaye^{3,4} ¹Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, ²School of Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, ³Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium, ⁴School Of Veterinary Medicine, Ross University, Basseterre, Saint Kitts and Nevis

Introduction: Staphylococci are opportunistic pathogens of which some species have been shown to be able to colonize both pets and humans. Moreover, several staphylococcal species have been shown to be frequently resistant to multiple antimicrobial agents.

Objectives: We investigated the various species of staphylococci present on humans and their canine pets and determined their antimicrobial resistance against 9 antimicrobials.

Aims: We aimed to estimate a possible exchange of these bacteria between humans and animals. **Methods:** A total of 440 strains were isolated from 112 humans and their dogs. Of these, 43.2% were from the owners and 53.9% from dogs. The isolates were identified using the MALDI Biotyper (Bruker). Their antimicrobial susceptibility was determined using the Kirby Bauer disk diffusion method.

Results: Of the 24 *Staphylococcus* spp. identified, 39.1% were coagulase positive (30.5% belonging to the *Staphylococcus intermedius* group (SIG), *S. aureus* (8.2%) and *S. lutrae* (0.2%)) and 54.3% of isolates were coagulase negative of which the most abundant species were *S. sciuri* (24%) *S. simulans* (10.7%) and *S. epidermidis* (9.1%). *S. schleiferi* (6.0%) and *S. agnetis* (0.7%) were the coagulase variable species. Resistance to at least one antimicrobial was found in 68.2% of the isolates. Of all *S. aureus* isolates 70% (25/36) were methicillin resistant while 8.5% (8/94) of the *S. pseudintermedius* isolates were methicillin resistant.

Conclusion: Further studies using whole genome sequencing will enable us to determine the risks of these findings.

Quantifying transfer dynamics of ESBL/pAmpC *E. coli* across the broiler production pyramid I. Apostolakos¹, L. Mughini-Gras^{2,3}, L. Fasolato¹, A. Piccirillo¹

¹Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy, ²Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, ³Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands

Introduction: Extended-spectrum β -lactamase (ESBL)- and pAmpC-producing *E. coli* (ESBL/pAmpC-EC) in food producing animals is a major public health concern.

Objectives: To establish baseline prevalence data for ESBL/pAmpC-EC and quantify their stepwise transfer in Italy's broiler production pyramid.

Aim: To provide quantitative data to inform ESBL/pAmpC-EC risk-mitigating strategies.

Methods: Three production chains of an integrated broiler company were investigated. Cloacal swabs were taken from Parent Stock (PS) chickens and offspring broiler flocks in 4 fattening farms per chain. Carcasses from sampled broiler flocks were collected at slaughterhouse. Samples were processed on selective media and growing *E. coli* were screened for ESBL/pAmpC production. ESBL/pAmpC genes were detected by PCR and sequencing. Average pairwise overlap of ESBL/pAmpC-EC gene occurrences between subsequent production stages was estimated using the proportional similarity index, modelling both uncertainty and variability in a Monte Carlo simulation.

Results: 820 samples were processed from which 513 ESBL/pAmpC-EC were obtained. We found a high prevalence (92.5%, 95%CI 78.9-97.6%) in one-day-old PS chicks, where *bla*_{CMY} genes predominated, dropped significantly to 20% (11.7-32.1%) at laying period. In fattening broilers, prevalence was 69.2% (57.5-78.7%) at the start of production, 54.2% (35.1-72.1%) before slaughter, and 61.2% (55.6-66.6%) in carcasses. Significantly decreasing and increasing trends for *bla*_{CMY} and *bla*_{CTX-M-group-1} gene occurrences were respectively found across subsequent production stages. The estimated average stepwise transfer of ESBL/pAmpC-EC genes between subsequent production stages was 47.7% (42.3-53.4%).

Conclusions: ESBL/pAmpC-EC persists in broiler production and its stepwise transfer contributes significantly to broiler colonisation in subsequent production levels. **Disclosure:** Nothing to disclose

Antibiotic resistance in *Escherichia coli* from diseased pigs in the Netherlands from 2015 - 2017: reliability and representativeness of passively acquired data

<u>J. van Hout</u>, M. Gonggrijp, A. Heuvelink GD Animal Health, Deventer, The Netherlands

To further reduce and refine the use of antibiotics in livestock, monitoring of antibiotic resistance (ABR) of veterinary pathogens is of utmost importance. A project was run to develop a nationwide, representative, reliable system for ABR monitoring in livestock pathogens. As part of this project, reliability and representativeness of passively acquired *Escherichia coli* (ECO) isolates from diseased pigs were evaluated.

Antibiotic susceptibility testing results of enteropathogenic ECO from pigs were obtained from the LIMS of GD Animal Health. Data were analysed using Stata.

972 ECO isolates from 616 unique, commercial pig farms were available from 2015 - 2017 for further analysis. 752 isolates originated from post-mortem examinations and 220 isolates were cultured from faecal samples. For 575 isolates the age category (suckling, weaned, grow/finish) was known. The 972 isolates provide a reliable estimation of ABR levels of ECO for different antibiotics and allow for detection of changes in ABR of 5% or more. Considering province and farm size of origin, collected ECO isolates are a fairly representative sample. Several ABR levels were significantly affected by age category (lower ages showing higher ABR levels) and by farm of origin.

The passively acquired data on ECO resistance in pigs can well be used within a national framework monitoring ABR in livestock pathogens. It is recommended to collect additional data per isolate (antibiotic treatment history, age of the pigs) to further evaluate whether these factors impact ABR levels and whether, for example, treatment advices for ECO should be further differentiated regarding the age.

Antimicrobial prescription behaviour among veterinary practitioners in the Netherlands; a cultural theory on attitudes and trade-off decision making

M. Leneman¹, D. Bens², D. Speksnijder^{2,3}

¹Research consultant, Diversity Focus, Wijchen, ²Faculty of Veterinary Medicine Utrecht University, Utrecht, ³University Farm Animal Clinic ULP, Harmelen, The Netherlands

Background:

To curb the increasing threat of antimicrobial resistance, antimicrobial use in farm animals should be minimized. Veterinary antimicrobial prescription behaviour is influenced by trade-off decision making. Trade-offs are value decisions, which derive from a hierarchy of attitudes. In this study we explore and theorize on changes and differences in professional values and attitudes, affecting trade-off decision making, using a cultural anthropological methodology

Materials/methods:

The theory has been formed by deduction from findings of recent qualitative and quantitative research concerning antimicrobial prescription behaviour of farm animal veterinarians in the Netherlands and literature review.

Results:

For the veterinary profession, four fundamental attitudes have been identified as constituting work values, job satisfaction and as underpinning trade-off decision making. These are:

- 1. 'intrinsic to the work' attitude
- 2. 'intellectually challenging' attitude
- 3. 'accountable to society' attitude
- 4. 'economic efficiency' attitude

All four can be present, although seldom equally strong, in the individual veterinarian, While making a trade-off decision, one of the four attitudes dominates the other three. In case of an antimicrobial prescription decision, especially the third and fourth attitude can cause a dilemma. This may result in veterinarians deciding differently in comparable prescribing situations, depending on the dominant attitude. Submersion in a context (sector subset) in which economic efficiency values prevail, is likely to induce a bias in trading off towards the economic efficiency attitude.

Conclusion:

The scope of antimicrobial reduction policy interventions should broaden from farm level to sector and market level, because economic efficiency values may counteract further antimicrobial reduction. **Disclosure:** Nothing to disclose

Social influences in antibiotic prescription behaviour among veterinary practitioners in the Netherlands

M. Leneman¹, D. Bens², D. Speksnijder^{3,4}

¹Research consultant, Diversity Focus, Wijchen, ²Faculty of Veterinary Medicine Utrecht University, ³Faculty of Veterinary Medicine, Utrecht University, Utrecht, ⁴University Farm Animal Clinic ULP, Harmelen, The Netherlands

Background:

Insights in the key factors that drive antibiotic use and prescription by veterinarians can serve in strategically influencing veterinary antibiotic prescription behaviour and thereby counteract the increasing threat of antimicrobial resistance. In this study, we elicit how social influences, as one of the key factors, affect antibiotic prescribing of farm animal veterinarians.

Methods:

Semi-structured interviews were held with 11 farm animal veterinarians and subsequently a questionnaire was developed and analysed. 135 Veterinarians working in the Netherlands responded.

Results:

Farmers, nutritionists and their immediate colleagues were regarded to belong to the veterinary practitioners' direct social environment. According to the respondents, this narrow social distance to their clients helps them in their advisory role. They did not perceive this narrow relationship as influencing their prescribing practices. Nevertheless, they indicated to sometimes be afraid of liability issues when not prescribing antibiotics and the majority did not perceive much support from their direct social environment to (further) alter their antibiotic prescription behaviour. In contrast, they did perceive an urge from the indirect social environment (general public, policy makers, scientists) to alter their prescription behaviour. This leads to conflicts of interests towards the direct and indirect social environment of veterinarians.

Conclusions:

Socially, practitioners are deeply invested in their farmers and amidst a web of regularly conflicting interests. Depending on the situation, social influence plays a role in their decision making regarding the prescription of antibiotics. Further investigation is needed to enhance social reference and support for actively reducing antibiotic prescription.

Antimicrobial susceptibility of non-typhoidal Salmonella isolated from bacteremic children in western Kenya

<u>T. LeCuyer</u>¹, V. Otieno^{1,2}, Q. Cheng³, E. Raballah^{3,4}, N. Ondiek¹, C. Ouma², P. Seidenberg³, B. McMahon⁵, D. Perkins^{1,3}

¹University of New Mexico - Kenya, Kisumu, ²Maseno University, Maseno, Kenya, ³University of New Mexico, Albuquerque, NM, United States, ⁴Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya, ⁵Los Alamos National Laboratory, Los Alamos, NM, United States

Introduction: Invasive non-typhoidal Salmonella (NTS) infections cause a significant disease burden in sub-Saharan Africa. NTS is associated with pediatric co-infections such as malaria and HIV; mortality is up to 45%. NTS is an important zoonotic pathogen and may be maintained in animal reservoirs. Antimicrobial resistance (AMR) further complicates treatment of NTS infections as multidrug resistant NTS is prevalent in many parts of Africa. Unrestricted use of antimicrobials in both livestock and human populations can exert selection pressure on shared pathogens such as NTS. **Objective:** To assess changes in NTS AMR to commonly used antimicrobials between 2004-2012. **Methods:** From 1,654 blood cultures from febrile children less than three years of age in western Kenya (2004-2006 and 2009-2012), 71 NTS isolates were analyzed along with patient history and AMR patterns.

Results: We observed that 17% of the children with NTS bacteremia had a history of antimicrobial administration in the seven days prior to blood culture. The most frequent antimicrobial was trimethoprim/sulfamethoxazole (SXT). Resistance rates for SXT were high (85.7% non-susceptible). However, a history of SXT administration in the past week was not associated with SXT resistant infections. High rates of AMR to other commonly used antimicrobials was also observed: chloramphenicol (70.1% non-susceptible) and amoxicillin-clavulanic acid (73.2% non-susceptible). AMR rates were not significantly different between the 2005-2006 isolates and the 2009-2012 isolates. **Conclusion:** There is a consistently high prevalence of AMR in NTS to commonly used antimicrobials in western Kenya since the early 2000s.

Detection of antimicrobial resistance (AMR) in broiler chickens supplying urban areas in Western Java: A pilot AMR surveillance programme in Indonesia

<u>I. Suandy</u>¹, G. Utomo², R. Telussa², E. Setyawan², P. Allamanda³, N. Triwijayanti⁴, D. Pangaribuan¹, M. Gordoncillo⁵, S. Ma'arif¹, J. Wagenaar^{6,7}, L. Schoonman², J. McGrane² ¹Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, ²FAO ECTAD Indonesia, Food and Agriculture Organization of the United Nations, South Jakarta, ³Disease

Investigation Center of Subang, Subang, ⁴National Animal Product Quality Testing and Certification Laboratory, Bogor, Indonesia, ⁵Regional Office for Asia and the Pacific, Food and Agriculture Organization of the United Nations, Bangkok, Thailand, ⁶Faculty of Veterinary Medicine, Utrecht University, Domplein, ⁷Wageningen Bioveterinary Research, Lelystad, The Netherlands

Approximately 80% of commercial broiler farms in Indonesia are sector-3 farms, i.e. farms with poor biosecurity. This leads to substantial usage of antimicrobials for therapeutic and non-therapeutic purposes. A pilot antimicrobial resistance survey in broiler chickens was conducted in 15 districts of the Subang Disease Investigation Centre catchment area from September to November 2017. The aim was to detect the resistance of zoonotic (Salmonella spp) and commensal (Escherichia coli) bacteria and to identify factors influencing the recovery rate of bacteria to inform AMR Surveillance guidelines. A total of 623 chicken caecal samples were randomly collected from 209 poultry abattoirs. The target bacteria were isolated and identified using Indonesian National Standard Bacterial Analytical Manual methods (SNI 2897:2008I). Seventy-nine Salmonella spp (13%) and 352 E. coli (57%) isolates were recovered. The antimicrobial susceptibility was determined for 61 Salmonella spp isolates and 61 E.coli isolates by the National Animal Product Quality Testing and Certification Laboratory. Analysis was done using the agar dilution method according to the CLSI VET01A4E and VET01S2E guidelines. Resistance levels of Salmonella spp were 87%, 80% 55%, 38%, 17%, and 3% for tetracycline, ciprofloxacin, trimethoprim, gentamicin, ampicillin, and chloramphenicol respectively, and E. coli were 88%, 72%, 70%, 53%, 51%, and 23% for ampicillin, ciprofloxacin, trimethoprim, tetracycline, gentamicin and chloramphenicol respectively. The relatively low recovery rate of E. coli and other improvements from this pilot initiative in the Subang area were all noted and will be addressed in the future routine national AMR surveillance work in broiler poultry in Indonesia **Disclosure:** Nothing to disclose

Antibiotic-induced, increased conjugative transfer is common to several naturally occurring ESBL plasmids in *Escherichia coli*

<u>G. Liu</u>¹, K. Bogaj¹, V. Bortolaia², J.E. Olsen¹, L.E. Thomsen¹ ¹Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, ²National Food Institute, Technical University of Denmark, Lyngby, Denmark

Conjugative plasmid transfer (PT) is the main mechanism for spread of Extended-Spectrum Beta-Lactamase (ESBL)-encoding genes in *Enterobacteriaceae*. Previously, we showed that cefotaxime (CTX) exposure increases transfer of an Incl1/pST49/CTX-M-1 plasmid in *Escherichia coli*. This study aimed at investigating whether that observation was unique for that plasmid/strain combination or whether it is a general phenomenon.

Each of 25 *E. coli* harboring different conjugative ESBL plasmids was exposed separately to CTX, ampicillin (AMP) and ciprofloxacin (CIP) at therapeutically relevant concentrations in a LB broth culture at 37°C until OD_{600} =0.5. After antimicrobial removal, each strain was used for filter-mating conjugation on LB plates with rifampicin (RIF)-resistant *E. coli* J53-2 as recipient, in a 1:1 donor to recipient ratio. The frequency of PT was compared with that of donors not exposed to antibiotics. RT-qPCR was used to measure mRNA levels of PT genes *traF, tral, traL, traM* and *pilS*, and SOS response genes *recA* and *sfiA* in the transconjugants.

Eight (30.7%) plasmids, namely Incl1/pST7/CTX-M-1, Incl1/pST49/CTX-M-1, Incl1/pST3/CTX-M-1, Incl1/pST293/CTX-M-1, Incl1/pST295/CTX-M-1, Incl1/pST16/CTX-M-55, IncFII/CTX-M-14 (n=2) were affected by antibiotics. CTX, AMP and CIP increased PT in all, six and three strains, respectively. RT-qPCR showed that all target plasmid genes were upregulated in presence of the different antimicrobials, whereas SOS-response genes were upregulated following CIP exposure only.

Our findings reveal that AMP, CTX and CIP increase conjugation frequency of different plasmids in different *E. coli*. Thus, antibiotic-induced conjugation transfer of ESBL plasmids appears to be a general phenomenon in *E. coli*. The mechanisms underlying these observations are under investigation.

Monitoring of antimicrobial susceptibility of *Streptococcus suis* in the Netherlands, 2013-2018

J. van Hout, M. Gonggrijp, <u>A. Heuvelink</u> GD Animal Health, Deventer, The Netherlands

Streptococcus suis is an important pig pathogen, and additionally, an emerging zoonotic bacterium. The objective of this study was to analyse the in-vitro antimicrobial susceptibility (AMS) of S. suis from samples from diseased pigs in the Netherlands. S. suis isolates, over 3000, originated from diagnostic submissions of pigs sent to GD, from April 2013 until December 2018. Minimal inhibitory concentrations (MICs) of 14 antimicrobials were assessed by broth microdilution following CLSI recommendations, MIC₅₀ and MIC₉₀ values were determined and MICs were interpreted as susceptible, intermediate and resistant using CLSI veterinary breakpoints (when available). Emergence of resistance among S. suis from diseased pigs appeared to be limited. Percentage of resistance to ampicillin, ceftiofur, enrofloxacin, florfenicol, penicillin, and trimethoprim/sulfamethoxazole was low, to clindamycin medium, and to tetracycline high. Crossresistance between penicillin and ampicillin appeared to be incomplete. For several antimicrobials, an effect of age category on MIC values and percentages of resistance was found. It has to be kept in mind that the results represent only part of the Dutch pig population. However, given the high number of isolates, this passive monitoring is considered to provide a reliable and representative picture of the AMS of S. suis isolates in the Netherlands. Interpretation of MICs of (clinically relevant) antimicrobials tested for treatment of S. suis infection is strongly hampered by the lack of clinical breakpoints that are animal species- and body-site-specific. Therefore, and to conduct a clinically reliable monitoring of AMS of veterinary pathogens, more species- and body-site-specific veterinary breakpoints are urgently needed.

AMR at human -animal interface,results from the largest one health surveillance study India <u>N. Taneja</u>¹, J. Mahindroo¹, C. Narayan¹, D. Thanh², T. Nguyen², M. Sharma¹, V. Shahi¹, B. Mohan¹, S. Thakur³, S. Baker²

¹Enteric laboratory Medical Microbiology, Postgraduate Institute of Medical education and Research, Chandigarh, India, ²Enteric, OUCRU, Ho Chi Min, Viet Nam, ³Veterinary College, North Carolina Institute, Raleigh, NC, United States

India is currently facing a huge challenge of multi-drug and extremely drug resistant bacteria. Foodborne infections are very common in India. Increased demands of livestock have resulted in intensive farming where antibiotic usage is rampant. Residues of antibiotics remain active which may alter human intestinal microflora and cause resistance gene transfer. We conducted the largest surveillance study of AMR at the human-animal interface in north India as a part of WHO-AGISAR India grant. The study included surveillance of foodborne pathogens and commensals at the human animal interface across agriculture-intensive areas of Chandigarh, Panjab, Haryana, Uttarahkand and Himachal Pradesh . Human stool samples included community acquired diarrhoea and healthy children. Animal intestinal contents were collected from poultry, goat/sheep and pigs along with corresponding meat samples .Antibiotic usage data from farms was collected. Whole genome sequencing (WGS) was performed for Nontypoidal Salmonella (NTS) and MLST for E.coli pathotypes. A high burden of Campylobacter, NTS, and various pathotypes of diarrhoeaggenic E coli was found at human-animal interface.CTXM-15, NDM and CMY genes were the predominant genes coding for AMR. Overall very high level of resistance was observed towards fluroquinolones, tetracycline, aminoglycosides corresponding to their usage in animal farms. Colistin resistance is emerging. MLST revealed circulation of highly drug resistance clones like ST 131 and avian pathogenic/extra intestinal clones ST117 . Extensive use of antibiotics in the food animals, particularly in poultry was noted. Food chain is an important route for spread of food-borne pathogens and spread of drug resistant bacteria as evidenced by WGS.

Disclosure: Authors declare no conflict

107 Antimicrobial resistance: A call for education <u>S.Y. Yau</u>

Open University of Hong Kong, Hong Kong, Hong Kong

Introduction: Antimicrobial resistance has been a global public concern over the years. Although the World Health Organization has issued the strategies for containment of antimicrobial resistance, the effectiveness of implementation is controversial. Since antimicrobial resistance can affect the health of human well-being that the infectious diseases are not treatable with the available antimicrobial agents, there is an emergent need to call for attention on the strategies to minimize the use of antimicrobial agents from educational perspectives.

Objectives: The objective of this study is to explore the strategies to minimize the use of antimicrobial agents from educational perspectives.

Methods: A systematic review of current literature was conducted using multiple database such as Medline, PubMed, Embase. Related articles within 2013-2018 were reviewed systematically and the results were presented by thematic analysis.

Results: Results supported that education, both for clinicians and public, were positively associated with minimizing the use of antimicrobial agents. For the clinician's perspective, active clinician education, provide reminders, implement audit and feedback were reported. For the public's perspective, educational programmes centered on the consumer drug use were significant. **Conclusion:** Antimicrobial resistance is a global challenge in public health context. This study concluded that education is one of the key strategies to minimize the use of antimicrobial agents. Thus, intervention programmes focusing on minimizing antimicrobial agent use should consider including education elements in programme design.

Pharmacokinetics of sulfadiazine-trimethoprim in mink

<u>A.A. Ronaghinia</u>^{1,2}, N.K. Nikolaisen^{2,3}, H.H. Poulsen⁴, T. Struve², S.G. Hansen², P.-L. Toutain⁵, P. Damborg⁶

¹Veterinary clinical and animal science, Copenhagen University, Frederiksberg, ²Diagnostics, Kopenhagen Fur, ³Division for Diagnostics & Scientific Advice - Bacteriology & Parasitology, Technical University of Denmark, ⁴Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark, ⁵Veterinary Pharmacology, The Royal Veterinary College, London, United Kingdom, ⁶Veterinary clinical and animal science, Copenhagen University, Copenhagen, Denmark

Introduction: Antibiotics are extensively used off-label for mink. In order to rationalize antimicrobial use in this species, PK data are needed to determine optimal antimicrobial dosages and clinical breakpoints targeting mink pathogens. PK studies in mink are hampered by the difficulties in obtaining venous blood over an extended time period. Therefore, nail blood could serve as an alternative to venous blood.

Objectives: To investigate PK parameters of sulfadiazine and trimethoprim in fasted and fed mink, and to compare results obtained from parallel nail and venous blood samples.

Methods: Ten male adult minks were divided into groups of fed (n=5) and 12-hour fasted (n=5). Sulfadiazine/trimethoprim (30 mg/kg) was injected IV, and blood was withdrawn from nail and vein before injection and at nine time points until 24h. Injections and aspirations were under sevoflurane anesthesia. Serum concentrations were measured by LC-QTOF. Data were analyzed using non-linear regression models by WinNonlin 8.0 and non-linear mixed effect models by NLME 8.0.

Results: Both antibiotics were best described by a mono-compartment model with CL, V, k10 value of 46.83 (ml/h/kg), 706 (ml/kg), 0.07 (h⁻¹), respectively for sulfadiazine and 496.89 (ml/h/kg), 5130.9 (ml/kg), 0.177 (h⁻¹), respectively for trimethoprim. Based on NLME models, there were no significant difference (p< 0.05) between nail and vein blood and fed and fasted groups.

Conclusion: Pending MIC data for mink pathogens and bioavailability data will be used with the obtained PK data for dose optimization and CBP development. Nail samples can be representative of venous blood for these antimicrobials.

Occurrence of multiple drug resistant *Escherichia coli* and *Enterococcus* species in village chickens from four farms in Selangor, Malaysia.

M.S. Japri¹, N.M.F. Nik Mohd Azmi², S.K. Bejo¹, N.I. Ahmad¹

¹Department of Veterinary Pathology and Microbiology, ²Department of Veterinary Clinical Studies, Universiti Putra Malaysia, Serdang, Malaysia

Intensification of poultry farming is associated with the use of antimicrobial agents either as growth promoters, feed additives or prophylaxis, leading to antimicrobial resistant bacteria in chickens which may serve as a risk to human health via the food chain. In Malavsia, village chickens has built its reputation among the locals as an alternative source of protein, perceived to be free from hazards associated with commercial poultry farms including drug residues and poor animal welfare. Nevertheless hazards including antimicrobial resistant bacteria may still occur in village chickens since birds are reared outdoors and fed with food- or agro-based wastes. Therefore, this study aimed to determine if antimicrobial resistance is prevalent in 2 commensal bacterial species in the poultry intestinal tract; Escherichia coli and Enterococcus spp. Cloacal swabs were acquired from 60 village chickens on 4 farms in the Hulu Langat district, Selangor, Malaysia. Escherichia coli and Enterococcus spp. were isolated from the samples with the overall prevalence of 89.3% and 37.5%, respectively. E. coli isolates were resistant to tetracycline (78%), ampicillin (56%), amoxicillin (52%), streptomycin (38%), chloramphenicol (34%), cephalexin (28%), enrofloxacin (24%), gentamicin (8%) and aztreonam (2%), but susceptible to meropenem. *Enterococcus* spp. isolates were resistant to tetracycline (100%), norfloxacin (72%), enrofloxacin (52%) gentamicin (33%), ciprofloxacin (33%), ampicillin (29%) and amoxicillin (10%), but susceptible to vancomycin. Overall, multiple drug resistance in the village chicken isolates were determined as high E. coli (59%) and Enterococcus spp. (67%), considering the nature of the farming system adopted.

Evaluation of CHROMID® Colistin R agar, new chromogenic medium for screening of Enterobacteriaceae with acquired resistance to colistin in veterinary caecal samples <u>S. Marchand</u>¹, J.M. Roche¹, Y. Bala¹, C. Aaby Svendsen², J. Sejer Kjeldgaard², R. S.Hendriksen² ¹bioMérieux, Marcy l'Etoile, France, ²Technical University of Denmark, Kongens Lyngby, Denmark

Introduction

o Since 2015, eight different *mcr*-genes and 53 variants of Colistin plasmid-mediated resistance were reported. The *mcr*-genes have been identified worldwide from human, animal and environmental samples mostly but not exclusively in *Escherichia coli*. As colistin remains as a last resort antibiotic for multidrug resistant infections in human, why tremendous importance to be able to detect strains with acquired resistance to colistin.

Materials and Methods

o A total of 105 caecal samples, from poultry, veal calf, and swine were collected among Danish slaughterhouses and included in this study.

o Samples were tested using CHROMID® Colistin R agar before (specificity study) and after (sensitivity study) artificial contamination at ≈1.5x10⁵ CFU/mI with characterized strains with acquired resistance to colistin. The strains set included nine *Salmonella enterica* and 26 *Escherichia coli* harbouring *mcr*-1, -2, -3, -4 or -5 genes. The tests were performed following agar's instruction for use. Results

o Specificity was 96% using CHROMID® Colistin R plate (screening intended use). The colony of interest growing on those plates were subcultured with an inoculum of 10⁴ CFU on a second CHROMID® Colistin R plate (resistance detection intended use). Subsequently, specificity raised to 100%.

o Among the 105 artificially contaminated samples, all the characterized strains were recovered highlighting a sensitivity of 100%.

Discussion and Conclusion

o Combining easy to read chromogenic properties, high sensitivity and specificity, CHROMID® Colistin R is an well adapted for large screening trials and confirmation of colistin resistance in Enterobacteriaceae among dominant or subdominant flora.

Emergence of fluoroquinolone resistant Salmonella Kentucky ST198 from India

<u>J. Mahindroo</u>¹, T.N. Thi Nguyen², D. Pham Thanh², B. Mohan¹, S. Thakur³, S. Baker^{2,4}, N. Taneja¹ ¹Medical Microbiology, Postgraduate Institute of Medical education and Research, Chandigarh, India, ²Wellcome Trust Major Overseas Programme, OUCRU, Ho Chi Minh City, Viet Nam, ³veterinary medicine, North Carolina State University, Raleigh, NC, United States, ⁴Nufflied Department of Medicine, University of Oxford, Oxford, United Kingdom

Introduction: Non-Typhoidal *Salmonella*(NTS) has huge reservoirs in animals and generally induce a self-limiting gastroenteritis in humans. S. Kentucky has appeared on global NTS landscape in animal husbandry but had a low prevalence in human infections. Kentucky infections have been largely associated with single sequence type(ST198) exhibiting resistance to ciprofloxacin. India is likely a key location for the emergence and international transmission of diarrhoeal pathogens, but there are limited concise data.

Objectives: To characterize NTS from humans and food-animals to access potential role of foodanimals in infection and spread of antimicrobial resistance.

Methods: Stool and meat samples from food-animals and diarrhoeagenic stool samples from humans were collected from five states of North India. Salmonella were isolated by microbiological culture methods and whole genome sequencing was performed. Bioinformatic analysis was done to identify the MLST sequence types and antibiotic resistance genes. Minimum Inhibitory Concentration were also estimated to common antibiotics.

Results: A total of 889 animal samples and 1726 human stool samples were collected and a total of 117 NTS were identified. Among all the NTS, S. Kentucky was the most common serovar (23/117). All Kentucky isolates belonged to a single type ST198 and were resistant to ciprofloxacin. On phylogenetic analysis it was found that these isolates had similar mutation profile as that of previously described epidemic clone from international travelers.

Conclusions: We conclude that Ciprofloxacin resistant S. Kentucky ST198 is endemic in India with huge reservoirs in food animals and there is an utmost need for surveillance systems in all sectors **Disclosure:** Nothing to disclose

Development of a Novel Antimicrobial for the Treatment Of Bovine Mastitis

<u>C. Abberton¹</u>, C. Larkin¹, M. Gordon¹, J. Murphy¹, T. Vollmerhausen¹, R. Friel¹, V. O'Flaherty^{1,2} ⁷Westway Health, ²Microbiology, NUI Galway, Galway, Ireland

The occurrence of antibiotic-resistant bacteria is an increasingly prevalent societal issue globally. The fact that many antibiotics are no longer effective against bacteria is of particular concern in the veterinary sector, the largest consumer of antibiotics. Bovine mastitis is the most critical infectious disease affecting the dairy industry, leading to recurrent treatment failures, poor milk quality, loss of income to farmers, and the premature culling of animals.

Westway Health is currently developing LARS (Long Acting Reactive Species), a novel treatment for bovine mastitis in lactating cows, based on the reaction between peroxide and iodide. The antimicrobial activity of LARS was tested, *in vitro*, against a panel of mastitis isolates (including *Escherichia coli, Staphylococcus aureus*, and *Streptococcus* species). Minimum Inhibitory Concentrations (MICs) were determined to be comparable to many antibiotic treatments; and when delivered in a specially manufactured excipient, time-kill assays demonstrated an equivalent kill profile to a product currently on the market. Induction of resistance was attempted over 12 days. Resistance developed against all antibiotics tested within the experimental time frame, yet no resistance developed to LARS.

Clinical trials were conducted on a multitude of farms across Europe, where Somatic Cell Counts (SCCs) and iodine residues have been measured over time, and bacterial analysis has been carried out. The treatment was well tolerated by the cows and individual SCCs decreased in response to treatment, associated with clinical and bacteriological cures. Long-term follow-up of the animals indicated no adverse effects. We're now working towards regulatory approval of a novel mastitis treatment.

Threats by *Acinetobacterspp*. in domestic and exotic animals - occurrence and resistance trends in the United States, 2013-2018

G. Maboni¹, M. Seguel², A. Lorton³, <u>S. Sanchez³</u>

¹Infectious Diseases, ²Pathology, ³The University of Georgia, Athens, GA, United States

Acinetobacter has emerged as an important opportunistic pathogen due to its remarkable ability to acquire antimicrobial resistance. While its relevance as a human pathogen is unquestionable, knowledge of *Acinetobacter* in Veterinary Medicine is scarce. We used statistical modelling analysis to answer questions regarding the distribution of different species of *Acinetobacter* in domestic and exotic animals, their antimicrobialresistance profiles, multidrug-resistance rates, and resistance trends in the past years. Isolates were identified as *A. baumannii*, *A. lwoffii*, *A. jonhsonii*, *A. radioresistens*, *A. ursingii* and *A. junii*. *Acinetobacter* spp. were isolated from domestic and exotic animals, but commonly isolated from domestic pets, which cohabit with humans, acting as potential vectors of bacteria and resistance genes.

MICs demonstrated resistance profiles that were intrinsically associated with different *Acinetobacter* species. This emphasizes the importance of species identification and the necessity to implement MIC breakpoints for different species of *Acinetobacter* from animal origin. We propose that veterinary laboratories must cautiously interpret the intrinsic resistance guidelines when reporting antimicrobial susceptibility testing of *Acinetobacter*. There was a significant multidrug resistance percentage of *A. baumannii* (72.1%) and *A. haemolyticus* (80%). Importantly, any of the isolates were resistantto Imipenem, which is the treatment of choiceagainst multi-drug resistant *Acinetobacter*. There was no significant increase or decrease of resistance to any of the tested antimicrobial classes between 2013 and 2018. In summary, *Acinetobacter* emerging as an important pathogen in veterinary medicine. Our findings stress that *A. baumannii* is the species that requires special attention at veterinary clinics due to high prevalence and multi-drug resistant phenotypes.

Molecular characterization of multi-drug resistant gram-negative strains isolated during a prevalence survey of rectal colonization in Verona (Italy) long-term care facilities

C. Thoma¹, I. Unali¹, F. Maistrello¹, A. Bertoncelli¹, F. Mazzaferri², A.M. Azzini², <u>A. Mazzariol¹</u> ¹Diagnostics and Public Health, Microbiology Division, ²Diagnostics and Public Health, Infectious Diseases Division, University of Verona, Verona, Italy

Introduction: Few data are available on characterization and prevalence of multidrug-resistant (MDR) Gram-negative in long-term care facility (LTCF) residents.

Aim: The study characterized the multi-drug resistant strains isolated among residents in LTCFs during a point prevalence survey (PPS).

Methods: A PPS was conducted in seven LTCFs situated in Verona area (Italy). A rectal swab was collected to identify ESBL and carbapenemase-producing isolates, using ChromoID ESBL and MCconkey media, with added ertapenem and meropenem disk respectively. Carbapenemase and ESBL productions were checked by CarbaNP test and multiplex PCR for major carbapenemases and ESBL groups were carried out. Clonal relationship was evaluated by PFGE, MLVA and phylogenetic group determination.

Results: A total of 453 residents were enrolled. 241 (53,2%) residents resulted colonized at least by one MDR gram-negative. 275 gram-negative cephalosporin-resistant were isolated. 14 residents harbor a *K. pneumoniae* KPC-producer and all resulted clonal by PFGE. Four harbors OXA-23 producer *A. baumannii*, 116 out of 140 *E. coli* resistant to cephalosporins isolated. were ESBL producers. Molecular analysis showed 79% harbor a CTX-M-1 group enzyme, !8,2% a CTX-M-9 group, TEM-1 (32.7%) and SHV (4,5%) were always co-harbored with a CTX-M enzyme. Phylogenetic group analysis of E. coli ESBL-producer strains showed a great prevalence of B2 group (77,2%). **Conclusions:** We reported a high rate of colonization of *E, coli* ESBL-producing among LTCF residents. All of them carried a CTX-M-1 or CTX-M-9 group enzyme and the 77,2% show the same phylogenetic group B2. KPC was the only carbapenemase detected in *Enterobacteriaceae* (5%). **Disclosure:** Nothing to disclose

Efficacy enhancement of antibacterials against *Escherichia coli* by Histamine H_1 receptor antagonists

<u>G.G. Bruer</u>¹, J. Meissner¹, P. Hagedorn¹, A. Tohamy², V. Filor¹, E. Schultz¹, S. Mielke-Kuschow¹, M. Kietzmann¹

¹Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany, ²Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt

Introduction

The aim of this study was to find out if antihistaminic compounds like mepyramine, which is used for the treatment of allergic diseases, have the ability to influence the activity of antibacterials. Therefore, the checkerboard method was chosen to detect these possible effects in vitro.

Materials/Methods

Checkerboard tests were carried out in 96 well plates. The H₁ antagonist mepyramine was serially diluted along the rows (0-1000 μ g/ml), various antibacterial agents along the columns starting at zero and ending at two times MIC. Two different *Escherichia coli* (*E. coli*) strains were used. *E. coli* ATCC[®] 25922[™], a reference strain for antimicrobial susceptibility testing and *E. coli* PIG 01 isolated from pigs in own experiments and resistant to enrofloxacin. Bacterial growth was compared measuring the absorbance after 24 hours. A dose reduction index (DRI) was calculated based on the compounds concentration which inhibited the bacterial growth.

Results

The effect of amoxicillin, sulfadiazine/trimethoprim, colistin, enrofloxacin, tetracycline and florfenicol was enhanced by mepyramine in vitro. In contrast, mepyramine had no influence on the antibacterial effect of gentamicin and kanamycin.

Conclusion

The combined use of antihistamines and antibacterials might be a potential option to treat infectious diseases in future. In vivo studies are in progress to confirm the in vitro results. **Disclosure:** Nothing to disclose

Occurrence of *Gallibacterium anatis* in chicken production systems in Iran and evaluation of the genetic diversity of the Gtx-A toxin, a potential vaccine candidate

A.M. Bojesen¹, T. Allahghadry¹, A. Dibaei²

¹Copenhagen University, Copenhagen, Denmark, ²Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran

Gallibacterium anatis is a common cause of reproductive tract infection in egg-laying hens which calls for development of new prophylactic measures. The purpose of this study is to investigate the occurrence of *G. anatis* in chicken production system in Iran and to evaluate the diversity of the toxin. which has been suggested as a promising vaccine antigen. The occurrence of G. anatis was assessed in battery-cage layer and broiler flocks with two biosecurity levels. The 12 flocks originated from three different climatic zones. Ten chickens from each flock were sampled by tracheal swabs utilized for identification of *G. anatis* by PCR and MALDI-TOF. A total of 30 broilers and 54 battery-cage layers sampled positive for G. anatis indicating that G. anatis is highly prevalent in Iranian commercial poultry. However, the prevalence proportions were influenced by the biosecurity level, climatic conditions and health status of the chickens. Genotyping of the 71 isolates using PFGE suggested that the Iranian isolates grouped in 24 clusters with 88% similarity revealing a considerable genotypic variability. Yet, we also found clones that were present in different flocks and production systems. gtxA toxin gene sequencing was performed on 23 strains to allow evaluation of the genetic diversity of the gene. Comparison of the 23 Iranian strains and 26 strains from other parts of the world showed at least 92% gtxA sequence similarity. This indicated that gtxA has a conserved sequence across a range of epidemiologically independent strains, which favors the use GtxA in vaccine development activities.

Detection by real-time PCR of colistin resistance genes (*mcr*-1 to *mcr*-3) in animal manure and agricultural soil in Northern Italy

R. Tolosi, L. Carraro, A. Piccirillo

Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy

Introduction: The presence of antimicrobials, such as colistin, in animal manure may promote the dissemination of plasmid-mediated colistin resistance (*mcr* genes) into the environment. **Objectives**: To assess resistance to colistin mediated by *mcr* genes in soil fertilized with manure from intensive animal farms.

Aim: To provide qualitative data for *mcr*-1 to *mcr*-3 genes in manure and soil using a real-time PCR approach.

Methods: A total of 84 samples (1 sample of manure/slurry; 1 sample of soil before fertilization, T0; and 1 sample of soil about 30 days after fertilization, T30 per farm) collected from dairy (n = 11), swine (n = 10) and chicken (n = 7) farms were analysed by real-time PCR.

Results: *Mcr*-1, *mcr*-2 and *mcr*-3 genes were detected in all three farms and samples. In swine farms, all 3 *mcr* genes (*i.e.* 5 slurry, 2 T0 and 3 T30 for *mcr*-1; 3 slurry for *mcr*-2; 3 slurry, 2 T0 and 2 T30 for *mcr*-3) were detected. In chicken and dairy farms, only *mcr*-1 (*i.e.* 3 manure in dairy, and 3 T0 and 1 T30 in chicken) and *mcr*-3 genes (*i.e.* 2 manure in dairy, and 1 manure and 1 T0 in chicken) were found. *Mcr*-1 was the most prevalent gene (20%), followed by *mcr*-3 (13%) and *mcr*-2 (3.5%). **Conclusions**: The presence of *mcr* genes into the environment, following fertilization with animal manure, may be of concern for public health since colistin is considered as last therapeutic option for

treating severe human infections. **Disclosure:** Nothing to disclose

Plasmid-mediated gentamicin resistance in MDR, ESBL/AmpC-producing *E. coli* isolated in turkey meat industry

V. Carfora, G. Cordaro, R. Onorati, A. Ianzano, D. Ballarò, V. Donati, T. Cerci, M. Iurescia, A. Vanni, F. Bottoni, A. Franco

Department of Diagnostics- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale Lazio E Toscana 'M. Aleandri', Rome, Italy

Aminoglycosides have been extensively used in food producing animals. In Italy, the EU Harmonised AMR Monitoring (Decision 2013/652/EU), has detected high levels of gentamicin resistance in commensal E. coli and Salmonella since 2014 (21.8% and 30.4% respectively). The aim of this study was to determine the genetic basis of gentamicin resistance in MDR, ESBL/AmpC-producing E. coli isolated from fattening turkeys and meats thereof in Italy in 2018. Thirteen phenotypically MDR, ESBL/AmpC-producing E. coli from 7 caecal contents of fattening turkeys and from 6 turkey meat samples, displaying gentamicin MIC values >2 mg/L, were in-depth characterized by Whole Genome Sequencing. MLST, accessory genes, chromosomal mutations conferring antimicrobial resistance and plasmid replicons were determined using bioinformatic tools. Preliminary results indicated that 9/13 isolates belonged to different Sequence Types. All isolates presented multiple plasmid replicons, ESBL/AmpC, aminoglycoside and sulphonamide resistance genes. All but one also presented tetracycline resistance genes and the majority (10/13) also chromosomal point mutations on *gyr*A and parC conferring fluoroguinolone resistance. 10/13 isolates harboured at least one gene (aac(3)-IIa, aac(3)-IVa, aac(3)-Vla, aac(3)-IId, ant(2)-la) associated with gentamicin resistance. Interestingly, in one isolate aac(3)-IIa and aac(3)-VIa were located in the contigs containing IncQ and IncA/C plasmid replicons, respectively. These findings are of growing concern, since demonstrate that ESBL/AmpCproducing E. coli from the Italian turkey industry often acquire additional extra-chromosomal transferable resistance to HPCIAs like aminoglycosides. This occurrence is likely due to the extensive administration, especially by oral route, of aminosidine (paromomycin) and gentamicin/apramycin in the turkey industry.

Dynamics of antimicrobial prescription behaviour of farm animal veterinarians in the Netherlands

P. Sanders¹, D. Speksnijder^{2,3}

¹Institute of Risk Assessment Sciences, Utrecht University, ²Faculty of Veterinary Medicine Utrecht University, Utrecht, ³University Farm Animal Clinic ULP, Harmelen, The Netherlands

Background:

Insights in determinants that drive antimicrobial prescription behaviour of farm animal veterinarians might be supportive in developing new policies to further reduce antimicrobial use in agriculture. In this study we investigated dynamics of antimicrobial prescribing behaviour of Dutch veterinarians over time and possible factors influencing prescribing practices of individual veterinarians.

Methods:

Antimicrobial prescription data of individual veterinarians over the years 2013-2017 were obtained from different data sources and subsequently anonymized by an independent third party. Additional data as affiliation (to a veterinary practice), characteristics of farms they served and other demographic data were collected and handled likewise. Mixed models were used to explore which determinants influence the level of antimicrobials prescribed. Examined determinants include farm size, number of farms served and year. Structural high prescribing veterinarians were defined as veterinarians with a level of antimicrobials prescribed that exceeded the 65th percentile for three consecutive years. Similarly, structural low prescribers prescribed less than the 35th percentile for three consecutive years.

Results:

Preliminary results indicate that a substantial part of farm animal veterinarians have a relatively constant antimicrobial prescription behaviour over subsequent years. This results in a relatively stable group of 'structural high' and 'structural low' prescribers. Several determinants are influencing the level of antimicrobial prescribed and they differ between animal species. These determinants are currently being analysed and will be presented.

Implications:

Knowledge of prescription determinants might unravel possibilities how veterinarians can (further) lower their antimicrobial prescription level and will inform policy makers how to support veterinarians in doing so.

Use of Whole Genome Sequencing to Evaluate Phenotypic Carbapenem Resistance from a Cluster of Companion Animal *Escherichia coli* Isolates

S.D. Cole¹, E.G. Dudley², H.M. Figler², S.C. Rankin¹

¹Department of Pathobiology, University of Pennsylvania, Philadelphia, ²E. coli Reference Center, The Pennsylvania State University, University Park, PA, United States

Carbapenem-resistant Enterobacteriaceae (CRE) are important agents of human nosocomial infections but have been rarely isolated from companion animals. Resistance to carbapenems is typically due to an acquired beta-lactamase gene or mutation of outer membrane proteins (OMP) due to deletion. This study evaluated a cluster of 7 isolates from 6 animals housed in an intensive care unit over 30 days. Bacteria were isolated from specimens from 5 dogs (4 respiratory and 2 urine) and 1 cat (1 respiratory) in a clinical microbiology lab using standard methods. Identification and antimicrobial susceptibility testing were performed on the Vitek2 system (Biomerieux) and the imigenem resistant phenotype was confirmed by E-test. Whole genome sequencing (WGS) was performed on an Illumina MiSeg and contigs were evaluated with PlasmidFinder and CARD to identify plasmids and antibiotic resistance genes respectively. Translated amino acid sequences for the OmpC and OmpF proteins were compared to E. coli k12. All 7 isolates had an imipenem MIC of 4-8 ug/ml by E-test. The first two isolates had same MLST type (ST69), all other isolates were all unique. IncF plasmids were detected in 6/7 isolates. No carbapenamase genes were identified. OmpC amino acid sequences were more divergent from K12 than OmpF, but no premature stop codons were detected in either protein. It is still unclear what the mechanism of resistance is in these isolates following WGS analysis. This study highlights the continued importance of phenotypic analyses when evaluating antimicrobial susceptibility of clinical isolates.

Resistome of Wight Toothed Shrews and Wood Mice strongly correlates with host specific gut microbiota composition

A. Umanets^{1,2}, W.F. de Boer³, D.J. Mevius², <u>H. Smidt</u>¹, N. van den Brink⁴ ¹Laboratory of Microbiology, Wageningen University, Wageningen, ²Wageningen Bioveterinary Research, Lelystad, ³Resource Ecology Group, ⁴Laboratory of Toxicology, Wageningen University, Wageningen, The Netherlands

Increased antibiotic resistance of bacteria threatens human health and food security. Here we investigated the faecal resistome of White Toothed Shrews (Crocidura russula, WTS) and Wood Mice (Apodemus sylvaticus, WM) captured at six different pig farms across The Netherlands with different levels of veterinary antibiotic use. 120 faecal samples were collected from WTS(n=70) and WM(n=50). DNA was extracted from individual samples. For microbial composition profiling the V3-V4 region of 16S rRNA genes was PCR-amplified, HiSeq-sequenced and data was processed using NG-tax. For resistome assessment we used shot-gun metagenomics (HiSeg 2500) on DNA-pools per area and species (n=12). Numbers of reads containing antibiotic resistance gene (ARG) [NvdB1] motives (ARGM) and ARG-classes were assessed using DeepARG. Statistical analysis and visualization were performed using R. Reads with ARGM accounted for 0.26%-0.66% (95%, CI[0.38, 0.5]) of all reads. WTS and WM showed near-significant (p=0.07) differences in relative abundance of reads with ARGM, and hierarchical clustering based on log-transformed weighted ARG composition showed separation by animal species. Comparison of Principal Coordinates ordinations of gut microbiota and ARG composition showed a high level of symmetry using Procrustes rotation (0.83, p < 0.0001). Correlation of ARG abundance and antibiotic use was less obvious and requires further investigation, however, preliminary results suggested species dependent correlation of the abundance of certain ARG classes and veterinary use of antibiotics. In conclusion this work for the first time provided an overview of free living WTS and WM resistomes, as well as showed a clear correlation between gut microbiota and resistome.

Harmonised Antimicrobial Resistance and Use indicators - how useful are they?

<u>B. Muller-Pebody</u>¹, M. Bos², A. Au-Yeung³, R. Guy³, S. Hopkins³, A. Vidal² ¹HCAI & AMR, Public Health England, London, ²Veterinary Medicines Directorate, Addlestone, ³Public Health England, London, United Kingdom

Background:

Harmonised surveillance indicators for antimicrobial resistance (AMR) and use (AMU) have been developed by the European Centre for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA) and European Medicines Agency (EMA) to assist countries in assessing progress in reducing AMR and AMU in humans and food-producing animals. We present outcomes for harmonised AMR and AMU indicators for the United Kingdom.

Materials/methods:

National data captured by UK surveillance or monitoring programmes from the human sector and animal sector between 2013 and 2017 were used to produce AMR and AMU indicators in humans and food-producing animals.

Results:

Primary AMR indicators showed 50% reduction in methicillin-resistant *Staphylococcus aureus* (humans), 29% decrease in *Escherichia coli* resistant to 3rd generation cephalosporins (humans) and 30% increase in fully susceptible *E. coli* (food-producing animals) between 2013 and 2017. Secondary AMR indicators (humans) demonstrated reduced resistance to key antibiotics for *Klebsiella pneumoniae* and *Streptococcus pneumoniae* but increased carbapenem (*K. pneumoniae*) and penicillin (*S. pneumoniae*) resistance. Resistance to key antibiotics and proportion of ESBL-/AmpC-producing isolates decreased in indicator *E. coli* (food-producing animals).

For AMU, primary indicators demonstrated 5% reduction of total consumption of systemic antibiotics (humans) and 41% reduction of sales of veterinary antibiotics. Secondary AMU indicators showed increased use of broad-spectrum antibiotics in hospitals (humans) and decreased sales of quinolones, 3rd/4th generation cephalosporins and colistin (veterinary sector).

Conclusions:

Harmonised AMR and AMU surveillance indicators are valid tools for monitoring progress and areas where increased effort is needed to tackle AMR and reduce antimicrobial usage. **Disclosure:** Nothing to disclose

The Results of Interlaboratory Proficiency Testing for One Health Research Laboratory J. Park¹, T.S. Kim², H. Lee³, K.J. Lee⁴, S.M. Bae⁴, K.U. Park¹

¹Seoul National University College of Medicine, Seongnam-si, ²Seoul National University College of Medicine, ³Yonsei University College of Medicine, Seoul, ⁴National Institute of Health, Cheongju-si, Republic of Korea

For one health consortium initiated by Korean Center for Disease Control, five research teams participated in it. They collected specific pathogens from pet, livestock, river, food and human. The pathogens were *E. coli, K. pneumoniae, P. aeruginosa, A. baumannii, A. nosocomialis, A. pittii, S. aureus, S. epidermidis, S. pseudintermedius, E. faecalis, E. faecium, Salmonella spp. and Shigella spp. They were tested for antimicrobial susceptibility. About 700 isolates were collected every month, in which 5% isolates were selected and transfered to quality assurance center which conducted interlaboratory proficiency testing. If susceptable results were reported as resistant results and vice versa, it was decided as major error. If intermediate results were reported as resistant or susceptible results and vice versa, it was decided as minor error. For one year, major error rate was 2.6% and minor error rate was 3.7%. The major causes of error were the errorneous reading of inhibition zone by autoscanner and e-test reading error of specific antimicrobials.*